X-Ware IoT Platform Integrates STM32 Firmware Update

Express Logic has announced that it has integrated the STMicroelectronics’ Secure Boot and Secure Firmware Update v.2.0 services with its X-Ware IoT Platform for its developers using the STMicroelectronics’ STM32-family of ARM Cortex-M microcontrollers.
The X-CUBE-SBSFU Secure Boot and Secure Firmware Update solution enables the update of the STM32 MCU built-in program with new firmware versions based on the X-Ware IoT Platform. The update process is performed in a secure way to prevent unauthorized updates and access to confidential on-device data. In addition, Secure Boot (Root of Trust services) checks and activates STM32 mechanisms, and checks the authenticity and integrity of X-Ware IoT Platform before every execution to ensure that invalid or malicious code cannot be run.

Because X-CUBE-SBSFU is built on top of STM32Cube software technology, the X-Ware IoT Platform integration will be portable across the entire range of STM32 microcontrollers, beginning with the STM32L4 and STM32L4+ series devices.

Express Logic  considers itself a safety leader in the embedded IoT space with its industrial-grade approach, including pre-certification to SIL 4 and ASIL D safety standards. The new secure boot and secure firmware update services from STMicroelectronics enhance security for Express Logic’s X-Ware IoT Platform for the STM32 microcontroller.

Express Logic | www.rtos.com

STMicroelectronics | www.st.com

Tiny, Rugged IoT Gateways Offer 10-Year Linux Support

By Eric Brown

Moxa has announced the UC-2100 Series of industrial IoT gateways along with its new UC 3100 and UC 5100 Series, but it offered details only on the UC-2100. All three series will offer ruggedization features, compact footprints, and on some models, 4G LTE support. They all run Moxa Industrial Linux and optional ThingsPro Gateway data acquisition software on Arm-based SoCs.

 

Moxa UC-2111 or UC-2112 (left) and UC-2101 (click image to enlarge)

Based on Debian 9 and a Linux 4.4 kernel, the new Moxa Industrial Linux (MIL) is a “high-performance, industrial-grade Linux distribution” that features a container-based virtual-machine-like middleware abstraction layer between the OS and applications,” says Moxa. Multiple isolated systems can run on a single control host “so that system integrators and engineers can easily change the behavior of an application without worrying about software compatibility,” says the company.

MIL provides 10-year long-term Linux support, and is aimed principally at industries that require long-term software, such as power, water, oil & gas, transportation and building automation industries. In December, Moxa joined the Linux Foundation’s Civil Infrastructure Platform (CIP) project, which is developing a 10-year SLTS Linux kernel for infrastructure industries. MIL appears to be in alignment with CIP standards.

Diagrams of ThingsPro Gateway (top) and the larger ThingsPro eco-system (bottom) (click images to enlarge)

Moxa’s ThingsPro Gateway software enables “fast integration of edge data into cloud services for large-scale IIoT deployments,” says Moxa. The software supports Modbus data acquisition, LTE connectivity, MQTT communication, and cloud client interfaces such as Amazon Web Services (AWS) and Microsoft Azure. C and Python APIs are also available.

 

Moxa’s UC-3100 (source: Hanser Konstruktion), and at right, the similarly Linux-driven, ThingsPro ready UC-8112 (click images to enlarge)

Although we saw no product pages on the UC-3100 and UC-5100, Hanser Konstruktion posted a short news item on the UC-3100 with a photo (above) and a few details. This larger, rugged system supports WiFi and LTE with two antenna pairs, and offers a USB port in addition to dual LAN and dual serial ports.

The new systems follow several other UC-branded IoT gateways that run Linux on Arm. The only other one to support ThingsPro is the UC-8112, a member of the UC-8100 family. This UC-8100 is similarly ruggedized, and runs Linux on a Cortex-A8 SoC.

UC-2100

The UC-2100 Series gateways runs MIL on an unnamed Cortex-A8 SoC clocked at 600MHz except for the UC-2112, which jumps to 1GHz. There are five different models, all with 9-48 VDC 3-pin terminal blocks and a maximum consumption of 4 Watts when not running cellular modules.

