The Voting Results are in. We Have a Winner!

Circuit Cellar’s sister website LinuxGizmos.com has completed its 2018 hacker board survey, which ran on SurveyMonkey in partnership with Linux.com. Survey participants chose the new Raspberry Pi 3 Model B+, as the favorite board from among 116 community-backed SBCs that run Linux or Android and sell for under $200.
All 116 SBCs are summarized in LinuxGizmos’ recently updated hacker board catalog and feature comparison spreadsheet.

GO HERE TO READ THE SURVEY RESULTS WITH ANALYSIS

Deadline Extended to June 22 — Vote Now!

UPDATE: We’ve extended our 2018 reader survey on open-spec Linux/Android hacker boards through this Friday, June 22.   Vote now!

Circuit Cellar’s sister website LinuxGizmos.com has launched its fourth annual reader survey of open-spec, Linux- or Android-ready single board computers priced under $200. In coordination with Linux.com, LinuxGizmos has identified 116 SBCs that fit its requirements, up from 98 boards in its June 2017 survey.

Vote for your favorites from LG’s freshly updated catalog of 116 sub-$200, hacker-friendly SBCs that run Linux or Android, and you could win one of 15 prizes.

Check out LinuxGizmos’ freshly updated summaries of 116 SBCs, as well as its spreadsheet that compares key features of all the boards.

Explore this great collection of Linux SBC information. To find out how to participate in the survey–and be entered to win a free board–click here:

GO HERE TO TAKE THE SURVEY AND VOTE

 

 

ETX Module Provides Long Life Cycle Solution

ADLINK Technology has continued its commitment and support to customers who have designs based on the ETX computer-on-module form factor. ETX is one of the earliest computer-on-module form factors. After more than two decades, its popularity is only second to COM Express when it comes to installed user base. With the recent discontinuation of the hugely popular Intel Atom processor N270, many customers are searching for an ETX module replacement to keep their systems up and running.

They are in need of an ETX drop-in solution at both hardware and software levels (Intel-to-Intel) with equivalent or improved performance and a better thermal envelope to simplify the transition. The problem is that customer’s current module suppliers may not have ETX on their roadmaps anymore. Since ETX is no longer a viable choice for completely new designs, many earlier manufacturers have moved on and dropped out of the ETX market.

ADLINK’s solution is the ETX-BT, based on the Intel Atom processor E3800 series SoC (formerly Bay Trail).  This Intel Atom product family is possibly the last processor that can fully support all ETX legacy interfaces: PATA IDE, ISA bus, PCI bus, serial/parallel ports, VGA and LVDS (Hsync/Vsync mode). The ETX-BT is available in both commercial (0°C to 60°C)  and Extreme Rugged (-40°C to +85°C) versions and has a life cycle of 10 years, keeping in line with Intel’s warranted life cycle for the Intel Atom processor E3800 series of 15 years from release.

ADLINK was a pioneer in the ETX form factor computer-on-module market, and continues to support its users in sustaining and extending the life of their existing ETX-based system.

ADLINK Technology | www.adlinktech.com

Linux-Driven Modules and SBC Tap i.MX8, i.MX8M and iMX8X

By Eric Brown

Phytec has posted product pages for three PhyCore modules, all of which support Linux and offer a -40°C to 85°C temperature range. The three modules, which employ three different flavors of i.MX8, include a phyCORE-i.MX 8X COM, which is the first product we’ve seen that uses the dual- or quad-core Cortex-A35 i.MX8X.

phyCORE-i.MX 8X (top) and phyCORE-i.MX 8M (bottom – not to scale) (click images to enlarge)

The phyCORE-i.MX 8 taps the high-end, hexa-core -A72 and -A53 i.MX8, including the i.MX8 QuadMax. The phyCORE-i.MX 8M, which uses the more widely deployed dual- or quad-core i.MX8M, is the only module that appears as part of an announced SBC: the sandwich-style phyBoard-Polaris SBC (shown). The phyCORE-i.MX 8 will also eventually appear on an unnamed, crowd-sourced Pico-ITX SBC.

phyCORE-i.MX 8 (left) and NXP i.MX8 block diagram (bottom)
(click images to enlarge)

Development-only carrier boards will be available for the phyCORE-i.MX 8X and phyCORE-i.MX 8. Evaluation kits based on the carrier boards and the phyBoard-Polaris will include BSPs with a Yocto Project based Linux distribution “with pre-installed and configured packages such as QT-Libs, OpenGL and Python.” Android is also available, and QNX, FreeRTOS and other OSes are available on request. BSP documentation will include a hardware manual, quickstart instructions, application guides, and software and application examples.

 

i.MX8M, i.MX8X, and i.MX8 compared (click image to enlarge)

The three modules are here presented in order of ascending processing power.

phyCore-i.MX 8X

The i.MX8X SoC found on the petite phyCORE-i.MX 8X module was announced with other i.MX8 processors in Oct. 2016 and was more fully revealed in Mar. 2017. The industrial IoT focused i.MX8X includes up to 4x cores that comply with Arm’s rarely used Cortex-A35 successor to the Cortex-A7 design.

phyCore-i.MX 8X (top) and block diagram (bottom)
(click images to enlarge)

The 28 nm fabricated, ARMv8 Cortex-A35 cores are claimed to draw about 33 percent less power per core and occupy 25 percent less silicon area than Cortex-A53. Phytec’s comparison chart shows the i.MX8X with 5,040 to 10,800 DMIPS performance, which is surprisingly similar to the 3,450 to 13,800 range provided by the Cortex-A53 based i.MX8M (see above).The i.MX8X SoC is further equipped with a single Cortex-M4 microcontroller, a Tensilica HiFi 4 DSP, and a multi-format VPU that supports up to 4K playback and HD encode. It uses the same Vivante GC7000Lite GPU found on the i.MX8M, with up to 28 GFLOPS.

i.MX8X block diagram
(click image to enlarge)

The i.MX8X features ECC memory support, reduced soft-error-rate (SER) technology, hardware virtualization, and other industrial and automotive safety related features. Crypto features listed for the phyCore-i.MX 8X COM include AES, 3DES, RSA, ECC Ciphers, SHA1/256, and TRNG.

PhyCore-i.MX7

Phytec’s 52 mm x 42 mm phyCore-i.MX 8X is only slightly larger than the i.MX7-based PhyCore-i.MX7, but the layout is different. The module supports all three i.MX8X models: the quad-core i.MX8 QuadXPlus and the dual-core i.MX8 DualXPlus and i.MX8 DualX, all of which can clock up to 1.2 GHz. The DualX model differs in that it has a 2-shader instead of 4-shader Vivante GPU.

