PLL/VCO Solution Serves Next-Gen RF and Microwave Needs

Analog Devices has announced a synthesizer consisting of a phase-locked loop (PLL) with fully integrated voltage controlled oscillator (VCO) as well as integrated low dropout regulators (LDOs) and integrated tracking filter technology. The new ADF4371 supports RF/microwave system designs that must meet the most exacting next-generation requirements across multiple markets, including aerospace and defense, test/measurement, communications infrastructure, as well as high-speed converter clocking.

According to ADI, the ADF4371 is the highest frequency synthesizer on the market today and offers the widest continuous RF output range of 62 MHz to 32 GHz. Together with ultra-low PLL FOM (-234 dBc/Hz), ultra-low spurious (-100 dBc typ.), low VCO phase noise (-134 dBc/Hz at1 MHz offset at 8GHz), and with built-in tracking filter technology, this device leads the way for performance and adaptability. Its feature-rich, highly configurable architecture means that designers can now choose a single, ultra-compact, synthesizer solution to cover almost any LO/clock requirement within these frequency ranges, thereby reducing development costs, risk and time to market.

The ADF4371 facilitates implementation of high resolution (39-bit) fractional-N or integer-N PLL frequency synthesizers when used with an external loop filter and an external reference source. The wideband microwave VCO design allows frequencies from 62.5 MHz to 32 GHz to be generated. The device features the industry’s lowest jitter (36 fs at 10 GHz) and reference spurious (-100 dBc typ.), together with operation to 105°C without loss of lock.

For applications requiring very small compact footprints, the ADF4371 supports integrated power supply decoupling, integrated LDOs and integrated harmonic tracking filters. The tracking filter technology facilitates at least 30dB harmonic and sub-harmonic rejection across the entire VCO range. This hugely reduces the total solution footprint, particularly in the case where fixed range filters are required to meet these rejections across octave bandwidths. For applications that do not require the full frequency range capability of the ADF4371 (up to 32 GHz), ADI also offers the ADF4372 with operation up to 16 GHz.

The ADF4371 and ADF4372 are supported within ADI’s popular ADIsimPLL™ circuit design and evaluation tool that assists users in evaluating, designing and troubleshooting RF and microwave systems.

Analog Devices | www.analog.com

Chipsets Provide Low Power LoRa Solutions

Semtech has announced its next generation LoRa devices and wireless radio frequency (RF) technology (LoRa Technology) chipsets enabling innovative LPWAN use cases for consumers with its advanced technology. Addressing the need for cost-effective and reliable sensor-to-cloud connectivity in any type of RF environment, the new features and capabilities will significantly improve the performance and capability of IoT sensor applications that demand ultra-low power, small form factor and long range wireless connectivity with a shortened product development cycle.

The next generation LoRa radios extends Semtech’s industry leading link budget by 20% with a 50% reduction in receiver current (4.5 mA) and a high power +22 dBm option. This extends battery life of LoRa-based sensors up to 30%, which reduces the frequency of battery replacement. The extended connectivity range, with the ability to reach deep indoor and outdoor sensor locations, will create new markets as different types of verticals integrate LoRa Technology in their IoT applications including healthcare and pharmaceuticals, media and advertising, logistics/shipping and asset tracking.

The new platform has a command interface that simplifies radio configuration and shortens the development cycle, needing only 10 lines of code to transmit or receive a packet, which will allow users to focus on applications. The small footprint, 45% less than the current generation, is highly configurable to meet different application requirements utilizing the global LoRaWAN open standard. The chipsets also supports FSK modulation to allow compatibility with legacy protocols that are migrating to the LoRaWAN open protocol for all the performance benefits LoRa Technology provides.

Three new devices, SX1262 (+22dBm), SX1261 (+15dBm) and SX1268 (+22dBm, China frequency bands) are currently sampling to lead customers and partners and will be available in full production in late Q1 2018. Development kits for various regions and associated software will also be available at that time.

