Q&A: Scott Garman, Technical Evangelist

Scott Garman is more than just a Linux software engineer. He is also heavily involved with the Yocto Project, an open-source collaboration that provides tools for the embedded Linux industry. In 2013, Scott helped Intel launch the MinnowBoard, the company’s first open-hardware SBC. —Nan Price, Associate Editor

Scott Garman

Scott Garman

NAN: Describe your current position at Intel. What types of projects have you developed?

SCOTT: I’ve worked at Intel’s Open Source Technology Center for just about four years. I began as an embedded Linux software engineer working on the Yocto Project and within the last year, I moved into a technical evangelism role representing Intel’s involvement with the MinnowBoard.

Before working at Intel, my background was in developing audio products based on embedded Linux for both consumer and industrial markets. I also started my career as a Linux system administrator in academic computing for a particle physics group.

Scott was involved with an Intel MinnowBoard robotics and computer vision demo, which took place at LinuxCon Japan in May 2013.

Scott was involved with an Intel MinnowBoard robotics and computer vision demo, which took place at LinuxCon Japan in May 2013.

I’m definitely a generalist when it comes to working with Linux. I tend to bounce around between things that don’t always get the attention they need, whether it is security, developer training, or community outreach.

More specifically, I’ve developed and maintained parallel computing clusters, created sound-level management systems used at concert stadiums, worked on multi-room home audio media servers and touchscreen control systems, dug into the dark areas of the Autotools and embedded Linux build systems, and developed fun conference demos involving robotics and computer vision. I feel very fortunate to be involved with embedded Linux at this point in history—these are very exciting times!

Scott is shown working on an Intel MinnowBoard demo, which was built around an OWI Robotic Arm.

Scott is shown working on an Intel MinnowBoard demo, which was built around an OWI Robotic Arm.

NAN: Can you tell us a little more about your involvement with the Yocto Project (www.yoctoproject.org)?

SCOTT: The Yocto Project is an effort to reduce the amount of fragmentation in the embedded Linux industry. It is centered on the OpenEmbedded build system, which offers a tremendous amount of flexibility in how you can create embedded Linux distros. It gives you the ability to customize nearly every policy of your embedded Linux system, such as which compiler optimizations you want or which binary package format you need to use. Its killer feature is a layer-based architecture that makes it easy to reuse your code to develop embedded applications that can run on multiple hardware platforms by just swapping out the board support package (BSP) layer and issuing a rebuild command.

New releases of the build system come out twice a year, in April and October.

Here, the OWI Robotic Arm is being assembled.

Here, the OWI Robotic Arm is being assembled.

I’ve maintained various user space recipes (i.e., software components) within OpenEmbedded (e.g., sudo, openssh, etc.). I’ve also made various improvements to our emulation environment, which enables you to run QEMU and test your Linux images without having to install it on hardware.

I created the first version of a security tracking system to monitor Common Vulnerabilities and Exposures (CVE) reports that are relevant to recipes we maintain. I also developed training materials for new developers getting started with the Yocto Project, including a very popular introductory screencast “Getting Started with the Yocto Project—New Developer Screencast Tutorial

NAN: Intel recently introduced the MinnowBoard SBC. Describe the board’s components and uses.

SCOTT: The MinnowBoard is based on Intel’s Queens Bay platform, which pairs a Tunnel Creek Atom CPU (the E640 running at 1 GHz) with the Topcliff Platform controller hub. The board has 1 GB of RAM and includes PCI Express, which powers our SATA disk support and gigabit Ethernet. It’s an SBC that’s well suited for embedded applications that can use that extra CPU and especially I/O performance.

Scott doesn’t have a dedicated workbench or garage. He says he tends to just clear off his desk, lay down some cardboard, and work on things such as the Trippy RGB Waves Kit, which is shown.

Scott doesn’t have a dedicated workbench or garage. He says he tends to just clear off his desk, lay down some cardboard, and work on things such as the Trippy RGB Waves Kit, which is shown.

The MinnowBoard also has the embedded bus standards you’d expect, including GPIO, I2C, SPI, and even CAN (used in automotive applications) support. We have an expansion connector on the board where we route these buses, as well as two lanes of PCI Express for custom high-speed I/O expansion.