The five UC-2100 models have the following dimensions, weights, and maximum input currents:

  • UC-2101 — 50 x 80 x 28mm; 190 g; 200 mA
  • UC-2102 — 50 x 80 x 28mm; 190 g; 330 mA
  • UC-2104 — 57 x 80 x 30.8mm; 220 g; 800 mA
  • UC-2111 — 77 x 111 x 25.5mm; 290 g; 350 mA
  • UC-2112 — 77 x 111 x 25.5mm; 290 g; 450 mA

All five UC-2100 variants default to a -10 to 60°C operating range except for the UC-2104, which moves up to -10 to 70°C. In addition, they are all available in optional -40 to 75°C versions.

Other ruggedization features are the same, including anti-vibration protection per IEC 60068-2-64 and anti-shock per IEC 60068-2-2. A variety of safety, EMC, EMI, EMS, and hazardous environment standards are also listed.

The first three models ship with 256MB DDR3, while the UC-2111 and UC-2112 offer 512MB. These two are also the only ones to offer micro-SD slots. All five systems ship with 8GB eMMC loaded with the MIL distribution.

The UC-2100 systems vary in the number and type of their auto-sensing, 1.5 kV isolated Ethernet ports. The UC-2101 and UC-2104 each have a single 10/100Mbps port, while the UC-2102 and UC-2111 have two. The UC-2112 has one 10/100 and one 10/100/1000 port. The UC-2104 is the only model with a mini-PCIe socket for 4G or WiFi.

The UC-2111 and UC-2112 offer 2x RS-232/422/48 ports while the UC-2101 has one. It would appear that the UC-2102 and UC-2104 lack serial ports altogether except for the RS-232 console port available on all five systems.

The UC-2100 provides push buttons and dip switches, an RTC, a watchdog, and LEDs, the number of which depend on the model. A wall kit is standard, and DIN-rail mounting is optional. TPM 2.0 is also optional. A 5-year hardware warranty is standard.

Further information

The UC-2100 Series gateways appear to be available for order, with pricing undisclosed. More information may be found on Moxa’s UC-2100 product page. More information about the UC-2100, as well as the related, upcoming UC-3100 and UC-5100 Series, will be on tap at Hannover Messe 2018, April 23-27, at the Arm Booth at Hall 6, Booth A46.

Moxa | www.moxa.com

This article originally appeared on LinuxGizmos.com on April 16.

Texting and IoT Embedded Devices (Part 1)

Fun with the ESP8266 SoC

Can texting be leveraged for use in IoT Wi-Fi devices? Jeff has been using Wi-Fi widgets for a lot of IoT projects lately. This month Jeff lays the groundwork for describing a project that will involve texting. He starts off with a look at Espressif System’s ESP8266EX SoC.

By Jeff Bachiochi

Believe it or not, texting while driving as of this writing is still legal in a few states. About 10% of all motor vehicles deaths in the US can be traced back to distracted drivers. Granted that includes any distraction—however cell phone distraction has quickly become a serious issue. While hazards exist for any technology, common sense should tell you this is a dangerous act.

When the technology is used correctly, texting can deliver essential information quickly—without requiring both (or many) parties to be active at the same time. This allows you to make better use of your time. I still use email for much of my correspondence, however it’s great to be able to send your spouse a text to add milk to the grocery list—after they’ve already left for the store! And even though I chuckle when I see two people sitting next to each other texting, it is a sad commentary on emerging lifestyles.

I’ve been using Wi-Fi widgets for a lot of IoT projects lately. The cost to enter the fray is low, and with free tools it’s easy to get started. This month’s article is a about a project that will involve text, even though that may not be apparent at first. Let’s start off slowly, laying the groundwork for those who have been thinking about building this kind of project. We’ll then quickly build from this foundation into crafting a useful gadget.

A Look at the ESP8266EX

The innovative team of chip-design specialists, software/firmware developers and marketers at Espressif System developed and manufactures the ESP8266EX system-on-chip (SoC). This 32-bit processor runs at 80 MHz and embeds 2.4 GHz Wi-Fi functionality—802.11 b/g/n, supporting WPA/WPA2—as well as the normal gamut of general-purpose I/O and peripherals. It has a 64 KB boot ROM, 64 KB instruction RAM and 96 KB data RAM. Their WROOM module integrates the ESP8266 with a serial EEPROM and an RF front end with a PCB antenna for a complete IoT interface.