LoRa Technology New Features:

  • 50% less power in receive mode
  • 20% more extended range
  • +22 dBm transmit power
  • A 45% reduction in size: 4mm by 4mm
  • Global continuous frequency coverage: 150-960MHz
  • Simplified user interface with implementation of commands
  • New spreading factor of SF5 to support dense networks
  • Protocol compatible with existing deployed LoRaWAN networks

 

Semtech | www.semtech.com/iot

Technology and Test Solutions for 5G

Next-Gen Communications

As carriers worldwide prepare for 5G communications, chip suppliers and test equipment vendors are evolving their products to meet the challenges of the 5G era.

By Jeff Child, Editor-in-Chief

The technologies that are enabling 5G communications are creating new challenges for embedded system developers. Faster mobile broadband data rates, massive amounts of machine-to-machine network interfacing and daunting low latency constraints all add to the complexity of 5G system design. Feeding those needs, chip vendors over the past 12 months have been releasing building blocks like modem chips and wideband mixers supporting 5G. And test equipment vendors are keeping pace with test gear designed to work with 5G technology.

With standards expected to reach finalization around 2020, 5G isn’t here yet, But efforts worldwide are laying the groundwork to deploy it. For its part, the Global mobile Suppliers Association (GSA) released a report in October 2017 entitled “Evolution from LTE to 5G.” According to the report, there is a frenzy of testing of 5G technology and concepts worldwide. The GSA has identified 103 operators in 49 countries that are investing in 5G technology in the form of demos, lab trials or field tests that are either under way or planned. Operators are sharing their intentions in terms of launch timetables for 5G, or prestandards 5G. The earliest launch dates currently planned are by operators in Italy and the US. Those early launches are necessarily limited in scope to either specific applications, or in limited geographic areas where they will function as extended commercial trials. Figure 1 shows the countries and the current planned dates for the earliest 5G launches in those countries.

FIGURE 1
Here is a map of pre-standards and standards-based 5G network plans announced. It shows the countries and current planned dates for the earliest 5G launches in those countries. (Source: Global mobile Suppliers Association (GSA)).

THE BIG PLAYERS

Intel and Qualcomm have been the big players to watch for 5G enabling technologies. In October 2017, Qualcomm Technologies, a subsidiary of Qualcomm, hit a significant milestone successfully achieving a 5G data connection on a 5G modem chipset for mobile devices. The Qualcomm Snapdragon X50 5G modem chipset achieved speeds and a data connection in the 28 GHz mmWave radio frequency band. The solution is expected to accelerate the delivery of 5G new radio (5G NR) enabled mobile devices to consumers. Along with the chip set demo Qualcomm Technologies previewed its first 5G smartphone reference design for the testing and optimization of 5G technology within the power and form-factor constraints of a smartphone.

The 5G data connection demonstration showed the chip set achieving Gigabit/s download speeds, using several 100 MHz 5G carriers and demonstrated a data connection in the 28 GHz millimeter wave (mmWave) spectrum. In addition to the Snapdragon X50 5G modem chipset, the demonstration also used the SDR051 mmWave RF transceiver IC. The demonstration made use of Keysight Technologies’ new 5G Protocol R&D Toolset and UXM 5G Wireless Test Platform. Qualcomm Technologies was the first company to announce a 5G modem chipset in 2016. The Snapdragon X50 5G NR modem family is expected to support commercial launches of 5G smartphones and networks in the first half of 2019. …

Read the full article in the January 330 issue of Circuit Cellar

Don’t miss out on upcoming issues of Circuit Cellar. Subscribe today!
Note: We’ve made the October 2017 issue of Circuit Cellar available as a free sample issue. In it, you’ll find a rich variety of the kinds of articles and information that exemplify a typical issue of the current magazine.

Flexible Printed Batteries Target IoT Devices

Semtech and Imprint Energy have announced a collaboration to accelerate the widespread deployment of IoT devices. Imprint Energy will design and produce ultrathin, flexible printed batteries that are especially designed to power IoT devices integrated with Semtech’s LoRa devices and wireless RF technology (LoRa Technology). LoRa Technology, with its long-range, low-power capabilities, is regarded by many as the defacto platform for building low-power wide area networks (LPWAN).

