2012 ESC Boston: Tech from Microchip, Fujitsu, & More

The 2012 Embedded Systems Conference in Boston started September 17 and ends today. Here’s a wrap-up of the most interesting news and products.


Microchip Technology announced Monday morning the addition of 15 new USB PIC microcontrollers to its line of full-speed USB 2.0 Device PIC MCUs. In a short presentation, Microchip product marketing manager Wayne Freeman introduced the three new 8-bit, crystal-free USB PIC families.

The PIC16F145x family (three devices) features the Microchip’s lowest-cost MCUs. The devices are available in 14- and 20-pin packages, support full-speed USB communication, don’t require external crystals, include PWM with complement generation, and more. They’re suitable for applications requiring USB connectivity and cap sense capabilities.

Microchip’s three PIC18F2x/4xK50 devices (available in 28- and 40/44-pins) enable “easy migration” from legacy PIC18 USB devices. In addition to 1.8- to 5-V operation, they feature a Charge Time Measurement Unit (CTMU) for cap-touch sensing, which makes them handy for data logging systems for tasks such as temperature and humidity measurement.

The nine devices in the PIC18F97J94 family are available in 64-, 80-, and 100-pin packages. Each device includes a 60 × 8 LCD controller and also integrates a real-time clock/calendar (RTCC) with battery back-up. Systems such as hand-held scanners and home automation panels are excellent candidates for these devices.

Several interesting designs were on display at the Microchip booth.

  • The M2M PICtail module was used in an SMS texting system.

This SMS text messaging system was featured at Microchip’s Machine-to-Machine (M2M) station. The M2M PICtail module (located on the bottom left) costs around $200.

  • Microchip featured its PIC MCU iPod Accessory Kit in glucose meter design. It was one of several healthcare-related systems that exhibitors displayed at the conference.

The interface can be an iPhone, iPad, or iPod Touch.

Visit www.microchip.com for more information.


As most of you know, the entry period for the Renesas RL78 Green Energy Challenge ended on August 31 and the judges are now reviewing the entries. Two particular demos on display at the Renesas booth caught my attention.

  • A lemon powering an RL78 L12 MCU:

Lemon power and the RL78

  • An R8C capacitive touch system:

Cap touch technology is on the minds of countless electrical engineers.

Go to www.am.renesas.com.


I was pleased to see a reprint of Mark Pedley’s recent Circuit Cellar article, “eCompass” (August 2012), on display at Freescale’s booth. The article covers the topics of building and calibrating a tilt‐compensating electronic compass.

A Circuit Cellar reprint for attendees

Two of the more interesting projects were:

  • An Xtrinsic sensor demo:

Xtrinsic and e-compass

  • A Tower-based medical suitcase, which included a variety of boards: MED-BPM (a dev board for blood pressure monitor applications), MED-EKG (an aux board for EKG and heart rate monitoring applications), and more.

Tower System-based medical suitcase


I stopped by the STMicro booth for a look at the STM32F3DISCOVERY kit, but I quickly became interested in the Dual Interface EEPROM station. It was the smartphone that caught my attention (again). Like other exhibitors, STMicro had a smartphone-related application on hand.

  • The Dual EEPROMs enable you to access memory via either  wired or RF interfaces. Energy harvesting is the new function STMicro is promoting. According to the documentation, “It also features an energy harvesting and RF status function.”

The Dual Interface EEPROM family has an RF and I2C interface

  • According to STMicro’s website, the DATALOG-M24LR-A PCB (the green board, top left) “features an M24LR64-R Dual Interface EEPROM IC connected to an STM8L101K3 8-bit microcontroller through an I2C bus on one side, and to a 20 mm x 40 mm 13.56 MHz etched RF antenna on the other one side. The STM8L101K3 is also interfaced with an STTS75 temperature sensor and a CR2330 coin cell battery.”


I’m glad I spend a few moments at the Fujitsu booth. We rarely see Circuit Cellar authors using Fujitsu parts, so I wanted to see if there was something you’d find intriguing. Perhaps the following images will pique your interest in Fujitsu technologies.