Anyone who has ever used a dial-up modem is most likely familiar with the term AT command set. The Hayes command set is a specific command language originally developed in 1981 by Dennis Hayes for the Hayes 300 baud Smartmodem. Each command in the set begins with the letters AT+ followed by a command word used for high-level control of internal functions. For the modem these enabled tasks like dialing the phone or sending data. As an application for the WROOM, an AT command set seemed like a perfect match. This allows an embedded designer to use the device to achieve a goal without ever having to “get their hands dirty.”

This photo shows the ESP-01 and ESP-07 modules along with the FTDI 232 USB-to-serial converter used for programming either module.

I first learned of the ESP8266 years ago and purchased the ESP-01 on eBay. It was around $5 at the time (Photo 1). I used it along with the MEGA 2560—my favorite Arduino module because of its high number of I/Os and multiple hardware UARTs. With the ESP-01 connected to a serial port on an Arduino, an application could directly talk with the ESP-01 and get the Arduino connected to your LAN. From this point, the world is under your control thanks to the AT Wi-Fi and TCP commands.

The ESP8266 literature states the Wi-Fi stack only requires about 20% of the processing power. Meanwhile, 80% is still available for user application programming and development.
So why not eliminate the Arduino’s Atmel processor altogether and put your Arduino code right in the 8266? Espressif Systems has an SDK and while it provides a development and programming environment, the Arduino IDE is comfortable for many. And it offers the installation of third-party platform packages using the Boards Manager. That means you can add support for the ESP8266EX and use much of the code you’ve already written.

Using the ESP-01

Since the ESP-01 has only 8 pins, adding the necessary hardware is pretty simple. This low power device runs on 2.5 V to 3.6 V, so you must make appropriate level corrections if you wish to use it with 5 V devices like Arduino boards. …

Read the full article in the March 332 issue of Circuit Cellar

Don’t miss out on upcoming issues of Circuit Cellar. Subscribe today!
Note: We’ve made the October 2017 issue of Circuit Cellar available as a free sample issue. In it, you’ll find a rich variety of the kinds of articles and information that exemplify a typical issue of the current magazine.

IoT: From Device to Gateway

Modules for the Edge

Connecting to the IoT edge requires highly integrated technology, blending wireless connectivity and intelligence. Feeding those needs, a variety of IoT modules have emerged that offer pre-certified solutions that are ready to use.

By Jeff Child, Editor-in-Chief

he Internet of Things (IoT) is one of the most dynamic areas of embedded systems design today. Opportunities are huge as organizations large and small work to develop IoT implementations. IoT implementations are generally comprised of three main parts: the devices in the field, the cloud and the network (gateways) linking them together. This article focuses on the “things” side—in other words, the smart, connected edge devices of the IoT. For more on IoT gateways, see “IoT Gateway Advances Take Diverse Paths“ (Circuit Cellar 328, November 2017).

Because this sub-segment of technology is growing and changing so fast, it’s impossible to get a handle on everything that’s happening. The scope that comprises IoT edge devices includes a combination of embedded processors and microcontrollers that provide intelligence. It also includes various wireless, cellular and other connectivity solutions to connect to the network. And it includes sensors to collect data and battery technologies to keep the devices running.

Connecting the various nodes of an IoT implementation can involve a number of wired and wireless network technologies. But it’s rare that an IoT system can be completely hardwired end to end. Most IoT systems of any large scale depend on a variety of wireless technologies including Wi-Fi, Bluetooth, Zigbee and even cellular networking.

What’s most interesting among all that, are not those individual pieces themselves, but rather an emerging crop of modular IoT products that combine intelligence and connectivity, while also taking on the vital certifications needed to get IoT implementations up and running. With all that in mind, the last 12 months have seen an interesting mix of module-based products aimed directly at IoT.