ImprintTo help accelerate a next generation of battery technology, Semtech has invested in Imprint Energy. The companies are working closely to target applications that have the potential to create entirely new markets. The Imprint Energy battery enables new applications which have a thin and small form factor and due to the integrated manufacturing process, the batteries are low cost to produce, making high volume deployments feasible.

A key benefit of the Imprint Energy battery technology is the ability to be printed using multiple types of conventional high-volume printing equipment; this enables quick integration by traditional electronic manufacturers in their existing production lines. Test production runs are currently being processed and the resulting batteries are being used in applications prototypes to validate assumptions and engage early adopters.

Imprint Energy | www.imprintenergy.com

Semtech | www.semtech.com

Wideband Mixer Has 3 mm x 2 mm Package

Analog Devices announced the LTC5552, a double balanced mixer that features best-in-class wideband matching from 3 GHz to 20 GHz. The mixer can be used as an up- or down-converter. The LTC5552 is especially useful in up-conversion applications with its Analog Devices LTC5552DC capable differential IF port that enables the LO to be close in frequency to the RF. Its low LO to RF leakage of less than –25dBm greatly eases the burden on the external filter. Additionally, the mixer delivers excellent linearity of 20.1dBm IIP3 at 14 GHz, and 18.3dBm at 17 GHz. The device integrates a broadband LO buffer, requiring only 0dBm drive and effectively eliminating an external high power LO amplifier circuit. Moreover, the LTC5552 integrates a wideband balun transformer in its RF port, allowing single-ended 50Ω matched operation over its specified frequency range. All these features result in minimum external components, simplified design and a very small solution size.

The LTC5552’s exceptionally wide bandwidth and performance is ideal for a broad range of applications, including 5G broadband wireless access, microwave backhaul, satellite broadband radios, radar systems, active antenna arrays, X, Ku and Ka band transceivers, RF test equipment, spectrum analysis and satellite communications. The LTC5552 is offered in a tiny 12-lead, 3mm x 2mm plastic QFN package. The device is rated from –40°C to 105°C case temperature to support extended environmental operating temperatures. The mixer is powered from a single 3.3 V supply and typically consumes 132 mA supply current. Additionally, the LTC5552 can be shut down via an enable pin. When deactivated, the device draws only 100 μA maximum standby current. The enable pin can also be driven directly to turn the device on and off rapidly in less than 0.2μs, supporting time-division duplex (TDD) or burst mode type transmitters and receivers. The LTC5552 is priced starting at $22.00 each in 1,000-piece quantities.

Analog Devices | www.analog.com

High-Performing, Intelligent Wireless Transceiver Module

The RF Solutions high-performance ZETA module was recently updated to include a simple SPI and UART interface. The ZETAPLUS module doesn’t require external components, which means a fast and effective plug-and-play setup.

ZETAPLUS

Available on 433-, 868-, and 915-MHz frequencies, the module is easy to set up and you’ll be sending and receiving data quickly. Furthermore, you’ll find it easy to create networks of ZETAPLUS modules or point-to-point links without the need for time-consuming register configuration.

With an impressive 2-km range, the ZETAPLUS is well-suited for sensor networks, sleepy nodes, and numerous other telemetry, control, and Internet of Things (IoT) applications.

RF Solutions | www.rfsolutions.co.uk

FCC-Certified AMB2621 Bluetooth Smart Module

AMBER Wireless’s AMB2621 Bluetooth Smart module is certified for the United States and Canadian markets (Code of Federal Regulations, Title 47, Telecommunication Part 15 – Radio Frequency Devices). Manufacturers that use the wireless module in their products can gain time and cost benefits as a result because they don’t have to have them specifically certified with the Federal Communications Commission (FCC).

Amber Wireless

The certifications for the AMB2621 module demonstrate the following: personal safety isn’t at risk, there’s good immunity against electromagnetic interference, and the radio spectrum is used efficiently. As a result, manufacturers can bring their devices to market quicker and without their own FCC certification. A simple reference on the device label is sufficient (i.e., FCC-ID R7TAMB2621 is integrated).

