New 40-nm Microcontrollers for Motor Control

Renesas Electronics Corp. recently announced the RH850/C1x series of 32-bit microcontrollers (MCUs), which it said are designed for motor control in hybrid electric vehicles (HEVs) and electric vehicles (EVs). Based on Renesas’s 40-nm process, the RH850/C1x series features the RH850/C1H and RH850/C1M MCUs, which enable embedded designers to enhance efficiency, reduce system costs, and achieve higher safety levels for HEV/EV motor control systems.

Source: Renesas Electronics Corp.

Source: Renesas Electronics Corp.

The new RH850/C1x devices can be used with the RAA270000KFT RH850 family power supply management IC (PMIC), which is currently available in sample quantities. The power management IC integrates into one device all the power supply systems required for MCU operation, two external sensor power supply tracks, and a full complement of monitoring and diagnostic functions, significantly reducing the user burden associated with power supply system design.

The RH850/C1H and RH850/C1M MCUs incorporate large memory capacities achieved through 40 nm MONOS process technology. The RH850/C1x series is based on Renesas’s metal oxide nitride oxide silicon (MONOS) embedded flash, which has an extensive track record in mass production. The MONOS characteristics include fast readout, low power consumption, and large storage capacity. The RH850/C1M and RH850/C1H devices offer memory capacities of 2 MB and 4 MB, respectively. In addition, 32-KB data flash memory, with essentially the same functionality as EEPROM, is included for data storage.

The microcontrollers also feature an extensive set of peripheral functions for HEV/EV motor control. The RH850/C1x MCUs can implement three types of motor control in hardware: sine wave PWM, over modulation, and square wave.

Samples of the RH850/C1H and RH850/C1M MCUs are scheduled to be available from the beginning of 2015 and will cost $45 and $50 per unit, respectively. Mass production is scheduled for May 2016 and is expected to reach a scale of 100,000 units per month.

Source: Renesas Electronics Corp.

The Sun Chaser Energy-Harvesting System

When Sjoerd Brandsma entered the 2012 Renesas Green Energy Challenge, he wanted to create a fun project that would take advantage of his experience at a company that heavily uses GPS.

Brandsma, who lives in Kerkwijk, The Netherlands, has worked as a software engineer and is currently an R&D manager at CycloMedia, which produces 360° street-level panoramic images with geographic information system (GIS) accuracy.

Ultimately, Brandsma’s Sun Chaser project won third prize in the Renesas Green Energy Challenge. The Sun Chaser is an energy-harvesting system that automatically orients a solar panel to face the sun.

Photo 1: The Sun Chaser’s stepper motor controls the solar panel‘s “tilting.”

Photo 1: The Sun Chaser’s stepper motor controls the solar panel‘s “tilting.”

“The Sun Chaser perfectly follows the sun’s path and keeps the battery fully charged when there’s enough sunlight,” Brandsma says in his article about the project, which appears in Circuit Cellar’s June issue. ”It can power a small electronics system as long as there’s enough sunlight and no rain, which would damage the system due to lack of protection. This project also demonstrates that it’s possible to build an interesting green-energy system with a tight budget and a limited knowledge of  electronics.”

A registered GPS calculates the orientation of the Sun Chaser’s solar panel, which is mounted on a rotating disc. “You can use an external compass, the internal accelerometer, a DC motor, and a stepper motor to determine the solar panel’s exact position,” Brandsma says. “The Sun Chaser uses Renesas Electronics’s RDKRL78G13 evaluation board running the Micriµm µC/OS-III real-time kernel.”

The following article excerpt describes the GPS reference station and evaluation board in greater detail. The issue with Brandsma’s full article is available online for membership download or single-issue purchase.

GPS REFERENCE STATION
Whenever you want to know where you are, you can use a GPS receiver that provides your position. A single GPS receiver can provide about 10 to 15 m (i.e., 33’ to 50’) position accuracy. While this is sufficient for many people, some applications require positioning with significantly higher accuracy. In fact, GPS can readily produce positions that are accurate to 1 m (3’), 0.5 m (18”), or even 1 to 2 cm (less than 1“). A technique called “differential GPS” can be used to achieve higher accuracy.

The differential technique requires one GPS receiver to be located at a known position (often called a control or reference point) and a second “rover” receiver at the location to be measured. The information from the two GPS receivers (rover and control) is combined to determine the rover’s position. That’s where a GPS reference station comes in. It functions as the control point and serves potentially unlimited users and applications. Leica Geosystems has published an excellent introductory guide about GPS reference stations (Refer to the Resources at the end of this article.)