The phyCore-i.MX 8X offers a smorgasbord of memories. In addition to the “128 kB multimedia,” and “64 kB Secure” found on the i.MX8X itself, the module can be ordered with 512 MB to 4 GB of LPDDR4 RAM and 64 MB to 256 MB of Micron Octal SPI/DualSPI flash. (Phytec notes that it is an official member of Micron’s Xccela consortium.) You can choose between 128 MB to 1 GB NAND flash or  4GB to 128 GB eMMC.

There’s no onboard wireless, but you get dual GbE controllers (1x onboard, 1x RGMII). You can choose between 2x LVDS and 2x MIPI-DSI. There are MIPI-CSI and parallel camera interfaces, as well as ESAI based audio.

Other I/O available through the 280 pins found on its two banks of dual 70-pin connectors include USB 3.0, USB OTG, PCI/PCIe, and up to 10x I2C. You also get 2x UART, 3x CAN, 6x A/D, and single PWM, keypad, or MMC/SD/SDIO (but only if you choose the eMMC over NAND). For SPI you get a choice of a single Octal connection or 2x “Quad SPI + 3 SPI” interfaces.

 

phyCore-i.MX 8X carrier board
(click image to enlarge)

The 3.3 V module supports an RTC, and offers watchdog and tamper features. Like all the new Phytec modules, you get -40°C to 85°C support. No details were available on the carrier shown in the image above.

phyCORE-i.MX 8M

The 55 mm x 40 mm phyCORE-i.MX 8M joins a growing number of Linux-driven i.MX8M modules including Compulab’s CL-SOM-iMX8, Emcraft’s i.MX 8M SOM, Innocom’s WB10, Seco’s SM-C12, SolidRun’s i.MX8 SOM, and the smallest of the lot to date: Variscite’s 55 x 30mm DART-MX8M. There are also plenty of SBCs to compete with the phyCORE-i.MX 8M-equipped phyBoard-Polaris SBC (see farther below), but like most of the COMs, most have yet to ship.

phyCORE-i.MX 8M top) and block diagram (bottom) (click images to enlarge)

The phyCORE-i.MX 8M supports the NXP i.MX8M Quad and QuadLite, both with 4x Cortex-A53 cores, as well as the dual-core Dual. All are clocked to 1.5 GHz. They all have 266MHz Cortex-M4F cores and Vivante GC7000Lite GPUs, but only the Quad and Dual models support 4Kp60, H.265, and VP9 video capabilities. (NXP also has a Solo model that we have yet to see, which offers a single -A53 core, a Cortex-M4F, and a GC7000nanoUltra GPU.)In addition to the i.MX8M SoC, which offers “128 KB + 32 KB” RAM and the same crypto features found on the i.MX8X, the module ships with the same memory features as the phyCore-i.MX 8X except that it lacks the SPI flash. Once again, you get 512 MB to  4 GB of LPDDR4 RAM and either 128 MB to 1 GB NAND flash or 4 GB to 128 GB eMMC. There is also SPI driven “Nand/QSPI” flash.

There’s a single GbE controller, and although not listed in the spec list, the product page says that precertified WiFi and Bluetooth BLE 4.2 are onboard and accompanied by antennas.

Multimedia support includes MIPI-DSI, HDMI 2.0, 2x MIPI-CSI, and up to 5x SAI audio. The block diagram also lists eDP, possibly as a replacement for HDMI.

Other interfaces expressed via the dual 200-pin connectors include 2x USB 3.0, 4x UART, 4x I2C, 4x PWM, and single SDIO and PCI/PCIe connections. SPI support includes 2x SPI and the aforementioned Nand/QSPI. The 3.3V module supports an RTC, watchdog, and tamper protections.

phyBoard-Polaris SBC

The phyCORE-i.MX 8M is also available soldered onto a carrier board that will be sold as a monolithic phyBoard-Polaris SBC. The 100 mm x 100 mm phyBoard-Polaris SBC features the Quad version of the phyCORE-i.MX 8M clocked to 1.3 GHz, loaded with 1 GB KPDDR4 and 8 GB eMMC. The SBC also adds a microSD slot.

phyBoard-Polaris SBC
(click image to enlarge)

The phyBoard-Polaris SBC is further equipped with single GbE, USB 3.0 and USB OTG ports. There’s also an RS-232 port and MIPI-DSI and SAID audio interfaces made available via A/V connectors. Dual MIPI-CSI interfaces are also onboard.A mini-PCIe slot and GPIO slot are available for expansion. The latter includes SPI, UART, JTAG, NAND, USB, SPDIF and DIO.

Other features include a reset button, RTC with coin cell, and JTAG via a debug adapter (PEB-EVAL). There’s a 12 V – 24 V input and adapter, and the board offers the same industrial temperature support as all the new Phytec modules.

phyCORE-i.MX 8

The phyCORE-i.MX 8, which is said to be “ideal for image and speech recognition,” is the third module we’ve seen to support NXP’s top-of-the-line, 64-bit i.MX8 series. The module supports all three flavors of i.MX8 while the other two COMs we’ve seen have been limited to the high-end QuadMax: Toradex’s Apalis iMX8 and iWave’s iW-RainboW-G27M.

phyCORE-i.MX 8 (top) and block diagram (bottom)
(click images to enlarge)

Like Rockchip’s RK3399, NXP’s hexa-core i.MX8 QuadMax features dual high-end Cortex-A72 cores clocked to up to 1.6 GHz plus four Cortex-A53 cores. The i.MX8 QuadPlus design is the same, but with only one Cortex-A72 core, and the quad has no -A72 cores.All three i.MX8 models provide two Cortex-M4F cores for real-time processing, a Tensilica HiFi 4 DSP, and two Vivante GC7000LiteXS/VX GPUs. The SoC’s “full-chip hardware-based virtualization, resource partitioning and split GPU and display architecture enable safe and isolated execution of multiple systems on one processor,” says Phytec.

The 73 mm x 45 mm phyCORE-i.MX 8 supports up to 8 GB LPDDR4 RAM, according to the product page highlights list, while the spec list itself says 1 GB to 64 GB. Like the phyCORE-i.MX 8X, the module provides 64 MB to 256 MB of Micron Octal SPI/DualSPI flash. There’s no NAND option, but you get 4 GB to 128 GB eMMC.