The AMB2621’s features, specs, and benefits:

  • 2.4 GHz BLE radio module
  • 11 × 8 × 1.8 mm size
  • Compliant with the Bluetooth Smart 4.2 Standard
  • Offered with or without an integrated antenna
  • Expands existing products with a BLE interface without having to be adapted in advance..

AMBER Wireless | www.amber-wireless.de

New Range of RF Building Blocks

CML Microcircuits recently released a new range of RF power amplifiers. The CMX901 is a three-stage wideband, high-gain, high-efficiency RF power amplifier IC operating over 130 to 950 MHz. The device is ideally suited for use in VHF/UHF radio applications such as data modules, marine VHF communications, and RFID readers/writers used in Industrial Internet of Things (IIOT) systems. High power added efficiency supports battery-powered applications.CML CMX901

The amplifier’s first and second stages operate in a class-A and class-AB mode, respectively. The third stage operates in class-C mode for maximum efficiency. Input and output matched circuits are implemented via external components. They can be adjusted to obtain maximum power and efficiency at the desired operating frequency.

The CMX901 is available in a small footprint 5 mm × 5 mm low thermal resistance 28-pin WQFN package, which makes it ideal for small form factor applications.

Source: CML Microcircuits

New Bluetooth 5-Ready SoC Offers Increased Range, Bandwidth, & Security

Nordic Semiconductor’s new Bluetooth 5-ready nRF52840 SoC is well suited for smart home, advanced wearables, and industrial IoT applications. In addition to supporting 802.15.4, it’s capable of delivering Bluetooth low energy (BLE) wireless connectivity with up to 4× the range or 2× the raw data bandwidth (2 Mbps) compared with the BLE implementation of Bluetooth 4.2Nordic nRF52840

The nRF52840 SoC’s features, specs, and benefits:

  • Features a 64-MHz, 32-bit ARM Cortex M4F processor employed on Nordic’s nRF52832 SoC
  • A new radio architecture with on-chip PA boosting output power considerably, and extending the link budget for “whole house” applications, a doubling of flash memory to 1 MB, and a quadrupling of RAM memory to 256 KB
  • Support for Bluetooth 5, 802.15.4, ANT, and proprietary 2.4-GHz wireless technologies
  • A full-speed USB 2.0 controller
  • A host of new peripherals (many with EasyDMA) including a quad-SPI
  • Operates from power supplies above 5 V  (e.g., rechargeable battery power sources)
  • Incorporates the ARM CryptoCell-310 cryptographic accelerator offering best-in-class security for Cortex-M based SoCs. Extensive crypto ciphers and key generation and storage options are also available.

Nordic released the S140 SoftDevice and associated nRF5 SDK with support for Bluetooth 5 longer range and high throughput modes in December 2016. Engineering samples and development kits are now available. Production variants of the nRF52840 will be available in Q4 2017.

Source: Nordic Semiconductor 

Multi-Protocol Sub-GHz Wireless Transceiver Platform

NXP Semiconductors recently added the OL2385 family sub-GHz wireless transceivers to its low-power microcontroller and 2.4 GHz portfolio for Internet of Things (IoT) applications. Based on a PIN-to-PIN compatible, sub-GHz transceiver hardware platform, the OL2385 supports multiple wireless protocols  (e.g., Sigfox, W-MBus powered by Xemex, and ZigBee IEEE 802.15.4).

With a two-way RF channel and common modulation schemes for networking applicatios, the OL2385 transceivers cover a wide range of frequency bands from 160 to 960 MHz. In addition, extended range radio operation is enabled with high sensitivity up to –128 dBm. Operation in congested environments is enhanced with 60 dB at 1 MHz of blocking performance and 60 dB of image rejection.

