Client Profile: Digi International, Inc

Contact: Elizabeth Presson
elizabeth.presson@digi.com

Featured Product: The XBee product family (www.digi.com/xbee) is a series of modular products that make adding wireless technology easy and cost-effective. Whether you need a ZigBee module or a fast multipoint solution, 2.4 GHz or long-range 900 MHz—there’s an XBee to meet your specific requirements.

XBee Cloud Kit

Digi International XBee Cloud Kit

Product information: Digi now offers the XBee Wi-Fi Cloud Kit (www.digi.com/xbeewificloudkit) for those who want to try the XBee Wi-Fi (XB2B-WFUT-001) with seamless cloud connectivity. The Cloud Kit brings the Internet of Things (IoT) to the popular XBee platform. Built around Digi’s new XBee Wi-Fi
module, which fully integrates into the Device Cloud by Etherios, the kit is a simple way for anyone with an interest in M2M and the IoT to build a hardware prototype and integrate it into an Internet-based application. This kit is suitable for electronics engineers, software designers, educators, and innovators.

Exclusive Offer: The XBee Wi-Fi Cloud Kit includes an XBee Wi-Fi module; a development board with a variety of sensors and actuators; loose electronic prototyping parts to make circuits of your own; a free subscription to Device Cloud; fully customizable widgets to monitor and control connected devices; an open-source application that enables two-way communication and control with the development board over the Internet; and cables, accessories, and everything needed to connect to the web. The Cloud Kit costs $149.

A Love of Teaching, a Lifetime of Robotics: An Interview with John Blankenship

John Blankenship

John Blankenship

John Blankenship has spent decades teaching robotics—and written many books on the subject. His love of teaching inspired him to co-develop the RobotBASIC robot programming language. I recently caught up with John to discuss some highlights from his teaching career and what’s next for RobotBASIC—Nan Price, Associate Editor

 NAN: How did you become interested in robotics?

JOHN: As a child, I often saw robots on television but was fully aware that there were no computers capable of making such fictional creations a reality. In the 1970s, microprocessors such as Intel’s 8080 and MOS Technology’s 6502 gave me hope that real robots would eventually become part of our future.

I found I could motivate my students by linking lab projects to robotic topics. For example, instead of just graphing the output from an active filter, I had my students use op-amps to detect an ultrasonic wave so they could later build a ranging sensor. I firmly believe that if you want to motivate students, you must give them projects with a purpose.

 NAN: You spent more than 30 years teaching programming, electronics, and robotics. What did you gain from that experience?

 JOHN: I enjoyed teaching electronics, but I loved teaching programming. Nothing else even comes close to develop critical thinking skills in students. Watching those skills develop was the reason I taught.

After seeing how my hardware robotic projects motivated students, I knew I wanted something similar for my programming classes. Eventually I developed a library of C routines that simulated a simple on-screen robot. What made the simulated robot special is that it supported numerous sensors (an electronic compass, two levels of proximity sensors, a ranging sensor, line detection, beacon detection, color tracking, and more) that enabled students to solve relatively complex, real-world robotics problems without building any hardware.

This structure made programming fun because it gave programming assignments a purpose. Students no longer had to be convinced that it was important to learn the syntax for a loop or how “if” statements controlled flow to make decisions—they wanted to learn details so they could use them to solve the exciting problems being proposed for them. Which would you find more exciting: writing a program to count the number of words in a string or teaching a robot to follow a line? Better yet, imagine motivating students by having a contest to see whose robot could follow a line the fastest.

NAN: How and why did you develop the RobotBASIC programming language?

MINOLTA DIGITAL CAMERA

RobotBASIC can control real robots just as easily as the simulation.

 JOHN: When I retired from teaching I wanted a way for other teachers to utilize a simulated robot to motivate their students. I could have just published my C libraries, but that generally would have limited their use to college classes where C is usually taught. I felt strongly that much younger students needed to be introduced to programming so they could develop not just logical thought, but also an appreciation for math and engineering.

I love the C language (RobotBASIC is written in C), but in my opinion, it is far too cryptic to be used as a first language. I wanted to encase my routines in a BASIC-like language that would enable nearly anyone to program a simulated robot.

I began writing my own language and was reasonably pleased with the initial efforts. I demonstrated the program to a good friend of mine, Samuel Mishal, who is easily the greatest programmer I have ever known. After politely applauding my efforts, he showed me an interpreter he had been working on to help him with a DSP project. His language was very polished and far superior to my work. He integrated my simulator with his interpreter and we named it RobotBASIC.

Even though we planned from start to freely distribute RobotBASIC, we knew teachers could not devote time to learning a language that was just a robot simulator. We began adding new features and capabilities. The more we added, the more excited we became. We started testing the new language by developing robotic behaviors and writing simple video games. Every time we needed something special, we added it to the language.