Certified IoT Modules

Exemplifying those trends, in September 2017, STMicroelectronics (ST)introduced the SPBTLE-1S, a ready-to-use Bluetooth Low Energy (BLE) module that integrates all the components needed to complete the radio subsystem (Photo 1). The BLE module integrates ST’s proven BlueNRG-1 application-processor SoC and balun, high-frequency oscillators and a chip antenna.

Photo 1
The SPBTLE-1S is a BLE module that integrates all the components needed to complete the radio subsystem. It’s BQE-approved, and FCC, IC and CE-RED certified to simplify end-product approval for North America and EU markets.

Developers can use this module to bypass hardware design and RF-circuit layout challenges. The SPBTLE-1S is BQE-approved, and FCC, IC and CE-RED (Radio Equipment Directive) certified to simplify end-product approval for North America and EU markets. ST’s Bluetooth 4.2 certified BLE protocol stack is included, and the supporting Software-Development Kit (SDK) contains a wide range of Bluetooth profiles and sample application code.

The device is packaged in a space-efficient 11.5 mm x 13.5 mm outline and has a wide supply-voltage range of 1.7 V to 3.6 V. The SPBTLE-1S module is well suited for small, battery-operated objects powered by various types of sources such as a primary button cell or rechargeable Li-ion battery. High RF output power of +5 dBm and good receiver sensitivity help to maximize communication range and reliability.

The BlueNRG-1 SoC at the heart of the SPBTLE-1S implements the complete BLE physical layer (PHY), link layer and network/application-processing engine comprising a low-power ARM Cortex-M0 core with 160 KB flash, 24 KB RAM with data retention and a security co-processor. The SoC also implements smart power management, with a DC/DC converter capable of powering the SPBTLE-1S module to ensure optimum energy efficiency. Users can leverage an extensive set of interfaces, including a UART, two I²C ports, SPI port, single-wire debug and 14 GPIOs, as well as peripherals including two multifunction timers, a 10-bit ADC, watchdog timer and real-time clock and a DMA controller. There is also a PDM stream processor interface, which is ideal for developing voice-controlled applications.

IoT Module for Development

Riding the IoT wave, all the major microcontroller vendors have beefed up their module-based IoT solutions in order to make it easier for developers to design in their MCUs. One example along those lines is the LPC54018 IoT module, developed by NXP in partnership with Embedded Artists. …

Read the full article in the March 332 issue of Circuit Cellar

Don’t miss out on upcoming issues of Circuit Cellar. Subscribe today!
Note: We’ve made the October 2017 issue of Circuit Cellar available as a free sample issue. In it, you’ll find a rich variety of the kinds of articles and information that exemplify a typical issue of the current magazine.

TRACE32 Extends embOS Awareness to the Renesas RH850

Lauterbach has announced that it has extended the kernel awareness for the embOS RTOS from SEGGER Microcontroller to the RH850 Family of microprocessors from Renesas Electronics. TRACE32, the class leading debug tools from Lauterbach, already supports embOS on ARM, PowerPC, RX, SH and NIOS-II families and this tried and tested technology has now been extended to include RH850.

The embOS awareness plugin for TRACE32 allows the developer to visualise RTOS resources and objects such as task lists, mailboxes, timers and semaphores. Developers are free to investigate interrupt routines, drivers and application code all from within the familiar environment of TRACE32. When the awareness is configured, extra features become available, for instance the setting of task aware breakpoints.

All MPUs of the RH850 Family provide dedicated counter registers which can be accessed non-intrusively by the TRACE32 debugger. These can be configured to display minimum, maximum and mean runtimes for a user marked block of code or the runtimes of various tasks in the embOS system. If the target provides off-chip trace capabilities, TRACE32 can record processor cycles and can be configured to collect data on task switches. Using this information, a detailed analysis of the program history, including task switches, can be viewed.

All features of the TRACE32 awareness for embOS do not require any additional target configuration or any hooks or patches within the RTOS itself. The philosophy of TRACE32 is for the application to behave exactly the same in the debug environment as on the final product; only this way can 100% certainty of testing be achieved.

