DIY Green Energy Design Projects

Ready to start a low-power or energy-monitoring microcontroller-based design project? You’re in luck. We’re featuring eight award-winning, green energy-related designs that will help get your creative juices flowing.

The projects listed below placed at the top of Renesas’s RL78 Green Energy Challenge.

Electrostatic Cleaning Robot: Solar tracking mirrors, called heliostats, are an integral part of Concentrating Solar Power (CSP) plants. They must be kept clean to help maximize the production of steam, which generates power. Using an RL78, the innovative Electrostatic Cleaning Robot provides a reliable cleaning solution that’s powered entirely by photovoltaic cells. The robot traverses the surface of the mirror and uses a high voltage AC electric field to sweep away dust and debris.

Parts and circuitry inside the robot cleaner

Cloud Electrofusion Machine: Using approximately 400 times less energy than commercial electrofusion machines, the Cloud Electrofusion Machine is designed for welding 0.5″ to 2″ polyethylene fittings. The RL78-controlled machine is designed to read a barcode on the fitting which determines fusion parameters and traceability. Along with the barcode data, the system logs GPS location to an SD card, if present, and transmits the data for each fusion to a cloud database for tracking purposes and quality control.

Inside the electrofusion machine (Source: M. Hamilton)

The Sun Chaser: A GPS Reference Station: The Sun Chaser is a well-designed, solar-based energy harvesting system that automatically recalculates the direction of a solar panel to ensure it is always facing the sun. Mounted on a rotating disc, the solar panel’s orientation is calculated using the registered GPS position. With an external compass, the internal accelerometer, a DC motor and stepper motor, you can determine the solar panel’s exact position. The system uses the Renesas RDKRL78G13 evaluation board running the Micrium µC/OS-III real-time kernel.

[Video: ]

Water Heater by Solar Concentration: This solar water heater is powered by the RL78 evaluation board and designed to deflect concentrated amounts of sunlight onto a water pipe for continual heating. The deflector, armed with a counterweight for easy tilting, automatically adjusts the angle of reflection for maximum solar energy using the lowest power consumption possible.

RL78-based solar water heater (Source: P. Berquin)

Air Quality Mapper: Want to make sure the air along your daily walking path is clean? The Air Quality Mapper is a portable device designed to track levels of CO2 and CO gasses for constructing “Smog Maps” to determine the healthiest routes. Constructed with an RDKRL78G13, the Mapper receives location data from its GPS module, takes readings of the CO2 and CO concentrations along a specific route and stores the data in an SD card. Using a PC, you can parse the SD card data, plot it, and upload it automatically to an online MySQL database that presents the data in a Google map.

Air quality mapper design (Source: R. Alvarez Torrico)

Wireless Remote Solar-Powered “Meteo Sensor”: You can easily measure meteorological parameters with the “Meteo Sensor.” The RL78 MCU-based design takes cyclical measurements of temperature, humidity, atmospheric pressure, and supply voltage, and shares them using digital radio transceivers. Receivers are configured for listening of incoming data on the same radio channel. It simplifies the way weather data is gathered and eases construction of local measurement networks while being optimized for low energy usage and long battery life.

The design takes cyclical measurements of temperature, humidity, atmospheric pressure, and supply voltage, and shares them using digital radio transceivers. (Source: G. Kaczmarek)

Portable Power Quality Meter: Monitoring electrical usage is becoming increasingly popular in modern homes. The Portable Power Quality Meter uses an RL78 MCU to read power factor, total harmonic distortion, line frequency, voltage, and electrical consumption information and stores the data for analysis.

The portable power quality meter uses an RL78 MCU to read power factor, total harmonic distortion, line frequency, voltage, and electrical consumption information and stores the data for analysis. (Source: A. Barbosa)

High-Altitude Low-Cost Experimental Glider (HALO): The “HALO” experimental glider project consists of three main parts. A weather balloon is the carrier section. A glider (the payload of the balloon) is the return section. A ground base section is used for communication and display telemetry data (not part of the contest project). Using the REFLEX flight simulator for testing, the glider has its own micro-GPS receiver, sensors and low-power MCU unit. It can take off, climb to pre-programmed altitude and return to a given coordinate.