The FM3 family, which features the ARM Cortext-M3 core, is worth checking out. FM3 connectivity demonstration

Connectivity demo

Check out Fujitsu’s System Memory site and document ion to see if its memory products and solutions suit your needs. Access speed comparison: FRAM vs. SRAM vs. EEPROM

Access speed comparison

The ESC conference site has details about the other exhibitors that had booths in the exhibition hall.







The Renesas RL78 for Low-Power Applications

Renesas Technology announced in late March he start of a design challenge for engineers around the world: develop an innovative, low-power application using the RL78 MCU and IAR Systems toolchain. To get started, you need to familiarize yourself with the RL78. Clemens Valens, Editor-in-Chief of Elektor online, introduces the RL78 in a comprehensive “The RL78 Microcontroller: An MCU Family for Low-Power Applications” (Circuit Cellar 261, 2012).

I’ve worked with Valens in various occasions, and had the pleasure of meeting him in 2011. He’s truly “an engineer’s engineer”: extremely embedded tech savvy, well-read, and inquisitive. Furthermore, I edited Circuit Cellar articles Valens wrote about diverse design projects, such as a virtual instrument interface and a scrolling LED message board. Thus, it’s clear to me that Valens understands the importance of designing high-quality, energy-efficient, systems—and doing so within budget. I trust you’ll find his introduction to the RL78 insightful and immediately applicable.

The RL78 Microcontroller: An MCU Family for Low-Power Applications

By Clemens Valens (Circuit Cellar 261, 2012)

The low-power 8/16-bit microcontroller (MCU) market is a bit of a warzone with several MCU manufacturers proposing “the industry’s lowest power solution.” In a YouTube video, Texas Instruments boasts a best active figure of 160 μA/MIPS for their MSP430 family. In application note AN1267, Microchip Technology claims 110 μA at “1 MHz Run” for their PIC16LF72X. And Renesas Electronics announced 70 μA at “1-MHz normal operation” on their RL78 product website.[1, 2, 3] The absence of justification on how exactly these figures were obtained makes comparing them rather useless. But then again, you don’t really have to because, as most low-power developers know from experience, if you don’t get the hardware and software design right, you will never attain the promised 20-year battery lifetime no matter how low the MCU’s active, sleep, or standby current may be. In this article, I will take a closer look at Renesas’s quickly expanding RL78 family to see what they offer that may help you create a low-power design.

Photo 1 - The Renesas RL78


The RL78 family of 16-bit MCUs currently has two branches, “generic” and “application specific,” but a third “display” branch is forthcoming. The generic branch contains the subfamilies G12, G13, and G1A, all based on the 78K core, and the G14, which is based on the R8C core. In the application-specific branch there is the 1A and F12. I am not sure about their core origins as these products are still very new and, at the time of writing, documentation is missing. It doesn’t really matter; from now on it is the new RL78 core for all. Since they share the same core, I will concentrate on the G13 for which I have a nice evaluation board (see Photo 1 and “The Renesas Demonstration Kit for RL78” sidebar).

Sidebar: Renesas Demonstration Kit


This family comes in a large number of variants (I counted 182), with devices having from 20 up to 128 pins (see Figure 1). Note that the parts themselves are labelled R5F10xx. The differences between all these variants are, besides the package type, the amounts of flash memory (program and data) and RAM. Program flash memory starts at 16 KB and currently ends at 512 KB, data flash sizes can be 0, 4, or 8 KB and RAM is 2 KB for the small devices and up to 32 KB for the big ones.

Figure 1 - Diagram of 128-pin RL78/G13 devices

The CPU is 16-bit, but the internal memory architecture is 8 bit. Its 32 general-purpose registers are organized in four banks of eight and can be used as 8- or 16-bit registers. The memory-mapped special function registers (SFRs) that control the on-chip peripherals can be addressed per bit, per byte, or as 16-bit registers, depending on the register. A second set of SFRs, the extended or second SFRs, are available too, but they need longer instructions to be accessed.

For those who need to squeeze the maximum out of MCU performance, it may be interesting to know that the CPU offers a short addressing mode enabling you to access a page of 256 bytes with a minimum amount of code.