There are countless things you can do with MinnowBoard, but I’ve found it is especially well suited for projects where you want to combine embedded hardware with computing applications that benefit from higher performance (e.g., robots that use computer vision, as a central hub for home automation projects, networked video streaming appliances, etc.).

And of course it’s open hardware, which means the schematics, Gerber files, and other design files are available under a Creative Commons license. This makes it attractive for companies that want to customize the board for a commercial product; educational environments, where students can learn how boards like this are designed; or for those who want an open environment to interface their hardware projects.

I created a MinnowBoard embedded Linux board demo involving an OWI Robotic Arm. You can watch a YouTube video to see how it works.

NAN: What compelled Intel to make the MinnowBoard open hardware?

SCOTT: The main motivation for the MinnowBoard was to create an affordable Atom-based development platform for the Yocto Project. We also felt it was a great opportunity to try to release the board’s design as open hardware. It was exciting to be part of this, because the MinnowBoard is the first Atom-based embedded board to be released as open hardware and reach the market in volume.

Open hardware enables our customers to take the design and build on it in ways we couldn’t anticipate. It’s a concept that is gaining traction within Intel, as can be seen with the announcement of Intel’s open-hardware Galileo project.

NAN: What types of personal projects are you working on?

SCOTT: I’ve recently gone on an electronics kit-building binge. Just getting some practice again with my soldering iron with a well-paced project is a meditative and restorative activity for me.

Scott’s Blinky POV Kit is shown. “I don’t know what I’d do without my PanaVise Jr. [vise] and some alligator clips,” he said.

Scott’s Blinky POV Kit is shown. “I don’t know what I’d do without my PanaVise Jr. [vise] and some alligator clips,” he said.

I worked on one project, the Trippy RGB Waves Kit, which includes an RGB LED and is controlled by a microcontroller. It also has an IR sensor that is intended to detect when you wave your hand over it. This can be used to trigger some behavior of the RGB LED (e.g., cycling the colors). Another project, the Blinky POV Kit, is a row of LEDs that can be programmed to create simple text or logos when you wave the device around, using image persistence.

Below is a completed JeeNode v6 Kit Scott built one weekend.

Below is a completed JeeNode v6 Kit Scott built one weekend.

My current project is to add some wireless sensors around my home, including temperature sensors and a homebrew security system to monitor when doors get opened using 915-MHz JeeNodes. The JeeNode is a microcontroller paired with a low-power RF transceiver, which is useful for home-automation projects and sensor networks. Of course the central server for collating and reporting sensor data will be a MinnowBoard.

NAN: Tell us about your involvement in the Portland, OR, open-source developer community.

SCOTT: Portland has an amazing community of open-source developers. There is an especially strong community of web application developers, but more people are hacking on hardware nowadays, too. It’s a very social community and we have multiple nights per week where you can show up at a bar and hack on things with people.

This photo was taken in the Open Source Bridge hacker lounge, where people socialize and collaborate on projects. Here someone brought a brainwave-control game. The players are wearing electroencephalography (EEG) readers, which are strapped to their heads. The goal of the game is to use biofeedback to move the floating ball to your opponent’s side of the board.

This photo was taken in the Open Source Bridge hacker lounge, where people socialize and collaborate on projects. Here someone brought a brainwave-control game. The players are wearing electroencephalography (EEG) readers, which are strapped to their heads. The goal of the game is to use biofeedback to move the floating ball to your opponent’s side of the board.

I’d say it’s a novelty if I wasn’t so used to it already—walking into a bar or coffee shop and joining a cluster of friendly people, all with their laptops open. We have coworking spaces, such as Collective Agency, and hackerspaces, such as BrainSilo and Flux (a hackerspace focused on creating a welcoming space for women).

Take a look at Calagator to catch a glimpse of all the open-source and entrepreneurial activity going on in Portland. There are often multiple events going on every night of the week. Calagator itself is a Ruby on Rails application that was frequently developed at the bar gatherings I referred to earlier. We also have technical conferences ranging from the professional OSCON to the more grassroots and intimate Open Source Bridge.

I would unequivocally state that moving to Portland was one of the best things I did for developing a career working with open-source technologies, and in my case, on open-source projects.