The phyCORE-i.MX 8 lacks WiFi, but you get dual GbE controllers. Other features expressed via the 480 connection pins include single USB 3.0, USB OTG, and PCIe 2.0 based SATA interfaces. Dual PCIe interfaces are also available

The module provides a 4K-ready HDMI output, 2x LVDS, and 2x MIPI-DSI for up 4x simultaneous HD screens. For image capture you get 2x MIPI-CSI and an HDMI input. Audio features are listed as “2x ESAI up to 4 SAI.”

The phyCORE-i.MX 8 is further equipped with I/O including 2x UART, 2x CAN, 2x MMC/SD/SDIO, 8x A/D, up to 19x I2C, and a PWM interface. For SPI, you get “up to 4x + 1x QSPI.” The module supports an RTC and offers industrial temperature support.

phyCORE-i.MX 8 carrier board (click image to enlarge)

In addition to the unnamed carrier board for the phyCORE-i.MX 8 module shown above, Phytec plans to produce a “Machine Vision and Camera kit” to exploit i.MX8 multimedia features including the VPU, the Vivante GPU’s Vulkan and OGL support, and interfaces including MIPI-DSI, MIPI-CSI, HDMI, and LVDS. In addition, the company will offer rapid prototyping services for customizing customer-specific hardware I/O platforms.Finally, Phytec is planning to develop a smaller, Pico-ITX form factor SBC based on the i.MX8 SoC, and it’s taking a novel approach to do so. The company has launched a Cre-8 community which intends to crowdsource the SBC. The company is seeking developers to join this alpha-stage project to contribute ideas. We saw no promises of open source hardware support, however.

Further information

[As of March 29] No availability information was provided for the phyCORE-i.MX 8X, phyCORE-i.MX 8M, or phyCORE-i.MX 8 modules, but the phyCORE-i.MX 8M-based phyBoard-Polaris is due in the third quarter. More information may be found in Phytec’s phyCORE-i.MX 8X, phyCORE-i.MX 8M, and phyCORE-i.MX 8 product pages as well as the phyBoard-Polaris SBC product page. More on development kits for all these boards may be found here.

This article originally appeared on LinuxGizmos.com on March 29.

Phytec issue a Press Release announcing these products on April 19.
UPDATE: “Early access program sampling for the phyCORE-i.MX8 and phyCORE-i.MX8M is planned for Q3 2018, with general availability expected in Q4 2018.”

Phytec | www.phytec.eu

Intel Coffee Lake H-Series Debut Processors Debut in Congatec and Seco Modules

By Eric Brown

Intel has rolled out new H-, M-, U- and T-series Intel Core and Xeon chips, expanding its line of 14 nm fabricated, 8th Gen Core Kaby Lake Refresh processors, code-named “Coffee Lake.” Of special interest are four new dual- and quad-core U-series chips with up to 2.7 GHz clock rates and 28 W TDPs, as well as four quad- and hexa-core H-series Core i5 and i7 processors and a pair of hexa-core M-series Xeon chips, all with 45 W TDP (total dissipated power).

Congatec Conga-TS370 (top) and Seco COMe-C08-BT6 (bottom) (click images to enlarge)

The hexa-core Core i7-8850H, quad-core Core i5-8400H, and hexa-core Xeon E-2176M are appearing in a pair of 125 mm x 95 mm COM Express Basic Type 6 announced by Congatec and Seco. Both the Conga-TS370 and Seco’s COMe-C08-BT6 are available with Linux or Windows 10, and support 0 to 60°C temperatures (see farther below).

Intel’s 8th Gen M- and H-series processors (click image to enlarge)

Intel launched its first round of 8th-Gen Kaby Lake Refresh “Coffee Lake” chips back in September. This fourth generation of its 14 nm fabricated Core chips — following Broadwell, Skylake, and Kaby Lake — offers relatively modest performance and power efficiency improvements.Like most of AMD’s new Ryzen Embedded V1000 SoCs, most of the Coffee Lake processors are double threaded, so four cores give you eight threads and six cores give you 12. The exception is a line of standard, desktop-oriented T-series chips with 35 W TDPs. The T-series models are all single-threaded except the top-of-the-line, hexa-core Core i7-8700T, clocked to 2.4 GHz /4.0 GHz.

Intel’s latest batch of U-series (top) and new T-series CPUs (bottom)
(click images to enlarge)

The latest batch of U-series processors give you more speed, but higher 28 W TDPs than the original batch. The initial U-series chips, which were used in recent Linux-based laptops from System76 and ZaReason, provide slightly faster quad- instead of dual-core designs with the same price and 15 W TDP as 7th-Gen “Kaby Lake” models. The first round of Coffee Lake chips also included some high-end models tuned to gaming, as well as the first hexa-core Core i5 and first quad-core Core i3 models.

Also today, Intel unveiled a new line of 300-series I/O chipsets that are based on the upcoming Cannon Lake PCH. The lineup includes a Q370 model that supports up to 6x USB 3.1 Gen2 ports, up to 24x PCIe 3.0 lanes, and Intel Wireless-AC for faster 802.11ac.

Intel’s original line of 8th Gen CPUs (top) and new 300-series I/O chipsets (bottom) (click images to enlarge)Intel added to the Coffee Lake parade with some gaming focused G-series chips that use a Radeon Vega GPU from rival AMD. The Core i7-8809G, which can be overclocked, as well as the fixed rate Core i7-8705G, are available in Intel NUC mini-PCs.Today’s media coverage emphasized Intel’s first mobile version of its gaming-oriented Core i9 design. The hexa-core Core i9-8950HK CPU uses thermal velocity boost” technology to jump from 2.9 GHz to 4.8 GHz.

The related H- and M-series processors used by Seco and Congatec include the Core i7-8850H, the fastest of the two hexa-core Core i7 models with 2. 6GHz /4.3 GHz performance. The i7-8850H offers a 9MB Intel Smart Cache and supports “partial” overclocking. The Core i5-8400H is the fastest of the two quad-core i5 models, with 2.5 GHz /4.2 GHz performance and an 8MB cache. The hexa-core, 2.7 GH z/4.4 GHz Xeon E-2176M with 12 MB cache is the slower of the two Xeon M-series chips. (The turbo speeds can only be achieved by one core at a time.)

All the models used by Congatec and Seco offer 45W TDPs and support Intel Optane memory and Intel VPro technology. As with other Coffee Lake processors, there are software patches to protect against Meltdown and Spectre vulnerabilities. However, a hardware fix will await the 10nm Cannon Lake generation.