The maximum clock frequency of the processor is 32 MHz, but the hardware user’s manual, which is almost 1,100 pages, interestingly also boasts about the ultra-low-speed capabilities of the processor as it can run from a 32.768-kHz clock.

The RL78 core features 15 I/O ports, most of which are 8-bit wide. Port 13 is 2-bit wide and ports 10 and 15 are 7-bit wide. The port pins that are actually available depend on the device. Inputs and outputs are highly configurable. Inputs can be analog, CMOS, or TTL. Outputs can be CMOS or N-channel open drain. Pull-up resistors are available too. The exact configuration possibilities depend on the port pin, so consult the datasheet. Because of the many configuration options, it is possible to use the MCU in multi-voltage systems without level-shifting circuitry except for the occasional external pull-up resistor. The chip can be powered from 1.6 V to 5.5 V, the core itself runs from 1.8 V provided by an internal voltage regulator.


Several options are available for the MCU clock. When clock precision is not too important, the MCU can be run from its internal clock, up to 32 MHz, otherwise it is possible to connect an external crystal, resonator, or oscillator. An internal low-speed clock (15 kHz) is also available, but not for the CPU, only for the watchdog timer (WDT), the real-time clock (RTC), and the interval timer.

The timers of the RL78 are flexible and offer many functions. Depending on the pin size of the device, you can have up to 16 16-bit timers, grouped in two arrays of eight. Each timer (called a “channel”) can function as an interval timer, square-wave generator, event counter, frequency divider, pulse-interval timer, pulse-duration timer, and delay counter. For even more possibilities, timers can be combined to create monostable multivibrators or to do pulse-width modulation (PWM). This way, up to seven PWM signals can be generated from one master timer. If you need more timers but resolution is less important, you can split some 16-bit timers in two 8-bit timers (this is not possible with all timers). Timer 7 of array 0 is extra special as it features local interconnect network (LIN) network support (see below).

Aside from date and time keeping with alarms, the RTC also provides constant period interrupts at 2 Hz and 1 Hz and also every minute, hour, day, or month. A 1-Hz output is available on devices with 40 or more pins. For extra precision, the RTC offers a correction register for fine tuning the 32,768-kHz clock. Unsurprisingly, the RTC continues operation when the MCU is stopped.

Now that I mentioned Stop mode, a special interval timer peripheral enables wakeup from this mode at periodic intervals. This timer is also used for the analog-to-digital converter’s (ADC’s) Snooze mode. More on that later. With a clock frequency of 32,768 Hz, the lowest interval rate is 8 Hz (0.125 ms).

Yet another time-related peripheral on the RL78 is the buzzer controller (not available on 20-pin devices). This is a clock output destined at IR comms carrier generation, to clock other chips in a system or to produce sound from a buzzer. A gate bit enables modulation of this output in such a way that pulses always have the same width.

Finally, a WDT completes the timing peripherals. It has a special Window mode that limits the time frame during which you can reset the watchdog to a fraction of the watchdog interval (50%, 75%, or 100%). Resetting the watchdog counter outside the window results in a reset. The window is open in the second part of the interval. An interrupt can be generated when the WDT reaches 75% of its time-out value, (i.e., when the watchdog reset window is known to be open in all cases). Figure 2 illustrates the mechanism.

Figure 2 - Trying to reset the watchdog counter when the window is closed results in an internal reset signal


The ADC is of the 10-bit successive approximation type and can have up to 26 inputs. Several triggering options are provided, hardware and software, where hardware triggering means triggering by a timer module (timer channel 1 end of count or capture, interval timer, or RTC). The time it takes to do a conversion depends partly on the triggering mode. When input stabilization is not too much of an issue (i.e., when you don’t switch inputs) you can achieve conversion times of just over 2 μs.

Two registers enable comparing the ADC’s output to maximum and minimum values, producing an interrupt when the new value is either in or out of bounds. This function is also available in Snooze mode. In this mode, the processor itself is stopped and consumes very little power, but ADC conversions continue under control of the hardware trigger. When a conversion triggers an ADC interrupt, the processor can then wake up from Snooze mode and resume normal operation.


The RL78 features multifunction serial units. The devices with 25 pins or less have one such unit, the others have two. Only serial unit 2 provides LIN bus support.