Figure3

RobotBASIC has all the commands necessary to write simple video games.

RobotBASIC currently has nearly 900 commands and functions—far more than most languages. More importantly though, since there are built-in functions to handle many things programmers normally have to do themselves, the language is very fast for an interpreter.

We felt RobotBASIC was an ideal language for introducing high school students to programming, but we wanted more. We added hardware I/O capabilities and created a wireless protocol that enabled RobotBASIC to control real robots with the same programs that control the simulation. At that point, the language could easily handle college-level projects but we knew the BASIC stigma would be a problem. To help with this, we added the option to use a modified C-style syntax, making it easier for students to transition to C or even Java.

Figure4

This simulation shows the effects of friction on a spring’s movement.

We also decided to address some backward capability by adding legacy-style I/O commands, making it easy to teach basic programming skills to even fifth graders. This enables school systems to utilize RobotBASIC from lower grades through high school without having to teach a new environment when new capabilities are needed. And if the C-style syntax is introduced in the upper grades, students will be better prepared for college programming courses.

 NAN: What are some uses for RobotBASIC?

JOHN: Even though students’ needs were a driving force in our development process, RobotBASIC’s I/O capabilities make it a great language for hobbyists involved with robotics or other electronic-oriented projects. For example, it only takes a few lines of code to gather data from a remote temperature sensor using a wireless link and to transmit that information to another user over the Internet.

RobotBASIC also has many commands that facilitate flicker-free animation and simulation. This means teachers have the option of motivating students by teaching how to write simple video games.

As much as I love the robot simulator, I have to admit that many students get even more excited about animation than they do about robots. The point is that RobotBASIC provides many options.

Figure2

The simulated robot can be programmed to solve a maze.

 NAN: You offer several types of RobotBASIC seminars geared toward children, university students, and robot clubs. You also lead seminars introducing programming and robotics. What do you enjoy most about teaching? What do attendees gain from your seminars?

 JOHN: I love teaching and I especially love showing teachers new ways to motivate their students. I understand that every school and teacher is different and I make sure I satisfy their goals by customizing each and every presentation based on their individual needs. I am always amazed that schools can’t believe that RobotBASIC is totally free. There are no acquisition costs, no upgrade fees, and no licenses—ever! RobotBASIC is free for hobbyists too. Circuit Cellar readers can download a copy from RobotBASIC.org.

 NAN: Are you currently working on or planning any robotics-related projects?

Figure6

The speed and flight path of these darts is controlled with finger movements on a tablet’s touchscreen.

JOHN: Many RobotBASIC users have been asking for a more advanced book on animation and video games. Unfortunately, my work on our new RobotBASIC Robot Operating System (On a Chip) has been monopolizing all my time for the last couple of years. Now that it is finally finished, I have started writing again.  I think the new book will be worth the wait because it also discusses how RobotBASIC can interact with the new Windows 8 sensors (e.g., cameras, compass, accelerometer, touchscreen, etc.) The chapter I am currently working on enables darts to be thrown using finger movements on a tablet’s touchscreen.

NAN: Do you have any advice for Circuit Cellar readers who are considering building their own autonomous robots?

 JOHN: I think the biggest mistake most robot hobbyists make is they spend far too much time constructing a robot before having a detailed understanding of its sensory needs and the algorithms necessary to accomplish their goals. If they would test their ideas first with our simulator, they would have the information necessary to build a platform that can actually meet their needs. Furthermore, they could control their real robot with the very same programs they developed on the simulator.

Low-Cost SBCs Could Revolutionize Robotics Education

For my entire life, my mother has been a technology trainer for various educational institutions, so it’s probably no surprise that I ended up as an engineer with a passion for STEM education. When I heard about the Raspberry Pi, a diminutive $25 computer, my thoughts immediately turned to creating low-cost mobile computing labs. These labs could be easily and quickly loaded with a variety of programming environments, walking students through a step-by-step curriculum to teach them about computer hardware and software.

However, my time in the robotics field has made me realize that this endeavor could be so much more than a traditional computer lab. By adding actuators and sensors, these low-cost SBCs could become fully fledged robotic platforms. Leveraging the common I2C protocol, adding chains of these sensors would be incredibly easy. The SBCs could even be paired with microcontrollers to add more functionality and introduce students to embedded design.

rover_webThere are many ways to introduce students to programming robot-computers, but I believe that a web-based interface is ideal. By setting up each computer as a web server, students can easily access the interface for their robot directly though the computer itself, or remotely from any web-enabled device (e.g., a smartphone or tablet). Through a web browser, these devices provide a uniform interface for remote control and even programming robotic platforms.