The three models used by the Conga-TS370 and COMe-C08-BT6 modules are the:

  • Intel Core i7-8850H (6x 12-thread 14nm Coffee Lake cores at 2.6 GHz /4.3 GHz); 9 MB Cache, 45W TDP (35W cTDP)
  • Intel Core i5-8400H 4x 8-thread 14 nm Coffee Lake cores at 2.5 GHz /4.2 GHz); 8 MB Cache, 45W TDP (35W cTDP)
  • Intel Xeon E-2176M, 8850H (6x 12-thread 14 nm Coffee Lake cores at 2.7 GHz /4.4 GHz); 9 MB Cache, 45 W TDP (35W cTDP)

Intel claims that the six-core H-series and M-series modules offer between 45 to 50 percent more multi-thread and 15 to 25 percent more single-thread performance compared to 7th Gen “Kaby Lake” Core processors. The built-in Intel Gen9 LP graphics can manage up to 3x independent displays at once, with a resolution up to 4096 x 2304 at 60 Hz, 24 bpp. There’s support for DirectX 12 and OpenGL 4.5, as well as an H.265 / HEVC hardware transcoder.

Conga-TS370

Like Congatec’s 6th Gen Skylake based Conga-TS170 and 7th Gen Kaby Lake powered Conga-TS175, the Conga-TS370 uses the COM Express Type 6 Basic form factor. All common Linux operating systems, as well as the 64-bit versions of Microsoft Windows 10 and Windows 10 IoT are supported.

 

Conga-TS370 block diagram
(click image to enlarge)

The module offers up to 10-year availability, and targets applications including “high performance embedded and mobile systems, industrial and medical workstations, storage servers and cloud workstations, as well as media transcoding and edge computing cores,” says Congatec.Thanks to the Coffee Lake-H chips, the module supports Intel Optane memory, as well as Intel Software Guard extensions, Trusted Execution Engine, and Intel Platform Trust Technology. The Core processors use the new Intel PCH-H QM370 Series I/O chipset while the Xeon is paired with a CM246 Series controller.

You can load up to 32GB of  DDR4-2666 memory via dual sockets with optional ECC. There are 4x SATA III interfaces, as well as an Intel i219-LM GbE controller with AMT 12.0 support. Expansion features include a PEG x16 Gen3 interface and 8x PCIe Gen 3.0 lanes.

The integrated Intel UHD630 graphics supports up to three independent 4K displays via HDMI 1.4a, eDP 1.4, and DisplayPort 1.2. Dual-channel LVDS is also available as an alternative to eDP, and for the first time, you can switch between eDP to LVDS by software alone, says Congatec.

The highlighted feature enabled by Coffee Lake-H is its support for up to 4x USB 3.1 Gen 2 ports, which operate at up to 10 Gbps. The module also includes 8x USB 2.0 interfaces.

The Conga-TS370 is further equipped with LPC, I2C, SMBus, GPIO, SDIO, and dual UARTs. There’s also an HD Audio interface, TPM 2.0, and ACPI 4.0 with battery support. The Congatec Board Controller provides features including watchdog, non-volatile user storage, and backlight control.

Support services are available, along with a range of accessories and standardized or customized carrier boards and systems. A Conga-Teva2 carrier is in the works but is not yet documented.

COMe-C08-BT6

Seco’s COMe-C08-BT6 module, which follows it similarly Type 6, 6th Gen Skylake based COMe-B09-BT6, is designed for applications including gaming, signage, infotainment, HMI, biomedical devices, Industry 4.0, automation, and telco. There’s support for 64-bit Linux and Windows 10.

 

COMe-C08-BT6
(click image to enlarge)

Not surprisingly, the feature set is very similar to that of the Conga-TS370. You get up to 3 2GB of DDR4-2666 with ECC, 4x SATA 3.0 channels, and an Intel i219-LM GbE controller.The COMe-C08-BT6 has the same triple display and 4K support as the Congatec model. In this case you get DP, HDMI, and DVI DDI interfaces, as well as a choice of eDP, LVDS, or LVDS + VGA interfaces. HD Audio is also available.

Like the Conga-TS370, there are 4x USB 3.1 Gen 2 interfaces, 8x USB 2.0 links, a PEG x16 Gen3 interface, and 8x PCIe Gen 3.0 lanes. Other features include 2x UARTs, as well as SPI, I2C, SMBus, LPC, and GPIO. You also get a watchdog, optional TPM 2.0, thermal and fan management signals, and 12 V or optional 5 V DC input.

CCOMe-965 carrier (top) and block diagram (bottom)
(click images to enlarge)The COMe-C08-BT6 is available with Seco’s CCOMe-965 Mini-ITX carrier board, which also supports other Seco Type 6 modules such as the COMe-B09-BT6 and Ryzen V1000 based COMe-B75-CT6. There’s also a Cross Platform Development Kit that includes the CCOMe-965, along with HDMI and DisplayPort cables, and is said to support ARM-based Type 6 COMs in addition to x86.

CCOMe-C30 carrier (top) and block diagram (bottom)
(click images to enlarge)One final development option is an upcoming, 3.5-inch form factor CCOMe-C30 board that features a DP++ port, 2x mini-DP++ ports, and LVDS and eDP connections. The 146 mm x 102 mm board has dual M.2 sockets, dual GbE ports, and SATA and microSD slots. You also get 2x USB 3.0 and 2x USB 2.0 ports, plus 4x serial headers, among other features.Further information

No pricing or availability information was provided for the Congatec Conga-TS370 or Seco COMe-C08-BT6 Type 6 modules. More on Congatec’s Conga-TS370 module may be found in the Conga-TS370 announcement and product pages.

More on Seco’s COMe-C08-BT6 may be found on the COMe-C08-BT6 product page.

Intel’s latest Intel Coffee Lake processors should start shipping in volume by the end of the month. More information may be found on Intel’s 8th Gen Intel Core announcement page.

This article originally appeared on LinuxGizmos.com on April 3.

Congatec | www.congtatec.com

Seco | www.seco.com

Commell Launches its First ARM-Based Pico-ITX

By Eric Brown

Commell has announced the LP-150, a Rockchip RK3128 based Pico-ITX SBC that appears to be its first ARM-based embedded board of any kind. The 100 mm x 72 mm LP-150 is the only ARM-based SBC out of the many dozens of mostly Intel-based boards listed on Commell’s SBC page.

