Skylake-Based SBC Runs on 15 Watts

VersaLogic has released the Condor—a high-performance embedded computer that measures only 95 mm x 95 mm x 37 mm and is built around Intel’s 6th generation “Skylake” Core processor. The Condor provides up to six times the processing power of Intel’s Bay Trail processors, while keeping power consumption as low as 15 Watts.The Condor’s on-board TPM security chip can lock out unauthorized hardware and software access. It provides a secure “Root of Trust.” Additional security is provided through built-in AES (Advanced Encryption Standard) instructions.

PR_EPU-4460_HICondor is the latest addition to VersaLogic’s line of EPU (Embedded Processing Unit) format computers. EPUs are designed around COM Express form factors, but are complete board-level computers. They provide all the future flexibility of separate CPU and I/O modules, and are delivered as complete fully assembled and tested units (including heat plate), ready to bolt into a system.

On-board I/O includes two Gbit Ethernet ports with network boot capability, two USB 3.0 ports, four USB 2.0 host ports and two serial ports. One SATA III interface supports high-capacity rotating or solid-state drives. Eight digital I/O lines, I2C and SPI are also available. Two Mini PCIe sockets (one with mSATA capabilities) provide flexible solid-state drive (SSD) options. Systems can be easily enhanced by leveraging the Mini PCIe sockets with plug-in Wi-Fi modems, GPS receivers, MIL-STD-1553, Ethernet, Firewire and other mini cards.

The Condor is designed and tested for industrial temperature (-40° to +85°C) operation and meets MIL-STD-202G specifications to withstand high impact and vibration. For additional reliability, the Condor includes on-board power conditioning which accepts an input of 8 to 30 volts to greatly simplify system power supply design. For additional protection, the conditioner includes Reverse Voltage Protection (RVP) and Over Voltage Protection (OVP) functions.

The Condor, part number VL-EPU-4460, is in stock now. OEM quantity pricing for starts at $1,304 for the Core i3 model with 8 GB RAM.

Versalogic | www.versalogic.com

Qseven Card Sports Renesas RZ/G1M

iWave has announced a System-On-Module (SOM) based on Renesas RZ/G1M embedded processr. RZ/G1M SOM is Qseven R2.0 compatible industrial grade CPU module. Called the iW-RainboW-G20M, this SOM module supports 1 GB DDR3 RAM, 4 GB eMMC Flash and 2 MB SPI NOR Flash. Expandable memory is optional. The module also includes on SOM Gigabit Ethernet PHY, Micro SD slot and USB HUB.

renesas-rz-g1-mpu-embedded-boardRenesas’s RZG1M processor supports dual cortex A15 core operating at 1.5 GHz core and includes 64-bit DDR3 interface at 800 MHz. These features provide higher performance for applications such as image processing of multiple video streams and video sensing. The high-speed on-chip integrated USB 3.0, PCIe, Gbit Ethernet and SATA peripherals allows easy expansion of functionality without the need for external components. The RZ/G1M processor supports full HD hardware encode and decode processing up to 1,080 at 60 frames/s, dual display and three channel video input ports. The built-in PowerVR SGX544MP2 Graphics core at 520 MHz allows the user to develop highly effective user interfaces.

The RZ/G1M SOM is supported Linux 3.10 LTSI with Android BSP support to come. To enable quick prototyping of RZG1M SOM, iWave systems supports RZ/G1M development kit with comprehensive peripheral support. This will help customers to save up to 60% of new product development cycle using the RZ-G1M MPU.

iWave Systems Technologies | www.iwavesystems.com

Fanless SBC Targets Industrial IoT

Technologic Systems is now shipping its newest single board computer, the TS-7553-V2. The board is developed around the NXP i.MX6 UltraLite, a high performance  processor family featuring an advanced implementation of a single ARM Cortex-A7 core, which operates at speeds up to 696 MHz. While able to support a wide range of embedded applications, the TS-7553-V2 was specifically designed to target the industrial Internet of Things (IIoT) sector.