High-altitude low-cost experimental glider (Source: J. Altenburg)

2012 ESC Boston: Tech from Microchip, Fujitsu, & More

The 2012 Embedded Systems Conference in Boston started September 17 and ends today. Here’s a wrap-up of the most interesting news and products.


Microchip Technology announced Monday morning the addition of 15 new USB PIC microcontrollers to its line of full-speed USB 2.0 Device PIC MCUs. In a short presentation, Microchip product marketing manager Wayne Freeman introduced the three new 8-bit, crystal-free USB PIC families.

The PIC16F145x family (three devices) features the Microchip’s lowest-cost MCUs. The devices are available in 14- and 20-pin packages, support full-speed USB communication, don’t require external crystals, include PWM with complement generation, and more. They’re suitable for applications requiring USB connectivity and cap sense capabilities.

Microchip’s three PIC18F2x/4xK50 devices (available in 28- and 40/44-pins) enable “easy migration” from legacy PIC18 USB devices. In addition to 1.8- to 5-V operation, they feature a Charge Time Measurement Unit (CTMU) for cap-touch sensing, which makes them handy for data logging systems for tasks such as temperature and humidity measurement.

The nine devices in the PIC18F97J94 family are available in 64-, 80-, and 100-pin packages. Each device includes a 60 × 8 LCD controller and also integrates a real-time clock/calendar (RTCC) with battery back-up. Systems such as hand-held scanners and home automation panels are excellent candidates for these devices.

Several interesting designs were on display at the Microchip booth.

  • The M2M PICtail module was used in an SMS texting system.

This SMS text messaging system was featured at Microchip’s Machine-to-Machine (M2M) station. The M2M PICtail module (located on the bottom left) costs around $200.

  • Microchip featured its PIC MCU iPod Accessory Kit in glucose meter design. It was one of several healthcare-related systems that exhibitors displayed at the conference.

The interface can be an iPhone, iPad, or iPod Touch.

Visit for more information.


As most of you know, the entry period for the Renesas RL78 Green Energy Challenge ended on August 31 and the judges are now reviewing the entries. Two particular demos on display at the Renesas booth caught my attention.

  • A lemon powering an RL78 L12 MCU:

Lemon power and the RL78

  • An R8C capacitive touch system:

Cap touch technology is on the minds of countless electrical engineers.

Go to


I was pleased to see a reprint of Mark Pedley’s recent Circuit Cellar article, “eCompass” (August 2012), on display at Freescale’s booth. The article covers the topics of building and calibrating a tilt‐compensating electronic compass.

A Circuit Cellar reprint for attendees

Two of the more interesting projects were:

  • An Xtrinsic sensor demo:

Xtrinsic and e-compass

  • A Tower-based medical suitcase, which included a variety of boards: MED-BPM (a dev board for blood pressure monitor applications), MED-EKG (an aux board for EKG and heart rate monitoring applications), and more.

Tower System-based medical suitcase


I stopped by the STMicro booth for a look at the STM32F3DISCOVERY kit, but I quickly became interested in the Dual Interface EEPROM station. It was the smartphone that caught my attention (again). Like other exhibitors, STMicro had a smartphone-related application on hand.

  • The Dual EEPROMs enable you to access memory via either  wired or RF interfaces. Energy harvesting is the new function STMicro is promoting. According to the documentation, “It also features an energy harvesting and RF status function.”

The Dual Interface EEPROM family has an RF and I2C interface

  • According to STMicro’s website, the DATALOG-M24LR-A PCB (the green board, top left) “features an M24LR64-R Dual Interface EEPROM IC connected to an STM8L101K3 8-bit microcontroller through an I2C bus on one side, and to a 20 mm x 40 mm 13.56 MHz etched RF antenna on the other one side. The STM8L101K3 is also interfaced with an STTS75 temperature sensor and a CR2330 coin cell battery.”


I’m glad I spend a few moments at the Fujitsu booth. We rarely see Circuit Cellar authors using Fujitsu parts, so I wanted to see if there was something you’d find intriguing. Perhaps the following images will pique your interest in Fujitsu technologies.