Shipping with Android 4.4.4, but also supporting Linux, the LP-150 is intended primarily for imaging, machine vision and digital signage applications. Other Commell Pico-ITX SBCs include its Intel Braswell based LP-176.

Commell LP-150

Rockchip’s quad-core, Cortex-A7 RK3128 hasn’t seen as much uptake in the embedded world as the quad -A17 RK3288, which is found on hacker boards such as the Firefly-RK3288 Reload or the high-end, hexa-core RK3399, which has appeared on numerous recent products such as OpenEmbed’s em3399 module or Aaeon’s RICO-3399 PICO-ITX SBC. The only RK3128-based SBC we can recall is the open spec Firefly-FirePrime S.

The LP-150 SBC has a fairly modest feature set, with only 512 MB DDR3. Yet, it offers a few features you don’t typically find on x86 Pico-ITX SBCs like eMMC storage (8GB) and built-in Wi-Fi. Media features include an HDMI 1.4 port limited to HD resolution and an LVDS interface with capacitive touchscreen support. You also get CVBS inputs and outputs and audio I/O headers.

The LP-150 is further equipped with a GbE port and USB 2.0 host and OTG ports. There is also an RTC with battery, and a smattering of RS-232, UART, and GPIO interfaces.

Specifications listed for the Commell LP-150 include:

  • Processor — Rockchip RK3128 (4x Cortex-A7 @ 1.3 GHz); Mali-400 MP2 GPU with OpenGL ES1.1 and 2.0, OpenVG1.1
  • Memory — 512 MB DDR3
  • Storage — 8 GB eMMC; microSD slot
  • Display:
    • HDMI 1.4 port for up to 1080p
    • Single-channel 18/24-bit LVDS for up to 1280 x 720 displays or up to 1024 x 600 cap. touchscreens
    • LCD/LVDS panel and inverter connectors
    • CVBS in/out
  • Wireless — Wi-Fi with SMA antenna
  • Networking — Gigabit Ethernet port (RTL8211E)
  • Other I/O:
    • USB 2.0 host port with support for 4-port hub
    • USB 2.0 OTG port
    • 2x RS232 interfaces
    • 3x UART
    • Audio line-out, mic-in headers (Rockchip codec)
    • GPIO header
  • Other features — Power, recovery, reset buttons; RTC with lithium battery; LED
  • Operating temperature — 0 to 70°C
  • Power — DC input 5 V
  • Dimensions — 100 mm x 72 mm (Pico-ITX)
  • Operating system — Android 4.4.4; Linux also supported

Further information

No pricing or availability information was provided for the LP-150. More information may be found on Commell’s LP-150 product page.

Commell |  www.commell.com.tw

This article originally appeared on LinuxGizmos.com on March 6.

Movidius AI Acceleration Technology Comes to a Mini-PCIe Card

By Eric Brown

UP AI Core (front)

As promised by Intel when it announced an Intel AI: In Production program for its USB stick form factor Movidius Neural Compute Stick, Aaeon has launched a mini-PCIe version of the device called the UP AI Core. It similarly integrates Intel’s AI-infused Myriad 2 Vision Processing Unit (VPU). The mini-PCIe connection should provide faster response times for neural networking and machine vision compared to connecting to a cloud-based service.

UP AI Core (back)

The module, which is available for pre-order at $69 for delivery in April, is designed to “enhance industrial IoT edge devices with hardware accelerated deep learning and enhanced machine vision functionality,” says Aaeon. It can also enable “object recognition in products such as drones, high-end virtual reality headsets, robotics, smart home devices, smart cameras and video surveillance solutions.”

 

 

UP Squared

The UP AI Core is optimized for Aaeon’s Ubuntu-supported UP Squared hacker board, which runs on Intel’s Apollo Lake SoCs. However, it should work with any 64-bit x86 computer or SBC equipped with a mini-PCIe slot that runs Ubuntu 16.04. Host systems also require 1GB RAM and 4GB free storage. That presents plenty of options for PCs and embedded computers, although the UP Squared is currently the only x86-based community backed SBC equipped with a Mini-PCIe slot.

Myriad 2 architecture

Aaeon had few technical details about the module, except to say it ships with 512MB of DDR RAM, and offers ultra-low power consumption. The UP AI Core’s mini-PCIe interface likely provides a faster response time than the USB link used by Intel’s $79 Movidius Neural Compute Stick. Aaeon makes no claims to that effect, however, perhaps to avoid

Intel’s Movidius
Neural Compute Stick

disparaging Intel’s Neural Compute Stick or other USB-based products that might emerge from the Intel AI: In Production program.

It’s also possible the performance difference between the two products is negligible, especially compared with the difference between either local processing solutions vs. an Internet connection. Cloud-based connections for accessing neural networking services suffer from reduced latency, network bandwidth, reliability, and security, says Aaeon. The company recommends using the Linux-based SDK to “create and train your neural network in the cloud and then run it locally on AI Core.”

Performance issues aside, because a mini-PCIe module is usually embedded within computers, it provides more security than a USB stck. On the other hand, that same trait hinders ease of mobility. Unlike the UP AI Core, the Neural Compute Stick can run on an ARM-based Raspberry Pi, but only with the help of the Stretch desktop or an Ubuntu 16.04 VirtualBox instance.

In 2016, before it was acquired by Intel, Movidius launched its first local-processing version of the Myriad 2 VPU technology, called the Fathom. This Ubuntu-driven USB stick, which miniaturized the technology in the earlier Myriad 2 reference board, is essentially the same technology that re-emerged as Intel’s Movidius Neural Compute Stick.

UP AI Core, front and back

Neural network processors can significantly outperform traditional computing approaches in tasks like language comprehension, image recognition, and pattern detection. The vast majority of such processors — which are often repurposed GPUs — are designed to run on cloud servers.

AIY Vision Kit

The Myriad 2 technology can translate deep learning frameworks like Caffe and TensorFlow into its own format for rapid prototyping. This is one reason why Google adopted the Myriad 2 technology for its recent AIY Vision Kit for the Raspberry Pi Zero W. The kit’s VisionBonnet pHAT board uses the same Movidius MA2450 chip that powers the UP AI Core. On the VisionBonnet, the processor runs Google’s open source TensorFlow machine intelligence library for neural networking, enabling visual perception processing at up to 30 frames per second.