Lauterbach | www.lauterbach.com

IoT Platform Gets Thread Certification

Express Logic has announced that its Industrial Grade X-Ware IoT Platform is an official Thread Certified Product, and the only such solution from an independent RTOS provider. Created by the Thread Group, Thread is a reliable, low-power, secure, and scalable mesh networking solution that provides a foundation on which any application layer can run.

The X-Ware IoT Platform, powered by Express Logic’s high-performance ThreadX RTOS and NetX Duo dual IPv4/IPv6 TCP/IP stack, provides industrial-grade implementations of IPv6 over Low Power Wireless Personal Area Networks (6LoWPAN), Constrained Application Protocol (CoAP), and Datagram Transport Layer Security (DTLS).

According to Express Logic, Thread certification provides more than just protocol compliance. Rather than measuring against single reference implementations, Thread testing validates each device’s specification conformance against a blended network comprised of four reference stacks to ensure device interoperability and reduce risk and time to market. Compliance to the Thread certification protocols and standards is administered and regulated by UL a global, independent, safety and certification company with more than a century of expertise in implementing certification solutions and standards.

The X-Ware IoT Platform contains no open source, is high performance, and boasts an extremely small footprint. The X-Ware IoT Platform automatically scales to use only what is needed by the application, making it well suited for the smallest low-power IoT devices. In addition to the performance and size advantages of the X-Ware IoT Platform, ThreadX and NetX Duo have attained the highest level of safety certifications. They include IEC 61508 SIL 4, IEC 62304 Class C, ISO 26262 ASIL D, EN 50128 SW-SIL 4, UL 60730-1 Annex H, CSA E60730-1 Annex H, IEC 60730-1 Annex H, 60335-1 Annex R and IEC 60335-1 Annex R, 1998.

Thread certification will also allow developers to confidently leverage the entire X-Ware IoT Platform solution, including the safety-certified FileX, GUIX, and USBX solutions and technologies, knowing it will seamlessly connect to other Thread-certified devices.

Express Logic | www.rtos.com

Thread Group | www.threadgroup.org

MCU Vendors Embrace Amazon FreeRTOS

In a flurry of announcements concurrent with Amazon’s release of its new Amazon FreeRTOS operating system, microcontroller vendors are touting their collaborative efforts to support the OS. Amazon FreeRTOS extends the FreeRTOS kernel, a popular open source RTOS for microcontrollers, and includes software libraries for security, connectivity and updateability. Here’s a selection of announcements from the MCU community:

Microchip PIC32MZEF MCUs Support Amazon FreeRTOS
curiosityMicrochip Technology has expanded its collaboration with Amazon Web Services (AWS) to support cloud-connected embedded systems from the node to the cloud. Microchip’s PIC32MZ EF series of microcontrollers now support Amazon FreeRTOS.

STMicro Adds Amazon FreeRTOS to its IoT MCU Tool Suit
STMicroelectronics has announced its collaboration with Amazon Web Services (AWS) on Amazon FreeRTOS, the latest addition to the AWS Internet of Things (IoT) solution.

 

NXP MCU IoT Card with Wi-Fi Supports Amazon FreeRTOS
OM40007-LPC54018-IoT-ModuleNXP Semiconductors has introduced the LPC54018 MCU-based IoT module with onboard Wi-Fi and support for the new Amazon FreeRTOS on Amazon Web Services (AWS), offering developers universal connections to AWS.

 

TI SimpleLink™ MCU platform now supports new Amazon FreeRTOS (PRNewsfoto/Texas Instruments Incorporated)

TI Integrates SimpleLink MCU Platform with Amazon FreeRTOS
Texas Instruments (TI) has announced the integration of the new Amazon FreeRTOS into the SimpleLink microcontroller platform.

NXP MCU IoT Card with Wi-Fi Supports Amazon FreeRTOS

NXP Semiconductors has introduced the LPC54018 MCU-based IoT module with onboard Wi-Fi and support for newly launched Amazon FreeRTOS on Amazon Web Services (AWS), offering developers universal connections to AWS. Amazon FreeRTOS provides tools for users to quickly and easily deploy an MCU-based connected device and develop an IoT application without having to worry about the complexity of scaling across millions of devices. Once connected, IoT device applications can take advantage of the capabilities of the cloud or continue processing data locally with AWS Greengrass.

