PC-Programmable Temperature Controller

Oven Industries 5R7-388 temperature controller

Oven Industries 5R7-388 temperature controller

The 5R7-388 is a bidirectional temperature controller. It can be used in independent thermoelectric modules or in conjunction with auxiliary or supplemental resistive heaters for cooling and heating applications. The solid-state MOSFET output devices’ H-bridge configuration enables the bidirectional current flow through the thermoelectric modules.
The RoHS-compliant controller is PC programmable via an RS-232 communication port, so it can directly interface with a compatible PC. It features an easily accessible communications link that enables various operational mode configurations. The 5R7-388 can perform field-selectable parameters or data acquisition in a half duplex mode.

In accordance with RS-232 interface specifications, the controller accepts a communications cable length. Once the desired set parameters are established, the PC may be disconnected and the 5R7-388 becomes a unique, stand-alone controller. All parameter settings are retained in nonvolatile memory. The 5R7-388’s additional features include 36-VDC output using split supply, a PC-configurable alarm circuit, and P, I, D, or On/Off control.

Contact Oven Industries for pricing.

Oven Industries, Inc.

Voltage Regulator Protection (EE Tip #103)

In many cases, the load connected to a voltage regulator is not returned to ground. It goes to an even lower voltage or perhaps even the negative power supply voltage. (Here we make the assumption of using positive voltages, when using voltage regulators with negative output voltages the reverse is true.)

Op-amps and level-shifters come to mind. In such cases, a diode (1N4001 or equivalent) connected across the output of the regulator IC usually provides sufficient protection (see Figure 1).

Source:Ton Giesberts, Elektor, 080943-I, 4/2009

Source:Ton Giesberts, Elektor, 080943-I, 4/2009

Polarity inversions which could occur, for example, during power on or during a short circuit could prove fatal for the regulator IC, but such a diode prevents the output of the IC going lower than ground (well, minus 0.7 V, to be accurate).

A short-circuit proof voltage regulator (such as the 78xx series) will survive such a situation without any problems. It is also possible for the input voltage of a voltage regulator to drop quicker than the output voltage—for example, when there is a protection circuit that shorts the input power supply voltage as a result of an overvoltage at the output.

If the output voltage of the regulator is more than 7 V higher than the input voltage, the emitter-base junction of the internal power transistor can break down and cause the transistor to fail.

You can use a shunt diode to prevent this condition (see Figure 2). This ensures that any higher voltage at the output of the regulator is shorted to the input.

—Ton Giesberts, Elektor, 080943-I, 4/2009

Linear Regulator with Current and Temperature Monitor Outputs

Linear Technology Corp

Linear Technology Corp

The LT3081 is a rugged 1.5-A wide input voltage range linear regulator with key usability, monitoring, and protection features. The device has an extended safe operating area (SOA) compared to existing regulators, making it well suited for high input-to-output voltage and high output current applications where older regulators limit the output.

The LT3081 uses a current source reference for single-resistor output voltage settings and output adjustability down to ”0.” A single resistor can be used to set the output current limit. This regulator architecture, combined with low-millivolt regulation, enables multiple ICs to be easily paralleled for heat spreading and higher output current. The current from the device’s current monitor can be summed with the set current for line-drop compensation, where the LT3081’s output increases with current to compensate for line drops.

The LT3081 achieves line and load regulation below 2 mV independent of output voltage and features a 1.2-to-40-V input voltage range. The device is well suited for applications requiring multiple rails. The output voltage is programmable with a single resistor from 0 to 38.5 V with a 1.2-V dropout. The on-chip trimmed 50-µA current reference is ±1% accurate. The regulation, transient response, and output noise (30 µVRMS) are independent of output voltage due to the device’s voltage follower architecture.

Two resistors are used to configure the LT3081 as a two-terminal current source. Input or output capacitors for stability are optional in either linear regulator or current-source operation mode. The LT3081 provides several monitoring and protection functions. A single resistor is used to program the current limit, which is accurate to ±10%. Monitor outputs provide a current output proportional to temperature (1 µA/°C) and output current (200 µA/A), enabling easy ground-based measurement. The current monitor can compensate for cable drops. The LT3081’s internal protection circuitry includes reverse-input protection, reverse-current protection, internal current limiting, and thermal shutdown.

A variety of grades/temperature ranges are offered including: the E and  I grades (–40°C to 125°C), the H grade (–40°C to 150°C), and the high-reliability MP grade (–55°C to 50°C). Pricing for the E-grade starts at $2.60 each in 1,000-piece quantities.

Linear Technology Corp.