Intel and Google aren’t alone in their desire to bring AI acceleration to the edge. Huawei released a Kirin 970 SoC for its Mate 10 Pro phone that provides a neural processing coprocessor, and Qualcomm followed up with a Snapdragon 845 SoC with its own neural accelerator. The Snapdragon 845 will soon appear on the Samsung Galaxy S9, among other phones, and will also be heading for some high-end embedded devices.

Last month, Arm unveiled two new Project Trillium AI chip designs intended for use as mobile and embedded coprocessors. Available now is Arm’s second-gen Object Detection (OD) Processor for optimizing visual processing and people/object detection. Due this summer is a Machine Learning (ML) Processor, which will accelerate AI applications including machine translation and face recognition.

Further information

The UP AI Core is available for pre-order at $69 for delivery in late April. More information may be found at Aaeon’s UP AI Core announcement and its UP Community UP AI Edge page for the UP AI Core.

Aaeon | www.aaeon.com

This article originally appeared on LinuxGizmos.com on March 6.

Raspberry Pi IoT SBC Leverages Cypress Wi-Fi/Bluetooth SoC

Cypress Semiconductor has announced its Wi-Fi and Bluetooth combo solution is used on the new Raspberry Pi 3 Model B+ IoT single board computer. The Cypress CYW43455 single-chip combo provides high-performance 802.11ac Wi-Fi for faster Internet connections, advanced coexistence algorithms for simultaneous Bluetooth and Bluetooth Low Energy (BLE) operations such as audio and video streaming, and low-power BLE connections to smartphones, sensors and Bluetooth Mesh networks. The combo’s high-speed 802.11ac transmissions enable superior network performance, faster downloads and better range, as well as lower power consumption by quickly exploiting deep sleep modes. The Raspberry Pi 3 Model B+ board builds on the success of existing Raspberry Pi solutions using Cypress’ CYW43438 802.11n Wi-Fi and Bluetooth combo SoC.

Wi-Fi networks powered by 802.11ac simultaneously deliver low-latency and high-speed with secure device communication, making it the ideal wireless technology for connecting products directly to the cloud. The Raspberry Pi 3 Model B+ board with the highly-integrated Cypress CYW43455 combo SoC allows developers to quickly prototype industrial IoT systems and smart home products that leverage the benefits of 802.11ac.

The Raspberry Pi 3 Model B+ board features a 64-bit, quad-core processor running at 1.4 GHz, 1 GB RAM, full size HDMI, 4 standard USB ports, Gbit Ethernet over USB2, Power over Ethernet capability, CSI camera connector and a DSI display connector. The platform’s resources, together with its 802.11ac wireless LAN and Bluetooth/BLE wireless connectivity, provide a compact solution for intelligent edge-connected devices.

The Cypress CYW43455 SoC features a dual-band 2.4- and 5-GHz radio with 20-, 40- and 80-MHz channels with up to 433 Mbps performance. This fast 802.11ac throughput allows devices to get on and off of the network more quickly, preventing network congestion and prolonging battery life by letting devices spend more time in deep sleep modes. The SoC includes Linux open source Full Media Access Control (FMAC) driver support with enterprise and industrial features enabled, including security, roaming, voice and locationing.

Cypress’ CYW43455 SoC and other solutions support Bluetooth Mesh networks—low-cost, low-power mesh network of devices that can communicate with each other, and with smartphones, tablets and voice-controlled home assistants, via simple, secure and ubiquitous Bluetooth connectivity. Bluetooth Mesh enables battery-powered devices within the network to communicate with each other to easily provide coverage throughout even the largest homes, allowing a user to conveniently control all of the devices from the palm of their hand. The SoC is also supported in Cypress’ all-inclusive, turnkey Wireless Internet Connectivity for Embedded Devices (WICED) software development kit (SDK), which streamlines the integration of wireless technologies for IoT developers.

Cypress Semiconductor | www.cypress.com

Raspberry Pi Foundation | www.raspberrypi.org

Engineering Samples Roll for Low Power NXP i.MX 6 UL COM

Technologic Systems has announced that their latest Computer-on-Module, the TS-4100, has entered into their engineering sampling program. The TS-4100 is the first Technologic Systems Computer-on-Module to with the NXP i.MX 6 UltraLite processor, featuring a single ARM Cortex A7 core, operating at speeds up to 695 MHz. The NXP i.MX 6UL processors offer scalable performance and multimedia support, along with low power consumption. The board takes full advantage of the integrated power management module to optimize power sequencing throughout the board design. This enables it to achieve 300 mW typical power usage, making this COM well suited for embedded applications with strict power requirements. The TS-4100 is design for industrial embedded applications for medical, automotive, industrial automation, smart energy and more.

The TS-4100 is Technologic Systems’ first COM module that can also be a standalone micro Single Board Computer. When powered from the on-board micro USB connector, the TS-4100 does not require a baseboard to operate. The system could be a processing node on a Wi-Fi or Bluetooth network, or with the optional daughter card expansion connector it could interact with other devices directly.
The TS-4100 FPGA includes a ZPU core implementation. The ZPU allows for offloading CPU tasks as well as harder real-time on I/O interactions. The ZPU is an open-source, 32-bit, stack-based CPU architecture that offers a full GCC tool suite. Inside of the TS-4100 FPGA it is given 8 kbytes of BlockRAM and has full access to all FPGA I/O. Additionally, the CPU has shared access to the ZPU BlockRAM. This allows for a larger bi-directional communication channel between the ZPU and main CPU TS-4100, and can be used to reprogram the ZPU on the fly for dynamic applications.

 

The TS-4100 can be paired with the TS-8551 development baseboard for development. The TS-8551 brings out all of the TS-4100 connectivity options for engineers to use in developing their custom applications. Additionally the TS-8551 includes the example circuit for the TS-SILO technology, an optional feature which will provide up to 30 seconds of reserve power in the event of a power failure. The TS-8551 can also be used as a reference design board for engineers creating an application specific custom design. Technologic Systems offers free schematic reviews for TS-4100 baseboard designs.

The TS-4100 starts at $157 in single units, with volume discounts reaching $119. The TS-8551-4100 Evaluation Kit is also available now and includes the TS-8551 development board along with all of the accessories needed to start development.

Technologic Systems | www.embeddedarm.com

SBC Serves Up MX6 ARM Cortex-A9 Processor

Versalogic has announced a new line of production-ready, ARM-based embedded computers starting with the Tetra. The Tetra is a power-efficient, quad-core SBC. Featuring a quad-core i.MX6 Cortex-A9 32-bit processor, a Tetra typically consumes about 4 W of power when operating (not idle). It is ready for off-the-shelf deployment into demanding industrial applications requiring rugged, long-life, power-efficient, industrial temperature rated (-40° to +85°C) solutions.