ts-7553-v2The TS-7553-V2 was designed with connectivity in mind. An on-board Xbee interface, capable of supporting Xbee or NimbleLink, provides a simple path to adding a variety of Wireless interfaces. An Xbee radio can be used to link in with a local 2.4GHz or sub 1 GHz mesh networks, allowing for gateway or node deployments. Either Digi or NimbleLink offer cellular radios for this socket, providing cellular connectivity for applications such as remote equipment monitoring and control. There is also the option for a cellular modem via daughter card. This allows transmission of serial data via TCP, UDP or SMS over the cellular network. The TS-7553-V2 also includes an on board WiFi b/g/n and Bluetooth 4.0 option, providing even more connectivity.

Further radio expansion can be accomplished with the two internal USB interfaces (one on a standard USB Type A connector, and the second on simple pin headers). The USB interfaces enable support for multiple proprietary networks via a dongle or USB connected device. This provides the opportunity to run mesh, LoRa, ZigBee, automotive WiFi or other protocols with the TS-7553-v2 . All of these radio options combined with the on board 10/100Base-T Ethernet create the opportunity to communicate seamlessly with up to 5 different networks simultaneously from a single point.

The TS-75553-V2 supports standard interfaces including:

  •     10/100 Ethernet
  •     TTL UART
  •     4 USB ports (3 host interfaces and, 1 device)
  •     3 RS-232 Serial/COM ports
  •     RS-485 port
  •     CAN bus
  •     Up to 5 GPIO

A Nine-Axis Micro-Electro-Mechanical System (MEMS) motion tracking device containing a gyroscope, accelerometer and compass are optional on-board in for asset management, fleet management and other applications which would require sensing motion or vibration in the environment.

A low cost monochrome 128x64px LCD with 4 button keypad is available for Human Machine Interface (HMI) applications.  The keypad offers intuitive operation using 4 tactile function keys and the LCD is ideal for simple visualization tasks, even in harsh environments.  If HMI is not a consideration compact, lightweight, rugged enclosures are available to contain your gateway in a secure fanless enclosure. Both enclosures are DIN mountable.

Technologic Systems has taken the lead in combating read/write errors to memory that can prove fatal to Operating Systems. TS-SILO is an optional feature which will provide up to 30 seconds of reserve power in the event of a power failure. This precious extra time gives the board time to gracefully power down and ensures file system integrity. Additionally, for heavy data logging applications The TS-7553-V2 is the first SBC from Technologic Systems to include Ferroelectric RAM (FeRAM or FRAM). FeRAM advantages over flash include: lower power usage, faster write performance and a much greater maximum read/write endurance, allowing a user to keep running data logs without prematurely wearing out their flash memory. Combined these two features provide you with insurance from abrupt power loss, read/write errors and startup difficulties.

Applications with strict low power requirements will appreciate the work that’s been done to reduce power consumption to less than 2 W in typical conditions and a 9 mW sleep mode. Power over Ethernet (PoE) is supported via a daughter card, if desired.

Development can begin out-of-the-box with pre-installed Linux and utilities for controlling DIO, UARTS, CAN bus, and more. A complete board support package is provided, as well as access to our software repository and online support. Third party application support can be provided via the Technologic Systems’ Partner Network.

Technologic Systems | www.embeddedARM.com

COM-Based SBCs Offer High I/O Density

Diamond Systems has released its ultra-small COM-based ZETA single board computer family. Highlights include interchangeable COM Express COMs for scalability and long product life, ultra- compact size and an rich amount of I/O, including a complete high-quality analog and digital data acquisition subsystem.