A serial unit can function in asynchronous UART mode, in synchronous CSI mode (three-wire bus with clock, data in and data out signals, master and slave mode supported), and in simplified (master-only) I²C mode. Again, depending on the device, you can have up to four UARTs or eight CSI and/or simplified I²C ports. Of course a mix is also possible. Full I²C is possible with the specialized I²C unit.

UART0 and UART2, CSI00 and CSI20 provide Snooze mode functionality similar to the ADC. In Snooze mode, these ports can be made to wake up on the arrival of incoming data without waking up the CPU. If the received data is interesting enough, it is also possible to wake up the CPU.

LIN communications are possible with UART2 together with Timer 7 of Array 0. The LIN bus is an inexpensive alternative to the CAN bus in automotive systems to control simple devices like switches, sensors, and actuators. LIN only uses one wire and is rather low speed (20 Kbps maximum). The timer takes care of the LIN synchronization issues and the UART performs the (de)serialisation of the data.

Full blown I²C communication is possible with the specialized I²C peripheral IICA. The 80-pin and more devices have two channels, the others only one. Communication speeds up to 20 MHz are permitted to enable I²C “fast mode” (3.5 MHz) and “fast mode plus” (10 MHz). This module is capable of waking up the CPU from Stop mode.


Of interest is the hardware multiplier and divider module intended for filtering and FFT functions. This module is capable of 16 × 16 bits signed and unsigned multiplications and divisions producing 32-bit results. It can also do 16 × 16 bit multiply-accumulate. We are talking about a module here, not an instruction, meaning that you have to load the operands yourself in special registers and get the result from yet another. The multiplication itself is done in one clock cycle, a division takes 16. The accumulate operation adds another cycle.

Another special math function is the binary-coded decimals (BCD) correction register that enables you to easily transform binary calculation results into BCD results.


To speed up data transport without loading the CPU, the RL78 core features direct memory access (DMA), up to four channels. DMA transfers up to 1,024 words of data (8 or 16 bit) to and from SFRs and RAM and they can be started by a range of interrupts (e.g., ADC, serial, timer). Although DMA transfers are done in parallel with normal CPU operation, it does slow down the CPU. For time-critical situations, it is possible to put a DMA transfer on hold for a number of clock cycles and let the CPU finish its job first.


Interrupts are pretty standard on the RL78 and many sources are available. The “key interrupt” function on the other hand is less common. It provides up to eight (depending on the device, you guessed it) key or push button inputs that are ORed together to generate an interrupt on a key press (active low).


Besides the aforementioned Stop and Snooze modes, the RL78 also provides a Halt mode. In this mode, the CPU is stopped but the clocks keep running, making a fast resume possible. In Stop mode, the clocks are stopped too reducing power consumption more than in Halt mode. Snooze mode is like Stop mode, but with one or more peripherals in a snoozing state, ready to wake up when something interesting happens. Interrupts can be used to wake up from Snooze, Stop, or Halt mode. A reset usually works too.

Reset, by the way, can have seven origins, three of which are related to safety functions: illegal instruction, RAM parity, and illegal memory access. Two others involve the power supply: power-on reset (POR) and low-voltage detection (LVD). All these reset options are needed to conform to the International Electrotechnical Commission (IEC) 60730-1 (“Automatic Electrical Controls for Household and Similar Use; Part 1: General Requirements”) and IEC 61508-SER (“Functional Safety of Electrical/Electronic/Programmable Electronic Safety-Related Systems”) safety standards. Since the RL78 is compliant, it also implements flash memory CRC checking, protections to prevent RAM and SFRs to be modified when the CPU stops functioning, an oscillator frequency-detection circuit, and an ADC self-test function.

The hardware used for the flash memory CRC check is also available as a general-purpose CRC module for user programs. It implements the standard CCITT CRC-16 polynomial (X^16 + X^12 + X^5 + 1).

The RAM guard function protects only up to 512 bytes, so be careful where you put your sensitive data.


Those familiar with the fuse bytes of PIC and AVR processors will be happy to know that the RL78 contains four of them, the option bytes that configure such things as the WDT, low-voltage detection, flash memory modes, clock frequencies, and debugging modes.