Amazon FreeRTOS enables security-strong orchestration with the edge-cluster to further leverage low latencies in edge computing configurations, which extends AWS Greengrass core devices’ reach to the nodes. Distributed and autonomous computing architectures become possible through the consistent interface provided between the nodes and their gateways, in both online and offline scenario.

OM40007-LPC54018-IoT-ModuleNXP’s IoT module, co-developed with Embedded Artists and based on the LPC54018 MCU, offers unlimited memory extensibility, a root of trust built on the embedded SRAM physical unclonable functions (PUF) and on-chip cryptographic accelerators. Together, LPC and Amazon FreeRTOS, with easy-to-use software libraries, bring multiple layers of network transport security, simplify cloud on-boarding and over-the-air device management.

NXP enables node-to-cloud AWS connectivity with its LPC54018-based IoT module available on Amazon.com and EmbeddedArtists.com at $35 direct to consumers.

NXP Semiconductors | www.nxp.com

Microchip PIC32MZEF MCUs Support Amazon FreeRTOS

Microchip Technology has expanded its collaboration with Amazon Web Services (AWS) to support cloud-connected embedded systems from the node to the cloud. Supporting Amazon Greengrass, Amazon FreeRTOS and AWS Internet of Things (IoT), Microchip provides all the components, tools, software and support needed to rapidly develop secure cloud-connected systems.

Microchip’s PIC32MZ EF series of microcontrollers now support Amazon FreeRTOS, an operating system that makes compact low-powered edge devices easy to program, deploy, secure and maintain. These high-performance MCUs incorporate industry-leading connectivity options, ample Flash memory, rich peripherals and a robust toolchain which empower embedded designers to rapidly build complex applications. Amazon FreeRTOS includes software libraries which make it easy to securely deploy over-the-air updates as well as the ability to connect devices locally to AWS Greengrass or directly to the cloud, providing a variety of data processing location options.

For systems requiring data collection and analysis at a local level, developers can use Microchip’s SAMA5D2 series of microprocessors with integrated AWS Greengrass software. This will enable systems to run local compute, messaging, data caching and sync capabilities for connected devices in a secure way. This type of execution provides improved event response, conserves bandwidth and enables more cost-effective cloud computing. The SAMA5D2 devices, also available in System-in-Package (SiP) variants, offer full Amazon Greengrass compatibility in a low-power, small form factor MPU targeted at industrial and long-life gateway and concentrator applications. Additionally, the integrated security features and extended temperature range allows these MPUs to be deployed in physically insecure and harsh environments.

In any cloud-connected design, security and ease of use are vital pieces of the puzzle. Microchip’s ATECC608A CryptoAuthentication device enables enhanced system security as well as easy-to-use registration. The secure element provides a unique, trusted and protected identity to each device that can be securely authenticated to protect a brand’s intellectual property and revenue. In addition to enhancing system security, the ATECC608A allows AWS customers to instantly connect to the cloud through the device’s Just-in-Time-Registration (JITR) powered by AWS IoT.

curiosityMicrochip has an extensive toolchain for rapid and reliable development. The Curiosity PIC32MZ EF development board (shown), to kick-start Amazon FreeRTOS-based designs, is a fully integrated 32-bit development platform which also includes two mikroBUS expansion sockets, enabling designers to easily add additional capabilities, such as Wi-Fi with the WINC1510 click board, to their designs. The SAMA5D2 Xplained Ultra board, which can be used for AWS Greengrass designs, is a fast prototyping and evaluation platform for the SAMA5D2 series of MPUs. Additionally, the CryptoAuth Xplained Pro evaluation and development kit is an add-on board for rapid prototyping of secure solutions on AWS IoT and is compatible with any Microchip Xplained or XplainedPro evaluation boards. AWS is also a part of Microchip’s Design Partner Program which provides technical expertise and cost-effective solutions in a timely manner.