Unlike many ARM-based modules, Versalogic’s new line of ARM-based EPC (Embedded Processing Card) products are complete board-level computers. They do not require carrier cards, companion boards, connector break-out boards or other add-ons to function. For ease of mounting, and future upgrades, Versalogic’s ARM products are designed around the size and mounting points of COM Express products. Unlike proprietary-format ARM products, Versalogic ARM boards provide a standardized mounting pattern now, and simplified upgrading in the future.

The Tetra is COM Express Basic size (125 x 95 mm) and offers a variety of I/O options for rugged, industrial applications. The three quad-core Tetra models feature a wide (8 to 17-volt) power input, making it ideal for 12-volt automotive applications. Many applications that require lower power or lower heat dissipation still need very high levels of reliability. Versalogic’s 10+ year formal life-extension program ensures long production cycles free from expensive changes and upgrades that come from short, disposable lifecycles.

A variety of on-board I/O includes a Gigabit Ethernet port with network boot capability, HDMI and LVDS video outputs, and two USB 2.0 Ports. Serial I/O (RS-232) and a SATA II interface or mSATA, support high-capacity rotating or solid-state drives. CAN Bus, I2C and SPI are also included along with a 6-axis e-compass, and MIPI camera input. The on-board Mini PCIe socket provides flexible expansion using plug-in Wi-Fi modems, GPS receivers, Ethernet, Firewire, and other mini cards.

Designed and tested for Industrial temperature (-40° to +85°C ) operation, Versalogic’s rugged Tetra meets MIL-STD 202G specifications to withstand high impact and vibration. It is engineered and validated to excel in unforgiving environments. Each component is carefully selected to ensure reliable operation in the field.

The Tetra, part number VL-EPC-2700, is in stock at both Versalogic Corp. and Digi-Key Corp. OEM quantity pricing starts at $318.

Versalogic| www.versalogic.com

Non-Standard SBCs Put Function Over Form

Compact, Low-Power Solutions

A rich set of single board computer products fall into the non-standards-based category. These SBCs offer complete embedded computing solutions suited for applications were reducing size, weight and power are the priorities.

By Jeff Child,  Editor-in-Chief

While standard form factor embedded computers provide a lot of value, many applications demand that form take priority over function. The majority of non-standard boards tend to be extremely compact, and well suited for size-constrained system designs. Although there’s little doubt that standard open-architecture board form factors continue to thrive across numerous embedded system applications, non-standard form factors free designers from the size and cost overheads associated with including a standard bus or interconnect architecture.

In very small systems, often the size and volume of the board takes precedence over the need for standards. Instead the priority is on cramming as much functionality and compute density onto a single board solution. And because they tend to be literately “single board” solutions, there’s often no need to be compatible with multiple companion I/O boards. These non-standard boards seem to be targeting very different applications areas—areas where slot-card backplane or PC/104 stacks wouldn’t be practical.

Non-standard boards come in a variety of shapes and sizes. Some follow de facto industry standard sizes like 3.5 inches, while others take a twist on existing standards—such as ATX, ITX or PC/104—to produce a “one off” implementation that takes some of the benefits of a standard form factor. There are also some company-specific “standard” form factors that offer an innovative new approach. The focus in this article is on commercial SBCs for professional applications, not modules for hobbyist projects.

ARM-Based Boards

In terms of sheer numbers of SBC products, Intel processor-based solutions tend to dominate. But in recent years, non-standard SBCs based on ARM embedded processors are increasing mindshare in the industry. In a recent example of an ARM-based solution, Technologic Systems in December starting shipping its newest SBC, the TS-7553-V2 (Photo 1). The board is developed around the NXP i.MX6 UltraLite, a high-performance processor family featuring an advanced implementation of a single ARM Cortex-A7 core, which operates at speeds up to  696 MHz. While able to support a wide range of embedded applications, the TS-7553-V2 was specifically designed to target the industrial Internet of Things (IIoT) sector.

Photo 1
TS-7553-V2 is developed around the NXP i.MX6 UltraLite, an advanced implementation of a single ARM Cortex-A7 core, which operates at speeds up to 696 MHz. The board specifically targets the industrial Internet of Things (IIoT) sector.

The TS-7553-V2 was designed with connectivity in mind. An on-board Xbee interface, capable of supporting Xbee or NimbleLink, provides a simple path to adding a variety of wireless interfaces. An Xbee radio can be used to link in with a local
2.4 GHz or sub 1 GHz mesh networks, allowing for gateway or node deployments. Both Digi and NimbleLink offer cellular radios for this socket, providing cellular connectivity for applications such as remote equipment monitoring and control. There is also the option for a cellular modem via a daughter card. This allows transmission of serial data via TCP, UDP or SMS over the cellular network. The TS-7553-V2 also includes an on board WiFi b/g/n and Bluetooth 4.0 option, providing even more connectivity.

Design-To-Order SBCs

As a provider of design-to-order embedded boards, Gumstix comes at non-standard SBCs from a different perspective than traditional off-the-shelf SBC vendors. Gumstix’s latest ARM-related focus was its announcement in October about its adding the NXP Semiconductor SCM-i.MX 6Quad/6Dual Single Chip System Module (SCM) to the Geppetto D2O design library and the Gumstix Cobalt MC (Media Center) development board (Photo 2). The NXP SCM-i.MX 6D/Q [Dual, Quad] Core SCM combines the i.MX 6 quad- or dual-core applications processor, NXP MMPF0100 power management system, integrated flash memory, over 100 passives and up to 2 GB DDR2 Package-on-Package RAM into a single-chip solution.

Photo 2 — The Gumstix Cobalt MC single board computer shows off some of the best multimedia features of the NXP SCM with CSI2 camera, native HDMI, and audio, and connects over Gbit Ethernet, Wi-Fi and Bluetooth.

Using Gumstix’s services, embedded systems developers can, in minutes, design and order SCM-powered hardware combining their choices of network connection, communication bus, and hardware features. During the design process, users can compare alternatives for features and costs, create multiple projects and receive complete custom BSPs and free automated documentation. Designers can go straight from a design to an order in one session with no engineering required.