The FM3 family, which features the ARM Cortext-M3 core, is worth checking out. FM3 connectivity demonstration

Connectivity demo

Check out Fujitsu’s System Memory site and document ion to see if its memory products and solutions suit your needs. Access speed comparison: FRAM vs. SRAM vs. EEPROM

Access speed comparison

The ESC conference site has details about the other exhibitors that had booths in the exhibition hall.







Renesas RL78-Based Design Project Opportunities

Did you miss the 1:00 PM EST deadline for the Renesas RL78 Green Energy Challenge? Do you have an unfinished project? No worries! You can still make something of your RL78-related project and the work you’ve put into it! Circuit Cellar and Elektor have several exciting non-contest-related opportunities you’ll find interesting and advantageous!

The Circuit Cellar/Elektor staff wants to know about your work. Even if your project is unfinished, let the staff know what you’re working on and the project’s status. Upload your project or email us your information.

If the staff is interested in your work, an editor will consider approaching you about one or all of the following non-contest-related opportunities:

  • Distinctive Excellence: If the editorial team thinks your project has merit, you might be eligible for “Distinctive Excellence” designation. After past design challenges, Distinctive Excellence recipients added the honor to their resumes, wrote articles about their projects, and gained notoriety in the design community.
  • Print Magazine Opportunities: The editorial team might think your project is worthy of being published in Circuit Cellar or Elektor magazine. Design Challenges and the print magazine are completely separate. If you are offered an opportunity to write an article and it is published, you will paid a standard author honorarium.
  • Opportunities: The Circuit Cellar editorial team will review your submission and consider posting it on to show the world the effort and progress you’ve made. You can post your project info on the site in the spirit of sharing and the furtherance of engineering innovation! Who knows? Readers might provide you with valuable feedback about your unfinished project. Or perhaps you’ll inspire another person to build something of their own! Perhaps your project will catch the eye company looking to learn more about you work!
  • Interview Possibilities: The editorial team might find your approach to design interesting and consider interviewing you for an upcoming issue.
  • Future Design Collaboration: The Elektor Lab builds and tests innovative electronics projects. If your project—whether finished or in progress—interests an Elektor Lab engineer or editor, someone might contact you to discuss development, testing, or even production opportunities.

As you can see, you have some excellent reasons to contact the Circuit Cellar/Elektor staff.

To submit a finished project, an abstract, or simply info about our work, you can still use the Challenge Entry Form. Or, you can simply ZIP your files and email them to the Circuit Cellar Editorial Department. (Write “RL78 Project” and your project’s name or registration number in the email’s subject line.)

RL78 Green Energy Design Challenge Deadline Approaches

Attention engineers, programmers, and electronics enthusiasts! The entry deadline of August 31 for the Renesas RL78 Green Energy Challenge is fast approaching. Here are some tips to keep you on schedule.


The challenge is to design an innovative, energy-efficient application that features the Renesas RL78 MCU, RL78/G13 Renesas Demonstration Kit (RDK), and IAR Toolchain. For information, visit the Eligible Parts page on the design challenge site.

Renesas RDK RL78 board


Once you’re done designing your RL78-based project, you need to gather and order your entry materials: project abstract, complete documentation, and code.

Make sure you register for the challenge to obtain a registration number. Label all of your files and documents with your registration number. Don’t put your name on the files and documents.

Consider organizing all of your entry in a ZIP (or RAR) file. Compressing all of your files into one ZIP will keep your entry organized and easier to submit.


Before you submit your entry, go through the following checklist one last time to ensure you have everything:

• Abstract (a short project description)
• Complete documentation (a detailed project description)
• Block diagram(s)
• Schematic(s)
• Project photograph(s)
• Source code
• Files are properly labeled (your name doesn’t appear in the entry files)

More details are posted on the challenge’s FAQ webpage.


Ready to submit your entry? The preferred submission method is to upload your project files via the RL78 Design Challenge Dropbox.

Or send project files to:

RL78 Green Energy Challenge, Circuit Cellar, 4 Park Street, Vernon, CT 06066, USA

Good luck!