Flash memory is divided into two parts, program memory and data memory, and it can be programmed in-circuit over a serial interface. A boot partition is available too. This partition uses a kind of ping-pong mechanism called “boot swapping” to ensure that a valid bootloader is always programmed into the boot partition so that even power failures during bootloader programming will not harm the boot partition. A flash window function protects the memory against unintentionally reprogramming parts of it.


This concludes our voyage through the Renesas RL78 core. As you have seen, the RL78 offers many interesting peripherals all combined in a flexible low-power optimized design. Thanks to the integrated oscillator and other functions, an RL78 MCU can be used with very little external hardware, enabling inexpensive and compact designs. Once you master its Snooze mode and your low-power design skills, you can use this MCU family in battery-operated metering applications, for instance, but I am sure you can think of something more surprising.

Clemens Valens (c.valens@elektor.fr) is Editor-in-Chief of Elektor Online. He has more than 15 years of experience in embedded systems design. Clemens is currently interested in sound synthesis techniques, rapid prototyping, and the popularization of technology.


[1] Texas Instruments, Inc., “Ultra-Low Power MSP430 – The World’s Lowest Power MCU,” 201.

[2] Microchip Technology, Inc., “AN1267: nanoWatt and nanoWatt XLP Technologies: An Introduction to Microchip’s Low-Power Devices,” 2009.

[3] Renesas Electronics Corp., “RL78 Family,” www.renesas.com/pr/mcu/rl78/index.html.


International Electrotechnical Commission (IEC), “60730-1, Automatic Electrical Controls for Household and Similar Use; Part 1: General Requirements,” 2002.

———, “61508-SER, Functional Safety of Electrical/

Electronic/Programmable Electronic Safety-Related Systems,” 2010.

Renesas Electronics Corp., Renesas Rulz, “RL78/G13 Demonstration Kit,” www.renesasrulz.com/community/demoboards/rdkrl78g13.

For more information about the RL78 Family of microcontrollers, visit www.renesas.com.

For information about the 2012 Renesas RL78 Green Energy Challenge (in association with Elektor & Circuit Cellar), go to www.circuitcellar.com/RenesasRL78Challenge.

This article appears in Circuit Cellar 261 (April 2012).



Fundamental Amplifier Techniques with Electron Tubes

Want tips on designing electron tube amplifiers? Fundamental Amplifier Techniques with Electron Tubes might be the book for you. The author, Rudolf Moers carefully details the science of hollow-state design as applied to amplifiers and power supplies.

The book is an Elektor group publication. So, I asked tube amp aficionado Richard Honeycutt to provide an unbiased review the book. (I asked him to do this prior to taking him on as a columnist for audioXpress magazine.) He agreed, and here’s the review, which is also available in audioXpress April 2012:

Back in the 1950s and 1960s, if you wanted to learn about vacuum tube amplifiers, you could read the Radiotron Designer’s Handbook, a 1,500-page behemoth that covered all kinds of vacuum tube circuits that were known at the time, and also included abundant information on passive components as well. Or you could use the introductory material and example schematics in the RCA Receiving Tube Manual—much shorter and less expensive, and also far less comprehensive. Of course, it did include data on most tubes then being manufactured by RCA. If you just wanted to build your own amplifiers, but were not interested in designing, there was the Mullard  Circuits for Audio Amplifiers. For a more scholarly approach, you could check out an electrical engineering textbook such as Analysis and Design of Electronic Circuits by Paul Chirlian.

Now, however, things are different. Although some of these references can be found on the Internet, they are no longer up-to-date. Happily, however, Elektor recently published Fundamental Amplifier Techniques with Electron Tubes by Rudolf Moers, which presents a 21st-century perspective on the science of hollow-state design as applied to amplifiers and power supplies. Beginning with the principles of electron emission, the book progresses through standard vacuum tube varieties: diodes, triodes, tetrodes, and pentodes, after which it covers such general principles as frequency dependent behavior, non-linear distortion, noise, and negative feedback. The book concludes with a chapter on the construction of electron tube amplifiers. Unlike many of the earlier authors of books on electron tubes, Moers is not constrained by a need to cover such specialized tubes as pentagrid converters, or circuits specifically used in radio and TV receivers. Instead, he uses his 800 pages to discuss the physics underlying electron tube operation far more comprehensively than did any of his predecessors. He does this in a way that maximizes presentation of principles while minimizing unnecessary mathematics. In many cases, the physical explanations can be skipped over by those whose only interest is design methods. For the reader who does take advantage of the physical explanations, Moers’s inclusion of an eight-page listing/definition of mathematical symbols makes the explanations easy to follow.