Read the full article in the February 331 issue of Circuit Cellar

Don’t miss out on upcoming issues of Circuit Cellar. Subscribe today!
Note: We’ve made the October 2017 issue of Circuit Cellar available as a free sample issue. In it, you’ll find a rich variety of the kinds of articles and information that exemplify a typical issue of the current magazine.

Module Pair Designed to Intel’s SDM Spec

Giada will present its newly-launched SDM modules following Intel’s new Intel Smart Display Modules specification and reference design at the upcoming ISE 2018 in Amsterdam. The new modules, using a SoC (System on Chip) processor, can fit into compact, all-in-one designs as new displays get thinner and power-efficient performance becomes more critical.

The larger and more powerful SDM-7300U (shown here), to be shown for the first time globally at ISE 2018, features an Intel Kaby lake Core i5 7300U CPU and supports up to 32 GB DDR4 memory. The module, offering an HDMI port, can display video and images with 4k resolution. This module, incorporating high-speed PCIe connectivity with a custom I/O receptacle board, is compatible with Windows and Linux operation systems.

The smaller module, the entry level SDM Z8350, was announced in Q3 2017. It features an Intel Atom Cherrytrail Z8350 CPU and up to 2 GB onboard memory. It is equipped with a 32 GB eMMC and can support two independent displays with a DP port and an HDMI port. The module, with SDM Standard I/O, can support Windows, Linux and Android 5.1.

Giada is a close partner of Intel in the SDM program and initially will launch two SDM modules. A smaller module (109×60mm) with an entry-level processor and a larger module (110×175mm) with a high performance processor. Both SDM modules come without housing and are optimized for digital signage, public kiosks, professional monitors, point-of-sale, projectors, bedside terminals, hospitality and more applications. They can be applied all around the retail industry, especially on visual retail and transactional and responsive retail.

Giada | www.giadatech.com

 

 

 

 

Details about the two new SDM modules

 

Congatec Gets Long-Term Geode Support

Congatec and AMD have teamed together to provide extended life cycle support for the AMD Geode, one of the world’s longest-serving x86 processors. The result is that AMD Geode processor boards from Congatec will have planned availability until the end of 2021.

According to Congatec, embedded system developers will benefit from massive life cycle and return on investment improvements for their AMD Geode based product lines. Supply until 2021 means 16 years long-term availability for the Geode LX, which was introduced by AMD in 2005. This is unique to the embedded x86 processor markets, where processors in general are available for 7 years.

In order to enable this extension, AMD has qualified a non-halogenated substrate with virtually no changes to processor form, fit or function so that all AMD qualification criteria will be met. Congatec modules with the new Geode processor samples are available now under identical product order numbers.

The following products are supported:

Module Form factor Processor  RAM Power consumption
conga-XLX XTX AMD Geode
LX 800
1 GB DDR3/PC2700 5 W (typical)
conga-ELX ETX AMD Geode
LX 800
1 GB PC2700 5 W (typical)
conga-ELXeco ETX AMD Geode
LX 800
256 MB DRAM 5 W (typical)

Congatech | www.congatec.com

Compact Board Sports Celeron J3455

American Portwell Technology has announced the launch of WUX-3455, a small form factor (SFF) embedded system board featuring the Intel Celeron processor J3455, formerly code-named Apollo Lake. The Intel Celeron processor J3455 integrates the low power Intel Gen9 graphics engine up to 18 execution units, enabling enhanced 3D graphics performance and greater speed for 4K encode and decode operations. The WUX-3455 is well suited as a solution supporting visual communications and real-time computing applications in medical, digital surveillance, industrial automation, office automation, retail and more.

Portwell’s WUX-3455 embedded system board, designed with a compact footprint (101.6 mm x 101.6 mm; 4˝ x 4˝), also features DDR3L SO-DIMM up to 8 GB supporting 1866/1600 MT/s; 6x USB ports; one DisplayPort (DP) and one HDMI with resolution up to 4096 x 2160; one COM port for RS-232 on rear I/O (RJ45 connector); and multiple storage interfaces with 1x SATA III port, 1x microSD 3.0 socket and support for onboard eMMC 5.0 up to 64G. Moreover, it integrates the M.2 interface, which provides wireless connectivity including Wi-Fi and Bluetooth, allowing ideal communication and connectivity for IoT edge devices and designs.

The WUX-3455  operates with thermal design power (TDP) under 6W/10W for fanless applications. It also supports a wide voltage of power input from 12 V to 19 V for rugged applications. With its ingenious design and superior performance—up to quad-core processing power via Intel® Celeron processor J3455 and high capability—the Portwell WUX-3455 embedded system board is equipped with the ability to execute an extensive array of applications from digital signage in public spaces through manufacturing robots and machinery transforming industrial automation, to video analytics-based appliances enhancing intelligent digital security and surveillance, to end-to-end solutions for IoT use cases.

American Portwell Technology | www.portwell.com

Mouser Inks Distribution Deal with Onion

Mouser Electronics has signed a global distribution agreement with Onion, a global provider of integrated wireless microprocessor modules and IoT development kits. Through the agreement, Mouser will distribute the Omega2+ device, kits, and accessories, ideal for applications such as home automation, coding education, Wi-Fi media servers, robotics and networking.

The Onion product line, available from Mouser Electronics, revolves around the Omega2+, (shown) an easy-to-use, expandable IoT computer packed with built-in Wi-Fi connectivity, a MicroSD card slot, and a powerful 580 MHz MIPS processor. Though just a fraction of the size of other single board computers, the Omega2+ is a full computer with a Linux operating system, 128 MB of DDR2 memory and 32 MB of flash storage. The device also offers 15 general-purpose inputs and outputs (GPIO), two PWM and two UART interfaces.

Mouser also now stocks a variety of docks and expansion boards, which provide additional functionality to the Omega2+ board. The Expansion Dock powers the Omega2+ and breaks out the GPIOs. The dock also allows engineers to expand their Omega2+ with expansion modules like OLED, relay, and servo. Additionally, engineers can use the Arduino Dock R2 and add the Omega2+ to existing Arduino-based projects. The Arduino Dock R2 is a full Arduino Uno that allows the Omega2 to control the Arduino’s ATmega microcontroller through a serial connection.

The Omega2 Starter Kit and Omega2 Maker Kit both include an Omega2+ board, expansion dock, breadboard, and a variety of components to help engineers quickly get started building circuits. The Maker Kit includes the same components as the Starter Kit and adds two servos, a DC motor, H-bridge chip, buzzer and three expansion boards.

Mouser Electronics | www.mouser.com/onion