Low-Cost SBCs Could Revolutionize Robotics Education

For my entire life, my mother has been a technology trainer for various educational institutions, so it’s probably no surprise that I ended up as an engineer with a passion for STEM education. When I heard about the Raspberry Pi, a diminutive $25 computer, my thoughts immediately turned to creating low-cost mobile computing labs. These labs could be easily and quickly loaded with a variety of programming environments, walking students through a step-by-step curriculum to teach them about computer hardware and software.

However, my time in the robotics field has made me realize that this endeavor could be so much more than a traditional computer lab. By adding actuators and sensors, these low-cost SBCs could become fully fledged robotic platforms. Leveraging the common I2C protocol, adding chains of these sensors would be incredibly easy. The SBCs could even be paired with microcontrollers to add more functionality and introduce students to embedded design.

rover_webThere are many ways to introduce students to programming robot-computers, but I believe that a web-based interface is ideal. By setting up each computer as a web server, students can easily access the interface for their robot directly though the computer itself, or remotely from any web-enabled device (e.g., a smartphone or tablet). Through a web browser, these devices provide a uniform interface for remote control and even programming robotic platforms.

A server-side language (e.g., Python or PHP) can handle direct serial/I2C communications with actuators and sensors. It can also wrap more complicated robotic concepts into easily accessible functions. For example, the server-side language could handle PID and odometry control for a small rover, then provide the user functions such as “right, “left,“ and “forward“ to move the robot. These functions could be accessed through an AJAX interface directly controlled through a web browser, enabling the robot to perform simple tasks.

This web-based approach is great for an educational environment, as students can systematically pull back programming layers to learn more. Beginning students would be able to string preprogrammed movements together to make the robot perform simple tasks. Each movement could then be dissected into more basic commands, teaching students how to make their own movements by combining, rearranging, and altering these commands.

By adding more complex commands, students can even introduce autonomous behaviors into their robotic platforms. Eventually, students can be given access to the HTML user interfaces and begin to alter and customize the user interface. This small superficial step can give students insight into what they can do, spurring them ahead into the next phase.
Students can start as end users of this robotic framework, but can eventually graduate to become its developers. By mapping different commands to different functions in the server side code, students can begin to understand the links between the web interface and the code that runs it.

Kyle Granat

Kyle Granat, who wrote this essay for Circuit Cellar,  is a hardware engineer at Trossen Robotics, headquarted in Downers Grove, IL. Kyle graduated from Purdue University with a degree in Computer Engineering. Kyle, who lives in Valparaiso, IN, specializes in embedded system design and is dedicated to STEM education.

Students will delve deeper into the server-side code, eventually directly controlling actuators and sensors. Once students begin to understand the electronics at a much more basic level, they will be able to improve this robotic infrastructure by adding more features and languages. While the Raspberry Pi is one of today’s more popular SBCs, a variety of SBCs (e.g., the BeagleBone and the pcDuino) lend themselves nicely to building educational robotic platforms. As the cost of these platforms decreases, it becomes even more feasible for advanced students to recreate the experience on many platforms.

We’re already seeing web-based interfaces (e.g., ArduinoPi and WebIOPi) lay down the beginnings of a web-based framework to interact with hardware on SBCs. As these frameworks evolve, and as the costs of hardware drops even further, I’m confident we’ll see educational robotic platforms built by the open-source community.

Scott Garman, Technical Evangelist

This article was a preview of an upcoming interview in the February issue of Circuit Cellar. The full interview is now available here.
Garman_web

Scott Garman is a Portland, OR-based Linux software engineer. Scott is very involved with the Yocto Project, an open-source collaboration that provides tools for the embedded Linux industry. Scott tells us about how he recently helped Intel launch MinnowBoard, the company’s first open-hardware SBC. The entire interview will be published in Circuit Cellar’s February issue.—Nan Price, Associate Editor

NAN: What is the Yocto Project?

 SCOTT: The Yocto Project is centered on the OpenEmbedded build system, which offers a tremendous amount of flexibility in how you can create embedded Linux distros. It gives you the ability to customize nearly every policy of your embedded Linux system.

I’ve developed training materials for new developers getting started with the Yocto Project, including “Getting Started with the Yocto Project—New Developer Screencast Tutorial.”