DIY Internet-Enabled Home Control System

Why shell out hundreds or thousands of dollars on various home control systems (HCS) when you have the skills and resources to build your own? You can design and implement sophisticated Internet-enabled systems with free tools and some careful planning.

John Breitenbach did just that. He used a microcontroller, free software, and a cloud-based data platform to construct a remote monitoring system for his home’s water heater. The innovative design can email or text status messages and emergency alerts to a smartphone. You can build a similar system to monitor any number of appliances, rooms, or buildings.

An abridged version of Breitenbach’s article, “Internet-Enabled Home Control” (Circuit Cellar 264, July 2012), appears below. (A link to the entire article and an access password are noted at the end of this post.) Breitenbach writes:

Moving from the Northeast to North Carolina, my wife and I were surprised to find that most homes don’t have basements. In the north, the frost line is 36˝–48 ˝ below the surface. To prevent frost heave, foundations must be dug at least that deep. So, digging down an extra few feet to create a basement makes sense. Because the frost line is only 15 ˝ in the Raleigh area, builders rarely excavate the additional 8’ to create basements.

The lack of basements means builders must find unique locations for a home’s mechanical systems including the furnace, AC unit, and water heater. I was shocked to find that my home’s water heater is located in the attic, right above one of the bedrooms (see Photo 1).

Photo 1: My home’s water heater is located in our attic. (Photo courtesy of Michael Thomas)

During my high school summers I worked for my uncle’s plumbing business (“Breitenbach Plumbing—We’re the Best, Don’t Call the Rest”) and saw firsthand the damage water can do to a home. Water heaters can cause some dramatic end-of-life plumbing failures, dumping 40 or more gallons of water at once followed by the steady flow of the supply line.

Having cleaned up the mess of a failed water heater in my own basement up north, I haven’t had a good night’s sleep since I discovered the water heater in my North Carolina attic. For peace of mind, especially when traveling, I instrumented my attic so I could be notified immediately if water started to leak. My goal was to use a microcontroller so I could receive push notifications via e-mails or text messages. In addition to emergency messages, status messages sent on a regular basis reassure me the system is running. I also wanted to use a web browser to check the current status at any time.


The attic monitor is based on Renesas Electronics’s YRDKRX62N demonstration kit, which features the RX62N 32-bit microcontroller (see Photo 2). Renesas has given away thousands of these boards to promote the RX, and the boards are also widely available through distributors. The YRDK board has a rich feature set including a graphics display, push buttons, and an SD-card slot, plus Ethernet, USB, and serial ports. An Analog Devices ADT7420 digital I2C temperature sensor also enables you to keep an eye on the attic temperature. I plan to use this for a future addition to the project that compares this temperature to the outside air temperature to control an attic fan.

Photo 2: The completed board, which is based on a Renesas Electronics YRDKRX62N demonstration kit. (Photo courtesy of Michael Thomas)


Commercial water-detection sensors are typically made from two exposed conductive surfaces in close proximity to each other on a nonconductive surface. Think of a single-sided PCB with no solder mask and tinned traces (see Photo 3).

Photo 3: A leak sensor (Photo courtesy of Michael Thomas)

These sensors rely on the water conductivity to close the circuit between the two conductors. I chose a sensor based on this type of design for its low cost. But, once I received the sensors, I realized I could have saved myself a few bucks by making my own sensor from a couple of wires or a piece of proto-board.

When standing water on the sensor shorts the two contacts, the resistance across the sensor drops to between 400 kΩ and 600 kΩ. The sensor is used as the bottom resistor in a voltage divider with a 1-MΩ resistor up top. The output of the divider is routed to the 12-bit analog inputs on the RX62N microcontroller. Figure 1 shows the sensor interface circuit. When the voltage read by the analog-to-digital converter (ADC) drops below 2 V, it’s time to start bailing. Two sensors are connected: one in the catch pan under the water heater, and a second one just outside the catch pan to detect failures in the small expansion tank.