The focus is by no means primarily on physics, however. None of the classic texts provides anything like so comprehensive coverage of the design and operation of half- and full-wave rectifier/filter circuits, or vacuum tube phase shifters, to mention a couple of examples.

Moers’s book assumes that the reader is familiar with basic DC and AC circuit theory, and therefore does not undertake the task of educating those who lack this understanding. The book is written from a scientific perspective in that, while mentioning the disconnect between measured and perceptual performance of an amplifier, the author makes no dogmatic claims about the relationship between the two, other than to opine that most of the “tube sound” results from harmonic distortion components that some people find pleasing to the ear. (Having followed this discussion for about four decades, your reviewer partially concurs, but believes that there are other elements involved as well.) The author lightheartedly introduces the quantity “cm2 of gooseskin/watt” as an example of a measurement of perceptual phenomena.

A consequence of Moers’ scientific approach is that specific catch phrases found in many amateur-oriented publications on tube technology are conspicuously absent. For example, it is difficult to read much about tube power amplifiers without noticing mention of the “Williamson amplifier.” This circuit was developed by D. T. N. Williamson and described in articles in Wireless World in April and May, 1947. It was unique in that it applied negative feedback around the entire amplifier, including the output transformer, thus reducing nonlinear distortion. Doing this required very careful design to ensure stability, including the elimination of interstage transformers such as the phase splitter transformer used in many prior designs.

Moers does not mention the Williamson amplifier by name, but the vacuum tube phase splitter design Williamson used is discussed in detail in the book, as is the method of designing a negative feedback loop encompassing the entire amplifier. Moers also gives a unique explanation of another pivotal power amplifier circuit: the ultralinear circuit invented in 1951 by Hafler and Keroes. It’s a case of content versus jargon.

In his otherwise excellent discussion of damping factor, Moers unfortunately makes the all-too-common error of ignoring the effects of voice coil  and lead wire resistance. He gives the common equation for damping factor: DF = (loudspeaker impedance)/(amplifier output impedance). Since the amplifier (modeled as an AC generator or Thevenin source), voice coil resistance, lead wire resistance, voice coil inductance, and reflected mechanical impedance form a series circuit whose actual damping is influenced by all elements, the lead wire resistance and voice coil resistance cannot be ignored. In fact, they can easily swamp the effects of the amplifier output impedance, at least for a pentode stage using negative feedback. However, Moers does not make the further error of insisting that the damping factor be a minimum of 100 as have some earlier authors. Using an 8-Ω speaker having about  6-Ω DC resistance, the effect of a combined output impedance and lead wire resistance less than 0.5 Ω is negligible.

Two shortcomings of Fundamental Amplifier Techniques with Electron Tubes are more or less linguistic. English may well be the only Germanic language in which the verb in a sentence is not at the end of the sentence required to come. Thus syntactical intrusions from the author’s native language sometimes make the text difficult for native English speakers. Also, Moers has chosen to use terminology that is probably not standard in English (at least American English) books on electronics. For example, he uses the term “ anode static steepness” to denote “transconductance” (also commonly called “mutual conductance.”) A common-cathode (or “grounded-cathode”) amplifier stage is called a “basic cathode” stage in Moers’ book.

These three small complaints pale in the face of the outstanding job the author has done in bringing together the theory, design, and practice of vacuum tube amplifiers in a single volume. Anyone who wants to go beyond the Heathkit level of tube amplifier understanding owes it to him/herself to buy and study this excellent volume.

If you’re interested purchasing the book or learning more about it, click here to visit the book’s webpage in the CC Webshop.

Fundamental Amplifier Techniques (by Rudolf Moers), audioXpress, and CircuitCellar.com are Elektor group publications.