MinnowBoardWEB

Scott was involved with a MinnowBoard robotics and computer vision demo at LinuxCon Japan, May 2013.

NAN: Tell us about Intel’s recently introduced the MinnowBoard SBC.

SCOTT: The MinnowBoard is based on Intel’s Queens Bay platform, which pairs a Tunnel Creek Atom CPU (the E640 running at 1 GHz) with the Topcliff Platform controller hub. The board has 1 GB of RAM and includes PCI Express, which powers our SATA disk support and gigabit Ethernet. It’s an SBC that’s well suited for embedded applications that can use that extra CPU and especially I/O performance.

MinnowBoardOWI_web

Scott worked on a MinnowBoard demo built around an OWI Robotic Arm.

The MinnowBoard also has embedded bus standards including GPIO, I2C, SPI, and even CAN (used in automotive applications) support. We have an expansion connector on the board where we route these buses, as well as two lanes of PCI Express for custom high-speed I/O expansion.

NAN: What compelled Intel to make the MinnowBoard open hardware?

SCOTT: The main motivation for the MinnowBoard was to create an affordable Atom-based development platform for the Yocto Project. We also felt it was a great opportunity to try to release the board’s design as open hardware.

Q&A: Krystal Horton, the Raspberry Pi Kid

Eben Upton and Krystal met in October at the Broadcom MASTERS

Krystal Horton is the clever kid behind the blog Raspberry Pi Kid: An 11-Year-Old’s Adventures with Raspberry Pi.  Since starting her blog in January 2013, her entries have covered everything from unpacking her first Pi, to projects she has created with the SBC, to her recent dinner with Eben Upton, founder and trustee of the Raspberry Pi Foundation, and his wife, Liz Upton, who oversees the foundation website.

Krystal met the couple in October 2013 in Washington, D.C., as one of 30 finalists competing in the 2013 Broadcom MASTERS, a national science, technology, engineering, and math competition for middle school students.  (At the competition, Krystal was named one of two Rising Stars students who will represent Broadcom MASTERS at the 2014 International Science and Engineering Fair, the world’s largest international high school science fair competition.)

“They also gave each of the finalists their own Raspberry Pi,” Krystal says in her October 2 blog entry from Washington, D.C.  “I’m hoping to have each of the finalists guest post on my blog after they’ve had a chance to try out the RPi.”

Liz Upton describes Krystal as “brilliant.” Recently, Circuit Cellar Managing Editor Mary Wilson asked the seventh-grader several questions about her interest in the Raspberry Pi and the blog she created to complement it.

Krystal and her oak borer beetle infestation science project.

Krystal and her oak borer beetle infestation science project.

MARY: Tell us a little bit about yourself and why you became interested in working with the Raspberry Pi.

KRYSTAL: I am an 11-year-old seventh-grader in Southern California. I have been interested in science and technology ever since I can remember. My cousin got a Raspberry Pi for Christmas and my uncle saw how curious I was. So, he gave me one for New Year’s. He gave me some basic lessons on how to hook it up, turn it on, and type into Vim. That and some YouTube videos, tutorials, and eBooks and I was off and running. I now blog at http://raspberrypikid.wordpress.com and sometimes I tweet through @kid_pi.

MARY: Why did you decide to start your blog Raspberry Pi Kid? What type of feedback/comments have you gotten from visitors to your site? Will you rename the blog and keep posting when you’re 12?

KRYSTAL: I’ve learned so much from other people’s blogs, but they’re written for adults and are very hard for a kid to understand. So, I thought that I could put things in kid language and in simple steps so that other kids would be inspired and learn from what I’ve done. I want to give back to the Raspberry Pi and blogging communities.

On my blog, I’m often talking about problems that I’m having (I still haven’t figured out analog to digital conversion) and a lot of people offer to help me out. Others congratulate me and wish that they’d had an RPi when they were my age. I’ve also heard from other kids my age who are learning to code. I put my dad’s email address on the account and he gets invitations for me to Skype with CoderDojos and to guest blog for people. I have over 52,000 views to my blog right now. I hadn’t even thought about whether the name would change when I turn 12, but I’ll definitely keep blogging.

MARY:  Was the SBC difficult to set up? What was the first project you worked on with it?