Designed in the COM Express Mini Type 10 form factor (84 mm x 55 mm / 3.3 in. x 2.2in.), the Zeta family offers performance scalability due to its use of COM Express CPU modules. Three processor options are currently available: Intel “Bay Trail” E3825 dual-core 1.33 GHz CPU with soldered 2 GB RAM; Intel “Apollo Lake” E3940 quad core 1.60 GHz CPU with soldered 4 GB RAM; and Intel “Apollo Lake” N4200 quad core 1.1 GHz (burstable to 2.5 GHz) CPU with soldered 8 GB RAM.

zeta-enlargedThe use of interchangeable CPU modules in the increasingly popular COM Express Mini Type 10 format enables Zeta to serve applications across a wide spectrum of price and performance needs. It also offers customers the longest possible product lifetime by vastly simplifying migration to a new CPU when the current one reaches its end of life. Zeta is an excellent choice for applications with expected lifetimes of 10 or more years, including military, medical, and transportation.

Zeta’s two-board COM + baseboard construction yields the highest feature density possible in a given footprint. The COM provides the core CPU functions, while the baseboard provides the “final inch” for all the system I/O plus the data acquisition subsystem, power supplies, and expansion sockets. Zeta provides as much as a 60% reduction in size compared to boards in larger form factors offering the same level of I/O.

Zeta’s impressive I/O list includes the following:

  • VGA display and Single-Channel LVDS port
  • Dual Gigabit Ethernet
  • 4 USB 2.0 Ports + 1 USB 3.0 port
  • 4 RS-232/422/485 ports with software-programmable protocol and termination
  • 16 digital IlO lines
  • Optional complete analog and digital data acquisition system
  • Integrated wide-range 6 V to 36 V power input circuit

Zeta is available in two I/O configurations, digital I/O only or digital + analog I/O. The DIO only circuit offers 16 DIO lines with selectable 3.3V/5V logic levels. The full circuit includes 16 channels of 16-bit A/D, 4 channels of 16-bit D/A, 27 digital I/O lines with selectable 3.3V/5V logic levels, and 8 32-bit counter/timers, all supported by Diamond’s free, industry-leading Universal Driver data acquisition programming library. An interactive graphical control panel for Windows and Linux is also provided to control all data acquisition features.

Zeta offers multiple options for system expansion and mass storage. It includes a PCIe Minicard / mSATA socket and a micro-SD socket. A unique expansion connector enables the installation of a daughterboard that contains an M.2 SATA SSD socket, a second PCIe Minicard socket, HD audio and 16 additional GPIO lines.

A built-in heat spreader efficiently removes heat from the SBC to keep the processor and all internal electronics cooler for improved reliability. The bottom-side mounting configuration of the heat spreader provides a secure and convenient mounting system for the board. It also simplifies the installation of I/O expansion modules by eliminating interference or airflow problems that can occur with traditional heat sinks. All three models of Zeta are tested for operation over the full industrial temperature range of -40°C to +85°C, making Zeta well suited for vehicle applications.

Diamond Systems | www.diamondsystems.com

3.5″ SBC Serves up Skylake Processors

COMMELL has announced its LS-37K 3.5-inch embedded mini-board based on Intel 6th/7th generation FCLGA1151 Skylake / Kaby Lake Core processor family and Xeon E3-1200 v5 processor. The Skylake PC is claimed to deliver 30 percent better performance than a PC base on Ivy Bridge architecture, 20 percent better performance than a PC based on Haswell, and 10 percent better performance than a Broadwell PC.

LS-37K-3D8The LS-37K desktop 3.5-inch mini-board platform supports DDR4 memory DIMM 1866/2133 MHz up to 16 GB. The platform is based on Intel HD530 (Skylake) HD630, (Kaby Lake) and HD P530 (Xeon E3-1200v5). For graphics, the Skylake GPU offers 24 execution units (EUs) clocked at up to 1150Mhz (depending on the CPU model). The revised video engine now decodes H.265/HEVC completely in hardware and thereby much more efficiently than before, and HD Graphics 630 GPU is largely identical to the 530 found in Skylake, The only real upgrade here is the HEVC and VP9 support. LS-37K Displays can be connected via 1 VGA, 1 LVDS, 1 DVI, 1 HDMI and one DP port, up to three displays can be controlled simultaneously.

