Aerial Robot Demonstration Wows at TEDTalk

In a TEDTalk Thursday, engineer Vijay Kumar presented an exciting innovation in the field of unmanned aerial vehicle (UAV) technology. He detailed how a team of UPenn engineers retrofitted compact aerial robots with embedded technologies that enable them to swarm and operate as a team to take on a variety of remarkable tasks. A swarm can complete construction projects, orchestrate a nine-instrument piece of music, and much more.

The 0.1-lb aerial robot Kumar presented on stage—built by UPenn students Alex Kushleyev and Daniel Mellinger—consumed approximately 15 W, he said. The 8-inch design—which can operate outdoors or indoors without GPS—featured onboard accelerometers, gyros, and processors.

“An on-board processor essentially looks at what motions need to be executed, and combines these motions, and figures out what commands to send to the motors 600 times a second,” Kumar said.

Watch the video for the entire talk and demonstration. Nine aerial robots play six instruments at the 14:49 minute mark.

Q&A: Hanno Sander on Robotics

I met Hanno Sander in 2008 at the Embedded Systems Conference in San Jose, CA. At the time, Hanno was at the Parallax booth demonstrating a Propeller-based, two-wheeled balancing robot. Several months later, we published an article he wrote about the project in issue March 2009. Today, Hanno runs HannoWare and works with school systems to improve youth education by focusing technological innovation in classrooms.

Hanno Sander at Work

The March issue of Circuit Cellar, which will hit newsstands soon, features an in-depth interview with Hanno. It’s an inspirational story for experienced and novice roboticists alike.

Hanno Sander's Turing maching debugged with ViewPort

Here’s an excerpt from the interview:

HannoWare is my attempt to share my hobbies with others while keeping my kids fed and wife happy. It started with me simply selling software online but is now a business developing and selling software, hardware, and courseware directly and through distributors. I get a kick out of collaborating with top engineers on our projects and love hearing from customers about their success.

Our first product was the ViewPort development environment for the Parallax Propeller, which features both traditional tools like line-by-line stepping and breakpoints as well as real-time graphs of variables and pin I/O states to help developers debug their firmware. ViewPort has been used for applications ranging from creating a hobby Turing machine to calibrating a resolver for a 6-MW motor. 12Blocks is a visual programming language for hobby microcontrollers.

The drag-n-drop style of programming with customizable blocks makes it ideal for novice programmers. Like ViewPort, 12Blocks uses rich graphics to help programmers understand what’s going on inside the processor.

The ability to view and edit the underlying sourcecode simplifies transition to text languages like BASIC and C when appropriate. TBot is the result of an Internetonly collaboration with Chad George, a very talented roboticist. Our goal for the robot was to excel at typical robot challenges in its stock configuration while also allowing users to customize the platform to their needs. A full set of sensors and actuators accomplish the former while the metal frame, expansion ports, and software libraries satisfy the latter.

Click here to read the entire interview.

 

Robot Nav with Acoustic Delay Triangulation

Building a robot is a rite of passage for electronics engineers. And thus this magazine has published dozens of robotics-related articles over the years.

In the March issue, we present a particularly informative article on the topic of robot navigation in particular. Larry Foltzer tackles the topic of robot positioning with acoustic delay triangulation. It’s more of a theoretical piece than a project article. But we’re confident you’ll find it intriguing and useful.

Here’s an excerpt from Foltzer’s article:

“I decided to explore what it takes, algorithmically speaking, to make a robot that is capable of discovering its position on a playing field and figuring out how to maneuver to another position within the defined field of play. Later on I will build a minimalist-like platform to test algorithms performance.

In the interest of hardware simplicity, my goal is to use as few sensors as possible. I will use ultrasonic sensors to determine range to ultrasonic beacons located at the corners of the playing field and wheel-rotation sensors to measure distance traversed, if wheel-rotation rate times time proves to be unreliable.

From a software point of view, the machine must be able to determine robot position on a defined playing field, determine robot position relative to the target’s position, determine robot orientation or heading, calculate robot course change to approach target position, and periodically update current position and distance to the target. Because of my familiarity with Microchip Technology’s 8-bit microcontrollers and instruction sets, the PIC16F627A is my choice for the microcontrollers (mostly because I have them in my inventory).

To this date, the four goals listed—in terms of algorithm development and code—are complete and are the main subjects of this article. Going forward, focus must now shift to the hardware side, including software integration to test beyond pure simulation.

SENSOR TECHNOLOGY & THE PLAYING FIELD
A brief survey of ultrasonic ranging sensors indicates that most commercially available units have a range capability of 20’ or less. This is for a sensor type that detects the echo of its own emission. However, in this case, the robot’s sensor will not have to detect its own echoes, but will instead receive the response to its query from an addressable beacon that acts like an active mirror. For navigation purposes, these mirrors are located at three of the four corners of the playing field. By using active mirrors or beacons, received signal strength will be significantly greater than in the usual echo ranging situation. Further, the use of the active mirror approach to ranging should enable expansion of the effective width of the sensor’s beam to increase the sensor’s effective field of view, reducing cost and complexity.

Taking the former into account, I decided the size of the playing field will be 16’ on a side and subdivided into 3” squares forming an (S × S) = (64 × 64) = (26, 26) unit grid. I selected this size to simplify the binary arithmetic used in the calculations. For the purpose of illustration here, the target is considered to be at the center of the playing field, but it could very well be anywhere within the defined boundaries of the playing field.

Figure 1: Squarae playing field (Source: Larry Foltzer CC260)

ECHOES TO POSITION VECTORS
Referring to Figure 1, the corners of the square playing field are labeled in clockwise order from A to D. Ultrasonic sonar transceiver beacons/active mirrors are placed at three of the corners of the playing field, at the corners marked A, B, and D.”

The issue in which this article appears will available here in the coming days.