Platform features include: 14-dBm Tx output power compliant with ETSI limits; typical 29-mA transmit power consumption at full output power; less than 11 mA receive power consumption; excellent phase noise of –127 dBc at 1 MHz in the 868- and 915-MHz band for flexibility with external power amplifiers; and Japanese ARIB T108 standard compliant.

The OL2385 platform samples and development boards with SIGFOX are currently available. Mass production of preprogrammed parts are scheduled for the end of Q4 2017.

Source: NXP Semiconductors

Analog Tips & Tricks

Are you looking for ways to improve your analog and RF circuitry? Engineer Ed Nisley provides a few tips for getting started. He shows you how easy it is to take your PCB wiring skills to the next level. Who knows, your digital projects just might improve too.

Circuit Cellar has always attracted readers who enjoy building gizmos, both at work and for their own use. My December 2004 column, “Building Boxes,” prompted enough comments and suggestions regarding additional techniques that I decided a follow-up was in order.

Although these tricks are designed to improve your analog and RF circuitry, even your digital projects will benefit, because digital is just analog with the gain cranked way up. You’re sure to find at least one technique that will make your next project work better.

I wire most of my projects on PCBs built in my basement shop, using a process that produces both circuit documentation and reasonably high-quality hardware without too much effort. I’ve come up with some tricks that should help you get good results too.

I use CadSoft’s EAGLE schematic capture and board layout software, which runs on Windows, Linux, and Mac OS X (www.cadsoftusa.com). The free version can handle most of the circuits in this column, and the Standard version is reasonably priced. EAGLE is perfectly stable on my SuSE Linux 9.2 desktop system. The board layout program can produce output files in nearly any format, including the Gerber files used in board production shops. I save the output for each layer as a Postscript file, and then import the files into the GNU Image Manipulation Program (GIMP) image-editing program at 600 dpi.

The top image is the top copper layer from an EAGLE board design. The bare board shows several flaws, but the one on the bottom came out fine. The ruler scales are 0.050″ vertically and 1 mm horizontally. The board has extremely small features!

The top image is the top copper layer from an EAGLE board design. The bare board shows several flaws, but the one on the bottom came out fine. The ruler scales are 0.050″ vertically and 1 mm horizontally. The board has extremely small features!

The top image in Photo 1 shows the copper plane pattern for the charge pump LED power supply I described in my April 2005 column. I panelize them with the GIMP to produce a single image with multiple patterns in a rectangular grid. Because all this happens digitally, there’s no loss of resolution and no smudges. I then print the image through an HP LaserJet 1200 on a sheet of toner-transfer film from either Pulsar (www.pulsar.gs) or Techniks (www.techniks.com). It turns out that toner contains a thermoplastic that both adheres to bare copper and resists the etching chemical solution.

Because most of my boards are extremely small, they don’t fill a complete sheet of the toner-transfer film even after I panelize them. I print a sheet of paper, tape a square of film that’s approximately 1″ larger than the patterns atop them, and then run the paper through the printer again. The adhesive on cheaper tapes tends to melt at laser printer temperatures, so use good tape and monitor your results. Put a single strip on the leading edge of the toner-transfer film to allow the paper and film to shift slightly as they pass through the fuser rollers.

This article first appeared in Circuit Cellar 181. You can read the entire article here.

Ed Nisley is an electrical engineer, author, and long-time Circuit Cellar columnist living in Poughkeepsie, NY. His column “Above the Ground Plane” appears in Circuit Cellar every other month. You can contact him at ed.nisley@pobox. com. Write “Circuit Cellar” in the subject line to avoid spam filters.

ZULU2 Radio Module

RF Solutions recently released its ZULU2 radio module range. Featuring a telemetry module, modem module, and a firmware-free module, the new range’s functionality is on par with its predecessor, with the advantage that no external components are required to provide a complete RF solution. RF Solutions ZULU2The new range includes:

  • ZULU2-M: A highly integrated RF modem and intelligent controller with a simple interface to the host controller. It handles all RF data communications automatically and without any requirement from the user.
  • ZULU2-T: Telemetry module providing a reliable transceiver based remote switch with up to 2km range. Each unit is supplied ready to operate, once paired with another, a remote control system is created.
  • ZULU2: A hardware platform module containing a SiLabs RF Transceiver and Processor allowing the user to programme the device to suit their own requirements. With no firmware supplied by RF Solutions, this would appeal to somebody with a confident programming ability.