LS-37K offers lots of features including high-speed data transfer interfaces such as 4 x USB3.0 and 2 x SATAIII, equipped with dual Gigabit Ethernet (One of the dual LAN with iAMT 11.0 supported), and comes with PS/2 port, 5 x RS232 and 1 x RS232/422/485, 4 x USB2.0, Intel® High Definition Audio, and 1 Mini PCIe socket (supporting mSATA) and 9 to 30 VDC input.

COMMELL | www.commell.com

Low Power PC/104-Plus SBC has Rich I/O

Winsystems has announced Its new PPM-C412 series for demanding environments and applications. It offers a broad spectrum of I/O features and the ability to expand functionality in a densely populated, standalone SBC solution. The board delivers greater performance and a clear upgrade path for current PPM-LX800 users while providing full ISA-compatible PC/104-Plus expansion.

WinSystems_PPM_C412At the heart of the board is a Vortex DX3 System on Chip (SOC), which offers a 32-bit x86 architecture with a dual-core microprocessor. The PPM-C412 incorporates dual Ethernet ports coupled with four serial ports, four USB channels and an LPT port for myriad communications options. It also includes dual simultaneous display outputs, one LVDS and one VGA, for Human Machine Interface (HMI) displays. Further, It provides 24 GPIO for monitoring and control, resulting in an I/O-rich, rugged SBC occupying minimal space. The PPM-C412 can be used on its own or in combination with the PC/104-Plus bus to expand functionality and capitalize on its full ISA compatibility, averting the need to re-engineer system architectures.

The PPM-C412 is specifically built for rugged industrial environments, with low power requirements, up to 2 GB RAM and an operating temperature range of -40ºC to +85ºC. With a 10-year availability, this new SBC also extends the product life of systems using commercial off the shelf (COTS) and proprietary PC/104 expansion modules.

Winsystems I www.winsystems.com

Fanless EPIC SBC Handles Extreme Temps

AAEON has launched the EPIC-BT07W2 SBC that supports the EPIC form factor and features an industrial-grade thermal range of -40°C to 85°C. The EPIC-BT07W2 is a fanless solution like the rest of AAEON’s EPIC line, and provides high environmental resilience with its wide-temperature design. The CPU is located at the solder side of the board to facilitate further thermal solutions, and comes with a rugged aluminum heat spreader that provides maximum airflow and temperature control. A heatsink is also available as an accessory.

tio_170919_7nks33PCI-104 architecture expansion enables daughter boards to be stacked atop on the main board, minimizing lateral space and facilitating maximum flexibility, as well as supporting legacy IO. The EPIC-BT07W2 can be seamlessly integrated into pre-existing hardware such as panel screens and mini PCs. It is also ideal for IoT uses, and is designed for minimum maintenance and maximum ruggedness.

Features include:

  • Onboard Intel Atom E3845/ Celeron J1900, N2807 Processor SoC
  • DDR3L 1,333 MHz SoDIMM x1, Up to 8 GB
  • LVDS 24-bit Dual Channel
  • Dual Display Configuration: VGA+ LVDS, VGA + HDMI or HDMI + LVDS
  • SATA 3.0 Gb/s x 1, mSATA/ MiniCard x 1, Micro SD Slot x 1 (E3800 Series Only)
  • USB 3.0 x 1, USB2.0 x 5, RS-232 x 4, RS-232/422/485 x 2 (COM2, COM3)
  • MiniCard x 1, SIM x 1, PCI-104 (Optional)
  • 16-bit Digital IO/LPT, SMBus x 1, I2C (Optional)
  • Audio 2 Ch, 2 W Audio Amp., TPM (Optional), Touch Controller (Optional)
  • 9-24V DC Wide Range or 12 VDC Power Input
  • SoC Processor on Solder Side Design

AAEON | www.aaeon.com

Emulating Legacy Interfaces

Do It with Microcontrollers

There’s a number of important legacy interface technologies—like ISA and PCI—that are no longer supported by the mainstream computing industry. In his article Wolfgang examines ways to use inexpensive microcontrollers to emulate the bus signals of legacy interconnect schemes.