PIC32MZ EF MCUs are available starting at $5.48 each in 10,000 unit quantities. The PIC32MZ EF Curiosity board (DM320104) is available for $47.99 each. SAMA5D2 MPUs are available starting at $4.42 each in 10,000 unit quantities. The SAMA5D2 Xplained Ultra board (ATSAMA5D2C-XULT) is available for $150 each. ATECC608A secure elements are available starting at $0.56 each in 10,000 unit quantities. The CryptoAuth Xplained Pro evaluation and development kit (ATCryptoAuth-XPRO-B) is available for $10 each.

Microchip Technology | www.microchip.com

STMicro Adds Amazon FreeRTOS to its IoT MCU Tool Suite

STMicroelectronics has announced its collaboration with Amazon Web Services (AWS) on Amazon FreeRTOS, the latest addition to the AWS Internet of Things (IoT) solution. Amazon FreeRTOS provides everything one needs to easily and securely deploy microcontroller-based connected devices and develop an IoT application without having to worry about the complexity of scaling across millions of devices. Once connected, IoT device applications can take advantage of all of the capabilities the cloud has to offer or continue processing data locally with AWS Greengrass.

ST’s collaboration with AWS speeds designers’ efforts to create easily connectable IoT nodes with the combination of ST’s semiconductor building blocks and Amazon FreeRTOS, which extends the leading free and open-source real-time operating-system kernel for embedded devices (FreeRTOS) with the appropriate libraries for local networking, cloud connectivity, security, and remote software updates.

For the STM32, ST’s family of 32-bit Arm Cortex-M microcontrollers, the modular and interoperable IoT development platform spans state-of-the-art semiconductor components, ready-to-use development boards, free software tools and common application examples. At the official release of Amazon FreeRTOS, a version of the OS and libraries were immediately made available to run on the ultra-low-power STM32L4 series of microcontrollers.

The starter kit for Amazon FreeRTOS is ST’s B-L475E-IOT01A Discovery kit for IoT node, a fully integrated development board that exploits low-power communication, multiway sensing, and a raft of features provided by the STM32L4 series microcontroller to enable a wide range of IoT-capable applications. The Discovery kit’s support for Arduino Uno V3 and PMOD connectivity ensures unlimited expansion capabilities with a large choice of specialized add-on boards.

STMicroelectronics | www.st.com

TI Integrates SimpleLink MCU Platform with Amazon FreeRTOS

Texas Instruments (TI) has announced the integration of the new Amazon FreeRTOS into the SimpleLink microcontroller platform. Amazon Web Services (AWS) has worked with TI in the development of an integrated hardware and software solution that enables developers to quickly establish a connection to AWS IoT service out-of-the-box and immediately begin system development.

TI SimpleLink™ MCU platform now supports new Amazon FreeRTOS (PRNewsfoto/Texas Instruments Incorporated)

TI’s SimpleLink Wi-Fi CC3220SF wireless MCU LaunchPad development kit, which now supports Amazon FreeRTOS, offers embedded security features such as secure storage, cloning protection, secure bootloader and networking security. Developers can now take advantage of these security features to help them protect cloud-connected IoT devices from theft of intellectual property (IP) and data or other risks.

TI offers a broad portfolio of building blocks for IoT nodes and gateways spanning wired and wireless connectivity, microcontrollers, processors, sensing technology, power management and analog solutions, along with a community of cloud service providers, such as AWS, to help developers get connected to the cloud faster.

The SimpleLink MCU platform from Texas Instruments is a single development environment that delivers flexible hardware, software and tool options for customers developing Internet of Things (IoT) applications. With a single software architecture, modular development kits and free software tools for every point in the design life cycle, the SimpleLink MCU ecosystem allows 100 percent code reuse across the portfolio of microcontrollers, which supports a wide range of connectivity standards and technologies including RS-485, Bluetooth low energy, Wi-Fi, Sub-1 GHz, 6LoWPAN, Ethernet, RF4CE and proprietary radio frequencies. SimpleLink MCUs help manufacturers easily develop and seamlessly reuse resources to expand their portfolio of connected products.