Figure 1: The sensor interface to the YRDK RX62N board


One of my project goals was to push notifications to my cell phone because Murphy’s Law says water heaters are likely to fail while you’re away for the weekend. Because I wanted to keep the project costs low, I used my home’s broadband connection as the gateway for the attic monitor. The Renesas RX62N microcontroller includes a 100-Mbps Ethernet controller, so I simply plugged in the cable to connect the board to my home network. The open-source µIP stack supplied by Renesas with the YRDK provides the protocol engine needed to talk to the Internet.

There were a couple of complications with using my home network as the attic monitor’s gateway to the world. It is behind a firewall built into my router and, for security reasons, I don’t want to open up ports to the outside world.

My Internet service provider (ISP) occasionally changes the Internet protocol (IP) address associated with my cable modem. So I would never know what address to point my web browser. I needed a solution that would address both of these problems. Enter Exosite, a company that provides solutions for cloud-based, machine-to-machine (M2M) communications.


Exosite provides a number of software components and services that enable M2M communications via the cloud. This is a different philosophy from supervisory control and data acquisition (SCADA) systems I’ve used in the past. The control systems I’ve worked on over the years typically involve a local host polling the hundreds or thousands of connected sensors and actuators that make up a commercial SCADA system. These systems are generally designed to be monitored locally at a single location. In the case of the attic monitor, my goal was to access a limited number of data points from anywhere, and have the system notify me rather than having to continuously poll. Ideally, I’d only hear from the device when there was a problem.

Exosite is the perfect solution: the company publishes a set of simple application programming interfaces (APIs) using standard web protocols that enable smart devices to push data to their servers in the cloud in real time. Once the data is in the cloud, events, alerts, and scripts can be created to do different things with the data—in my case, to send me an e-mail and SMS text alert if there is anything wrong with my water heater. Connected devices can share data with each other or pull data from public data sources, such as public weather stations. Exosite has an industrial-strength platform for large-scale commercial applications. It provides free access to it for the open-source community. I can create a free account that enables me to connect one or two devices to the Exosite platform.

Embedded devices using Exosite are responsible for pushing data to the server and pulling data from it. Devices use simple HTTP requests to accomplish this. This works great in my home setup because the attic monitor can work through my firewall, even when my Internet provider occasionally changes the IP address of my cable modem. Figure 2 shows the network diagram.

Figure 2: The cloud-based network


Web-based dashboards hosted on Exosite’s servers can be built and configured to show real-time and historical data from connected devices. Controls, such as switches, can be added to the dashboards to push data back down to the device, enabling remote control of embedded devices. Because the user interface is “in the cloud,” there is no need to store all the user interface (UI) widgets and data in the embedded device, which greatly reduces the storage requirements. Photo 4 shows the dashboard for the attic monitor.

Photo 4: Exosite dashboard for the attic monitor

Events and alerts can be added to the dashboard. These are logical evaluations Exosite’s server performs on the incoming data. Events can be triggered based on simple comparisons (e.g., a data value is too high or too low) or complex combinations of a comparison plus a duration (e.g., a data value remains too high for a period of time). Setting up a leak event for one of the sensors is shown in Photo 5.

Photo 5: Creating an event in Exosite

In this case, the event is triggered when the reported ADC voltage is less than 2 V. An event can also be triggered if Exosite doesn’t receive an update from the device for a set period of time. This last feature can be used as a watchdog to ensure the device is still working.

When an event is triggered, an alert can optionally be sent via e-mail. This is the final link that enables an embedded device in my attic to contact me anywhere, anytime, to alert me to a problem. Though I have a smartphone that enables me to access my e-mail account, I can also route the alarm message to my wife’s simpler phone through her cellular provider’s e-mail-to-text-message gateway. Most cellular providers offer this service, which works by sending an e-mail to a special address containing the cell phone number. On the Verizon network, the e-mail address is <yourcellularnumber> Other providers have similar gateways.

The attic monitor periodically sends heartbeat messages to Exosite to let me know it’s still working. It also sends the status of the water sensors and the current temperature in the attic. I can log in to Exosite at any time to see my attic’s real-time status. I have also configured events and alarms that will notify me if a leak is detected or if the temperature gets too hot…

The complete article includes details such about the Internet engine, reading the cloud, tips for updating the design, and more.  You can read the entire article by typing netenabledcontrol to open the password-protected PDF.