By Wolfgang Matthes

Many of today’s PC users have never heard of interfaces like the ISA bus or the PCI bus. But in the realm of industrial and embedded computers, they are still very much alive. Large numbers of add-on cards and peripherals are out there. Many of them are even still being manufactured today—especially PCI cards and PC/104 modules for industrial control and measurement applications. In many cases, bandwidth requirements for those applications are low. As a result, it is possible to emulate the interfaces with inexpensive microcontrollers. That essentially means using a microcontroller instead of an industrial or embedded PC host.

Photo 1 - The PC/104 specifications relate to small modules, which can be stacked one above the other.

Photo 1 – The PC/104 specifications relate to small modules, which can be stacked one above the other.

To develop and bring up such a device is a good exercise in engineering education. But it has its practical uses too. Industrial-grade modules and cards are designed and manufactured for reliability and longevity. That makes them far superior to the kits, boards, shields and so on, that are intended primarily for educational purposes and tinkering. Moreover, a microcontroller platform can be programmed independently—without operating systems and device drivers. These industrial-grade boards can operate in environments that consume considerably less power and are free from the noise typical of the interior of personal computers. The projects depicted here are open source developments. Descriptions, schematics, PCB files and program sources are available for downloading.

Fields of Use

The basic idea is to make good use of peripheral modules and add-in cards. Photo 1 shows examples. Typical applications are based on industrial or embedded personal computers. The center of the system is the host—the PC. Peripheral modules or cards are attached to a standardized expansion interface, that is, in principle, an extended processor bus. That means the processor of the PC can directly address the registers within the devices. The programming interface is the processor’s instruction set. As a result, latencies are low and the peripheral modules can be programmed somewhat like microcontroller ports—without regard to complicated communication protocols. For example, if the peripheral was attached to communication interfaces like USB or Ethernet, that would complicate matters. Common expansion interfaces are the legacy ISA bus, the PCI bus and the PCI Express (PCIe) interface. …

We’ve made the October 2017 issue of Circuit Cellar available as a sample issue. In it, you’ll find a rich variety of the kinds of articles and information that exemplify a typical issue of the current magazine.
Don’t miss out on upcoming issues of Circuit Cellar. Subscribe today!

 

SBC is Drop-In Replacement for Raspberry Pi 3 Model B

A Kickstarter project by the Libre Computer Project, code name Le Potato, is designed as a drop in hardware replacement for the Raspberry Pi 3 Model B and offers faster performance, more memory, lower power, higher I/O throughput, 4K capabilities, open market components, improved media acceleration, removal of the vendor locked-in interfaces and Android 7.1 support. This platform uses the latest technologies and is built upon proven long term available chips. It is supported by upstream Linux and has a downstream development package based on Linux 4.9 LTS that offers ready-to-go 4K media decoding, 3D acceleration and more. dbedba7f6223adc66b712249125e66cb_original

It can be used to tinker with electronics, teach programming, build media centers, create digital signage solutions, play retro games, establish bi-directional video, and unlock imaginations. It is available in 1 GB and 2 GB configurations.