Texas Instruments | www.ti.com

eMCOS Scalable POSIX-Compliant RTOS

eSOL recently released eMCOS POSIX, which is a POSIX-compliant profile for eMCOS. The eMCOS POSIX accelerates R&D and shortens product development time with Linux software assets and engineering resources, including open source software (OSS) such as the Robot Operating System (ROS) framework for robotic control and the Autoware software for autonomous driving systems.

eMCOS POSIX provides superior real-time capabilities for embedded systems that require a high level of computing power and operate on an autonomous and distributed basis. Applications include autonomous driving systems, industrial IoT systems, advanced driver assistance systems (ADAS), AI, and computer vision.

eMCOS is a POSIX-compliant RTOS that complies with POSIX 1003.13 PSE 53. It provides full support for multiple processes and threads, loadable processes, and shared libraries. It also offers a multiprocessing environment for multicore systems with distributed memory, allowing the use of POSIX inter-process communications (IPC) for communication with different scheduling clusters and hardware clusters.

Conventional RTOSs use a single kernel to manage multiple cores. In contrast, the eMCOS employs a distributed microkernel architecture with a separate microkernel installed on each core. Thus, it can support different numbers of cores as well as heterogeneous hardware configurations with a variety of device architectures (e.g., FPGAs, GPUs, and microcontrollers with on-chip flash memory). Along with eMCOS POSIX, eMCOS is made up of a number of profiles, including the eMCOS AUTOSAR profile for AUTOSAR. By selecting the appropriate profile to suit system requirements, it is easy to configure distributed systems that combine POSIX and AUTOSAR applications running on separate processors. Supported devices include the Kalray MPPAR-256 and Renesas Electronics RH850 series. Because eMCOS is not designed for particular processor architectures or instruction sets, support for other processors will be added in the future.

Source: eSOL 

Tracealyzer 3.1 Offers Support for Trace Streaming Over USB

Percepio AB recently released Tracealyzer 3.1, which is a trace tool that supports RTOS trace using just a standard USB cable. You can increase your development speed by using Tracealyzer for debugging, validation, profiling, documentation, and training. Percepio-Tracealyzer

The trace recorder library is now easier to configure for streaming over custom interfaces, and includes support for USB streaming on STM32. (It can be adapted for other microcontrollers.) USB offers excellent performance for RTOS tracing and over 600 KB/s has been measured on an STM32 using USB 2, several times more than required. Other stream ports include TCP/IP and SEGGER J-Link debug probes. Tracealyzer 3.1 can also receive trace streams via Windows COM ports (e.g., from USB CDC connections), UART connections, or any virtual COM port provided by other target interfaces.

Tracealyzer 3.1 can identify memory leaks in systems that use dynamic memory allocation. It can record memory allocation events (e.g. malloc, free) from multiple operating systems, and it can display such allocations that have not been released. Since the memory allocation events are linked to the task trace, you quickly find the context of the allocation and investigate the problem. The recorder library simplifies integration and now provides a common API for both streaming and snapshot recording.

 

Source: Percepio AB

 

Silicon Labs Acquires Micrium

Silicon Labs recently announced its acquisition of of Micrium, an RTOS software supplier. The strategic acquisition it intended to strengthen Silicon Labs’s position in the IoT market.

The following statement from Daniel Cooley, Senior Vice President and General Manager of Silicon Labs’s IoT products, was presented in a release:

IoT products are increasingly defined by software. Explosive growth of memory/processor capabilities in low-end embedded products is driving a greater need for RTOS software in connected device applications… The acquisition of Micrium means that connected device makers will have easier access to a proven embedded RTOS geared toward multiprotocol silicon, software and solutions from Silicon Labs.

Source: Silicon Labs

mbOS for MicroEJ Opens Embedded Systems to Java

SEGGER recently announced that its embOS real-time operating system now supports MicroEJ’s platform, thereby giving Java developers the ability to work on ARM Cortex-M based embedded applications. You get a complete Java platform with a virtual machine, which is a 32-bit processor that manages Java threads. It is executed as a task controlled by SEGGER’s embOS kernel . Thus, you get all the benefits of both ANSI-C and Java in a single embedded target.

Developers can focus on their Java applications and do not need to have any deeper knowledge of ANSI-C. For more information about embOS’s support for the MicroEJ Platform, visit www.segger.com/embos-microej.html.

Source: SEGGER