The 25 mm × 11 mm smart modules can achieve a range of 2 km. License-free and operating on the 868- or 915-MHz frequency bands, the ZULU-2 range is available in surface-mount and dual-inline options, making it a good option for applications such as remote control, security, and data logging.

Source: RF Solutions

Tiny M10578 Modules Add GPS and GNSS to Small Devices and Wearables

Antenova recently released two new modules for GPS and GNSS. The M10578-A2 and M10578-A3 provide an easy drop-in receiver solution, which is a useful way to add location capability to very small consumer devices.Antenova M10578-A2

The modules—based on the MediaTek processor—both measure 9 × 9 × 1.8 mm with low current consumption, which makes them suitable for smaller portable devices, such as smart watches, navigation devices, OBD II modules, asset tracking, personal safety, and sports cameras.

The M10578-A2 module operates with GPS, with a 1-to-5-Hz update rate. The M10578-A3 operates with GPS, GLONASS, BEIDOU, and Gallileo with an update rate of 1 to 10 Hz. Included is internal self-generated orbit prediction that uses two GNSS systems simultaneously to give a faster time to fix and a second high-quality low noise amplifier (LNA) to boost low powered satellite signals. Both modules are pin compatible. As for the antenna function, Antenova offers the small Sinica SR4G008 GNSS antenna. Built on high-grade FR4 substrates with a high density, the modules’ multilayered design places the critical RF functions in the best position for location finding and performance.

Source: Antenova

The GAMMA Smart Module

RF Solutions’s GAMMA smart plug-in RF module offers incredible range and simple setup. You can it as a remote control, data modem, or a bidirectional switch.RF Solutions GAMMA

The latest addition to RF Solutions’s SMART Radio family, the module uses spread-spectrum technology and extensive algorithm enhancements to achieve 16-km range. With eight switch inputs or eight digital outputs, you can use two GAMMA’s modules as a receiver/transmitter remote control. Alternatively, you can set up a transceiver between two GAMMAs, where outputs on the receiving GAMMA will follow the inputs on the transmitting GAMMA.

Ready to use right out of the box, the GAMMA works either on its own or as a part of an existing system. It’s available in 868 and 915 MHz (with an option of SMT or SIL), you can use the GAMMA for a variety of applications.

Source: RF Solutions

GaN Devices for Mobile Base Station Transmitters

Infineon Technologies recently introduced its first devices in a family of Gallium Nitride (GaN) on Silicon Carbide (SiC) RF power transistors. The devices enable mobile base station manufacturers to build smaller, more powerful and more flexible transmitters. With higher efficiency, improved power density, and more bandwidth than currently used RF power transistors, the new devices improve the economics of building infrastructure to support today’s cellular networks. Additionally, they will enable the transition to 5G technology with higher data volumes and enhanced user-experience.Infineon-gan-group

The new RF power transistors leverage the performance of GaN technology to achieve ten percent higher efficiency and five times the power density of the LDMOS transistors commonly used today. This translates to smaller footprints and power requirements for the power amplifiers (PA) of base station transmitters in use today, which operate in either the 1.8-2.2 GHz or 2.3-2.7 GHz frequency range. Future GaN on SiC devices will also support 5G cellular bandsup to the 6 GHz frequency range. This roadmap allows Infineon to build on its long-standing expertise and state-of-the-art production technologies for RF transistor technology.

Design flexibility and support for the next-generation of 4G technology are additional benefits of GaN devices for RF power applications. The new devices have twice the RF bandwidth of LDMOS, so that one PA can support multiple operating frequencies. They also have increased instantaneous bandwidth available for transmitters, which lets a carrier offer higher dates using the data aggregation technique specified for 4.5G cellular networks.

Source: Infineon Technologies