RF-LORA Module for the IoT

RF Solutions’s RF-LORA module is a high-performance radio module delivered in a compact 23 mm × 20 mm format. Intended for Internet of Things (IoT) applications, the RF-LORA module delivers Semtech’s LoRa technology for IoT applications.RF-LORA promo image v2 copy

The RF-LORA’s specs and features:

  • Up to 16 km, spread-spectrum communication and high interference immunity within minimum current consumption
  • Semtech SX1272 LoRa chip.
  • Built-in preamble detection
  • Available in SMT and DIL packages

Source: RF Solutions

Battery Charger Design (EE Tip #130)

It’s easy to design a good, inexpensive charger. There is no justification for selling cheap, inadequate contraptions. Many companies (e.g., Linear Technology, Maxim, Semtech, and Texas Instruments) supply inexpensive battery management ICs. With a few external parts, you can build a perfect charger for just about any battery.

Texas Instruments’s UC2906 is an older (Unitrode) IC designed to build an excellent sealed lead-acid battery charger with a sophisticated charging profile. Figure 1 shows the recommended charger circuit.

Figure 1: This lead-acid battery charger uses Texas Instruments’s UC2906 IC.

Figure 1: This lead-acid battery charger uses Texas Instruments’s UC2906 IC.

In addition to the IC, only a handful of resistors and a PNP power transistor Q1 are needed to build it. Q1 must be rated for the maximum charging current and fitted with a heatsink.

An LED with its current-limiting resistor R can be connected to pin 7, which is an open-collector NPN transistor, to indicate the presence of power. Similarly, an LED with a series resistor could be connected to pin 9, which is also an open-collector NPN transistor to indicate overcharge (it is not used in Figure 1). The UC2906 datasheet and the Application Note provide tables and equations for selection of resistors Rs, Rt, RA, RB, RC, and RD and suggestions for adding various features.

Editor’s Note: This is an excerpt from an article written by George Novacek, “Battery Basics (Part 3): Battery Management ICs,” Circuit Cellar 280, 2013.