KRYSTAL: The only hard thing about setting it up is all of the accessories that you need. It doesn’t even come with a power supply, keyboard, or mouse. My uncle gave me some of the stuff (power supply, wireless keyboard/mouse, breadboard), I had some stuff at home (memory card, network cable), and I bought some stuff from Adafruit’s very useful website (wireless adapter, ADC chip, breadboard accessories).

I really like the idea of programming the computer to do things. So, the first thing I did was start programming in Python through Vim and IDLE. I got a book from the library, read tutorials online, and emailed my uncle questions.

MARY: Can you tell me about some other Pi-based projects you have finished or are working on? Do you have something you would like to do next? Where do you get your ideas? Where do you go for guidance?

Krystal and her robot

Krystal and her robot

KRYSTAL: I love playing Minecraft, so when I saw that there’s a Pi version, I installed it and blogged about it. I’ve also used the Scratch programming language to create games and blink LEDs. I’ve used RPi as a Linux computer with the Wheezy version. I just wish that Midori would play YouTube videos so that I could watch Pi tutorials on my Pi. I have also installed OpenELEC (Open Embedded Linux Entertainment Center) so that I can stream HD video to my TV. I’ve also used PuTTY to control the Pi with a laptop (my uncle showed me that one).

In the future, I want to keep working with Scratch, a free visual programming language for kids from MIT (where I want to go to college). I want to figure out analog to digital so that I can connect sensors. And I want to use the RPi to do a science fair project. I really, really want to get a 3-D printer and connect it to the Pi.  I’m planning to order a MakiBOX soon, but it’ll take six-10 weeks to arrive and then I have to build it and learn how to use it.

When I don’t know how to do something, my dad helps me find answers on YouTube or other people’s blogs. He’s a scientist, not a programmer, so he learns with me sometimes. If he can’t help me, I email my uncle who does know how to program. He has automated his house with a RasPi. If I can’t get in touch with him, then I post a question on a forum and wait for answers.

Close up view of the credit-card sized Pi

Close up view of the credit-card sized Pi

MARY: What were some of the challenges you had to overcome with the Pi? What, if anything, would you change about it?

KRYSTAL: One of the problems I’ve had is when things don’t work for me as the blogs say they should. I had a really hard time getting Wi-Fi to work even though I followed the instructions exactly.

If I could change anything, I’d label the GPIO pins right on the board. I’ve had to look up that diagram soooo many times. There are several versions now, so I’d recommend marking them to make it easier to tell which one it is when getting a case for it. I’ve read stories about people breaking off the connector where the memory card goes. That’s scary, I hope they fix that if they can.

MARY: What do you think are the SBC’s best features?

KRYSTAL: Everyone says that the price and size are the Pi’s best features and I agree. But I also like that it’s so open to let me put any kind of Linux I want on it. Some people have even put the Android Operating System on it. Not me… yet.

MARY: What new skills/tools have you learned about through your Pi?

KRYSTAL: Some of the things I’ve learned through using my Pi are: coding in Python and Scratch, basic electronics (how to use a breadboard, multimeter, LEDs, etc.), and using Linux and all of the absolutely free software for it. These are very valuable skills for anyone to learn. I’ve learned about IP addresses and using a computer without the graphical interface at times also.

MARY: What advice would you give to another kid (or adult tinkerer) who is interested in getting started with the Raspberry Pi?

KRYSTAL: The advice that I’d give is to work on fun projects. This shouldn’t feel like boring work. Also, don’t get frustrated if things don’t work right the first time. That’s just part of coding. Most big cities also have groups of computer users. Find one and connect with them.

MARY: How many other 11-year-old girls do you know who are drawn to the Raspberry Pi? Any thoughts about that?

KRYSTAL: I’ve met online several kids who are using Pi. I spoke through Skype with a group in Washington, D.C., one Saturday morning. There were probably 15 kids and many were girls. I watched a video of a girl who tests all of the Raspberry Pis that get sent back as broken.

I think that computers and technology are going to be incredibly important to my generation. It is very scary that so few (girls or boys) are learning how technology works and how to code. Coders are going to rule the future, and I want be a part of that. All kids should. And their parents need to encourage it.  Websites like code.org and adafruit.com and devices like Raspberry Pi are helping.