For connectivity I/O the board provides:

  • HDMI 2.0
  • 4 USB 2.0 Type A
  • RJ45 100Mb Fast Ethernet
  • CVBS
  • Infrared Receiver
  • S/PDIF Header
  • UART Header
  • I2S + ADC Header
  • 40 Pin Header for PWM, I2C, I2S, SPI, GPIO
  • eMMC Daughter Board Connector
  • MicroSD Card Slot with UHS Support

The board features these improvements over Raspberry Pi 3 Model B:

  • 50% Faster CPU and GPU
  • Double RAM Available
  • Lower Power Consumption
  • Better Android 7.1 and Kodi Support
  • Much Better Hardware Accelerated Codec Support
  • 4K UHD with HDR over HDMI 2.0
  • MicroSD Card UHS Support
  • eMMC Daughter Board Support
  • IR Receiver
  • ADC + I2S Headers
  • Non-Shared Bandwidth for LAN and USB

Libre Computer Project | https://libre.computer/

PC/104-Plus SBC Features On-Board TPM Security

Versalogic is now shipping the “Liger”-a new high-performance PC/104-Plus single board computer (SBC). Based on Intel’s Kaby Lake processor, Liger combines high performance processing and high performance video with moderate power consumption (12 to 14 W typical). It features hardware-level security using an on-board Trusted Platform Module (TPM) security chip, and backwards compatibility with systems using PC/104-Plus (ISA or PCI) expansion.

PR_EPM-43_HI

Liger is designed for applications which require extreme CPU and video processing performance in a compact 108 x 96 mm (4.3 x 3.8″) PC/104 footprint.The Liger’s on-board TPM security chip can lock out unauthorized hardware and software access. It provides a secure “Root of Trust” processing environment for defense, medical, and industrial applications that require hardware-level security functions. Additional security is provided through built-in AES (Advanced Encryption Standard) instructions.

Versalogic | www.versalogic.com

Low Power NXP i.MX7 CPU Rides SMARC 2.0 Card

Kontron has introduced a new, extremely energy-efficient SMARC 2.0 module. Thanks to the use of low power NXP i.MX7 CPUs in both dual-core and single-core configurations the SMARC-sAMX7 is suitable for the development of smart devices in a very compact and fanless design. This approach, which balances processor and graphics performance while retaining a very low energy footprint, is especially useful in Internet of Things (IoT) and Industry 4.0 applications. The presence of two Ethernet ports directly on the board facilitates networking.

Kontron smarc-samx7_front_per

The SMARC-sAMX7 features a 2×1 GHz ARM Cortex A7 processor with an additional 200 MHz M4 processor in dual-core configuration, the single-core version runs at 800 MHz. It comes with up to 2 Gbytes DDR3 memory, a dual channel LVDS interface, up to two Gbit Ethernet, three PCI-Express (PCIe) and four USB 4.0 ports. A 64 Gbyte eMMC 5.0 is used as onboard storage. The SMARC-sAMX7 utilizes the Uboot bootloader and supports Yocto Linux as operating system. It is fully operational in an extended temperature range from -20°C up to +85°C.

Kontron | www.kontron.com

Pico-ITX Board Boasts 7th Gen Kaby Lake U-Series Processor

Commell has announced a Pico-ITX form factor LP-175 sporing an Intel Skylake/Kaby Lake(6th/7th)  U-series processor, combined with the Intel  Express chipset, Integrated Intel integrated HD Graphics Technology with integrated memory. The LP-175 platform  is suited to applications requiring multi-tasking capabilities, such as gaming, surveillance, medical, defense, transportation and industrial automation application.

Commell LP-175-2D8

The Pico-ITX Motherboardsupports one DDR4L SO-DIMM up to 16 Gbytes and running at 1866/2133 MHz. The HD Graphics Technology provides high-end media and graphics capabilities for devices that display videos, 2D/3D graphics and interactive content. In addition, the LP-175 has integrated HDMI, LVDS, and Displayport or VGA for Triple display. Those options enable advanced solutions for imaging, machine vision and digital signage applications. For I/O the board has high-speed data transfer interfaces such as 2 x USB3.0, equipped with one Gigabit Ethernet, and it comes with PS/2 Keyboard and Mouse port, 2 x COM, 2 x USB2.0, Intel High Definition Audio, plus one PCIe Mini card socket or mSATA.