A server-side language (e.g., Python or PHP) can handle direct serial/I2C communications with actuators and sensors. It can also wrap more complicated robotic concepts into easily accessible functions. For example, the server-side language could handle PID and odometry control for a small rover, then provide the user functions such as “right, “left,“ and “forward“ to move the robot. These functions could be accessed through an AJAX interface directly controlled through a web browser, enabling the robot to perform simple tasks.

This web-based approach is great for an educational environment, as students can systematically pull back programming layers to learn more. Beginning students would be able to string preprogrammed movements together to make the robot perform simple tasks. Each movement could then be dissected into more basic commands, teaching students how to make their own movements by combining, rearranging, and altering these commands.

By adding more complex commands, students can even introduce autonomous behaviors into their robotic platforms. Eventually, students can be given access to the HTML user interfaces and begin to alter and customize the user interface. This small superficial step can give students insight into what they can do, spurring them ahead into the next phase.
Students can start as end users of this robotic framework, but can eventually graduate to become its developers. By mapping different commands to different functions in the server side code, students can begin to understand the links between the web interface and the code that runs it.

Kyle Granat

Kyle Granat, who wrote this essay for Circuit Cellar,  is a hardware engineer at Trossen Robotics, headquarted in Downers Grove, IL. Kyle graduated from Purdue University with a degree in Computer Engineering. Kyle, who lives in Valparaiso, IN, specializes in embedded system design and is dedicated to STEM education.

Students will delve deeper into the server-side code, eventually directly controlling actuators and sensors. Once students begin to understand the electronics at a much more basic level, they will be able to improve this robotic infrastructure by adding more features and languages. While the Raspberry Pi is one of today’s more popular SBCs, a variety of SBCs (e.g., the BeagleBone and the pcDuino) lend themselves nicely to building educational robotic platforms. As the cost of these platforms decreases, it becomes even more feasible for advanced students to recreate the experience on many platforms.

We’re already seeing web-based interfaces (e.g., ArduinoPi and WebIOPi) lay down the beginnings of a web-based framework to interact with hardware on SBCs. As these frameworks evolve, and as the costs of hardware drops even further, I’m confident we’ll see educational robotic platforms built by the open-source community.

Client Profile: Pololu Robotics

Pololu Robotics
www.pololu.com
920 Pilot Road
Las Vegas, NV 89119

Contact: inbox@pololu.com

Pololu Robotics Zumo

Pololu Robotics Zumo

Embedded Products/Services: Pololu designs, manufactures, and distributes a variety of robotic and electronic parts. Get the building blocks for your next project at Pololu, where you can find wheels, motors, motion controllers, basic prototyping supplies, sensors, complete robot kits, and more. Pololu also offers a custom laser cutting service starting at $25.

Product information: The Pololu Zumo robot is an Arduino-controllable tracked robot platform that measures less than 10 cm × 10 cm, which is small enough to qualify for Mini Sumo. The Zumo includes two micro-metal gearmotors coupled to a pair of silicone tracks, a stainless steel bulldozer-style blade, six infrared reflectance sensors for line following or edge detection, a three-axis accelerometer and magnetometer, and a buzzer for simple sounds and music. A kit version is also available.

Exclusive offer: Use coupon code ZUMOCC20 for 20% off any one item in Pololu’s Zumo category (www.pololu.com/zumo).

MIT’s Self-Assembling Robots

Calling it a low-tech solution to a high-tech challenge, MIT researchers have received a lot of attention recently for their modular system of self-assembling robot cubes. The video of the so-called M-Blocks in action, which MIT posted earlier this month on YouTube, has also become high profile. A recent tally has the video at nearly 1.5 million views and counting.

 

The text accompanying the video explains how the cubes are able to move around and climb over each other,  jump into the air, and roll across surfaces as they connect in a variety of configurations. And they do all this without any external moving parts. Instead, each M-Block contains a flywheel that can reach speeds of 20,000 rpm. When the flywheel brakes, it imparts angular momentum to the cube.  Precisely placed magnets on every face and edge of each M-Block enable any two cubes to attach to each other.

The simple design holds short- and long-term promise.  According  to an October 4 article by Larry Hardesty of the MIT News Office, it is hoped that the blocks can be miniaturized someday, perhaps to swarming microbots that can self-assemble with a purpose. Even at their current size, further development of the M-Blocks might lead to “armies of mobile cubes” that can help repair bridges and buildings in emergencies, raise scaffolding, reconfigure into heavy equipment or furniture as needed, or head in to environments hostile to humans to diagnose and repair problems, the article suggests.

While it may not rise to “cooperative group behavior,”  the ability of one cube to drag another and influence its alignment is impressive. What could 100 or more of these robots accomplish as MIT researchers continue to develop algorithms to control them?

A prototype of the new modular robot, with its flywheel exposed. (Photo: M. Scott Brauer)

A prototype of the new modular robot, with its interior and flywheel exposed.
(Photo: M. Scott Brauer)