Commell | www.commell.com

New I/O-Rich Embedded Computing Solutions

Diamond Systems recently unveiled the Eagle family rugged ARM SBCs and carrier boards.  Intended to work with the Toradex Apalis family of ARM computer-on-modules (CoMs), the Eagle family comprises two models—the full-size, full-featured Eagle and the smaller low-cost Eaglet.DiamondEagle

You can purchase a fully-configured off-the-shelf solution comprsing a select ARM module and heatsink. Anoher option is to the baseboard and ARM module separately for greater configuration flexibility and lower unit cost. Development kits are available that include the fully configured SBC, preconfigured Linux OS on a microSD card, and a full cable kit.

The Eagle/Eaglet family units feature long product lifetimes, configuration flexibility, and a wide range of I/O. The Eagle/Eaglet family with the Toradex Apalis family of ARM modules provides a scalable platform for embedded computing applications with interchangeable processors similar to the CoM Express concept. All CoMs in the Apalis Family are pin-compatible to ensure seamless platform upgrades. With Eagle, you can extend a product’s lifecycle by upgrading to a new Apalis module and installing Eaglet compact ARM Baseboard new driver software.

The Eagle SBC with installed ARM module and heatsink starts at $650. The Eaglet SBC in a similar configuration starts at $420. The Eagle baseboard single unit pricing is $450. The Eaglet baseboard single unit prices is $220. Shipments are expected to begin in December 2016.

Source: Diamond Systems

New Raspberry Pi Model B+

The Raspberry Pi foundation announced what it calls “an evolution” of the Raspberry Pi SBC. Compared to the previous model, the new Raspberry Pi Model B+ has more GPIO, and more USB ports. In addition, it uses Micro SD memory cards and improved power consumption.

Source: Raspberry Pi Foundation

Source: Raspberry Pi Foundation

 

The GPIO header is now 40 pins, with the same pinout for the first 26 pins as the Model B. The B+ also has four USB 2.0 ports (compared to two on the Model B) and better hotplug and overcurrent behavior. In place of the old friction-fit SD card socket is a better push-push micro SD version.

In line with today’s electronic concepts, the new board also lowers power consumption. By replacing linear regulators with switching ones, the power requirements are reduced by between 0.5 W and 1 W. The audio circuit incorporates a dedicated low-noise power supply, enabling better audio applications.

The new board is well organized. The USB connectors are aligned with the board edge, and the composite video now has a 3.5-mm jack. The corners are rounded with four squarely placed mounting holes.

The Raspberry Pi Model B+ uses the same BCM2835 application processor as the Model B. It runs the same software and still has 512-MB RAM.

If you want to adapt a current project to the new platform, be sure to study the new GPIO pins and mechanical specs. To ensure continuity of supply for industrial customers, the Model B will be kept in production for as long as there’s demand for it.

At $35, the new model B+ is the same price as the older model B and is already available from Farnell/element14/Newark and RS/Allied Components.

[Source: www.raspberrypi.org]

Fanless Small Form Factor PC System

HABEYThe BIS-3922 improves on HABEY’s BIS-6922 system by offering additional I/O for more applications and solutions. The system is well suited for automation, digital signage, network security, point of sale, transportation, and digital surveillance applications.
The BIS-3922 system includes six DB9 COM ports on the front panel, one of which supports RS-232/-422/-485. HABEY’s proprietary ICEFIN design ensures maximum heat dissipation and a true fanless system.

The BIS-3922 system is built with the Intel QM77 chipset and is compatible with the third-generation Ivy Bridge Core processors. The BIS-3922 system’s additional features include a HM77 chipset that supports third-generation Intel Core i3/i5/i7 processors; dual gigabit Ethernet ports; High-Definition Multimedia Interface (HDMI), video graphics array (VGA), and low-voltage differential signaling (LVDS) display interfaces; one mini-PCI Express (PCIe) and one mSATA expansion; and a 3.5” single-board computer (SBC) form factor.

Contact HABEY for pricing.

HABEY USA, Inc.
www.habeyusa.com