The GPS reference station should always be located at a position with a broad sight. In some situations it can be difficult to provide a decent power supply to the system. When regular power isn’t available, a solar panel can power the GPS reference station.

My Sun Chaser GPS reference station uses a 10-W solar panel connected to a 12-V battery to provide enough power. To increase the energy harvesting, the solar panel is mounted on a rotating disc that can be controlled by a DC motor to point in the desired direction. A stepper motor controls the solar panel’s “tilting.” Photo 1 highlights the main components.

USING THE EVALUATION BOARD
The RDKRL78G13 is an evaluation and demonstration tool for Renesas Electronics’s RL78 low-power microcontrollers. A set of human-machine interfaces (HMIs) is tightly integrated with the RL78’s features. I used several of these interfaces to control other devices, read sensors, or store data.

Most of the system’s hardware is related to placing the solar panel in the correct position. Figure 1 shows the top-level components used to store the GPS information and position the solar panel.

Figure 1: The Sun Chaser’s components include a Renesas Electronics RDKRL78G13 evaluation board, a GPS receiver, a stepper motor, and an SD card.

Figure 1: The Sun Chaser’s components include a Renesas Electronics RDKRL78G13 evaluation board, a GPS receiver, a stepper motor, and an SD card.

The RDKRL78G13 evaluation board has an on-board temperature and light sensor. Both sensor values are stored on the SD card. The on-board light sensor is used to determine if rotating/tilting makes sense (at night it’s better to sleep). For this project, the temperature values are stored just for fun so I could make some graphs or do some weather analysis.

A micro-SD memory card slot on the RDKRL78G13 evaluation board provides file system data storage. I used it to store all incoming data and log messages using the FAT16/FAT32 file system.

The on-board Renesas Electronics RQK0609CQDQS MOSFET controls the DC motor that rotates the evaluation board. The DC motor can be controlled by applying a PWM signal generated from one of the RL78’s timers. The MOSFET is controlled by the RL78’s TO05 port and powered from the 12-V battery. A PWM signal is generated on TO05 by using Timer4 as a master and Timer5 as a slave. It’s only necessary to rotate clockwise, so additional hardware to rotate the platform counterclockwise is not required.

A digital compass is needed to determine the evaluation board’s rotated position or heading (see Figure 2). The Honeywell HMC5883L is a widely used and low-cost compass. This I2C-based compass has three-axis magnetoresistive sensors and a 12-bit ADC on board. It can read out values at a 160-Hz rate, which is more than enough for this project.

Figure 2: A Honeywell HMC5883L digital compass verifies the evaluation board’s rotated position or heading.

Figure 2: A Honeywell HMC5883L digital compass verifies the evaluation board’s rotated position or heading.

The compass uses the RL78’s IICA0 port through the Total Phase Beagle debug header, which is mounted on the RDKRL78G13 evaluation board. The Beagle analyzer provides easy access to this I2C port, which increases the flexibility to change things during prototyping.

The HMC5883L compass turned out to be a very sensitive device. Even the slightest change in the hardware setup seemed to influence the results when rotating. This meant some sort of calibration was needed to ensure the output was consistent every time the system started. [Brandsman’s full article descibes how how the HMC5883L can be calibrated. It’s important to know that every time the system starts, it makes a full turn to calibrate the compass.

A GPS module must be connected to the system to provide the system’s current location. I wanted the GPS module to be inexpensive, 3.3-V based, and have an easy and accessible interface (e.g., UART).

Figure 3 shows a schematic of a Skylab M&C Technology SKM53 GPS module, which is based on the MediaTek 3329 GPS receiver module. This module supports NMEA messages and the MTK NMEA Packet Protocol interface to control things such as power saving, output message frequency, and differential global positioning system (DGPS).

Unfortunately, the 3329 receiver can’t output “raw” GPS data (e.g., pseudorange, integrated carrier phase, Doppler shift, and satellite ephemeris), which would significantly improve the GPS reference station’s capabilities. Due to budget and time limitations (it takes some more software development effort to handle this raw data), I didn’t use a receiver that could output raw GPS data.

Figure 3:A Skylab M&C Technology SKM53 GPS receiver obtains the system’s current location.

Figure 3:A Skylab M&C Technology SKM53 GPS receiver obtains the system’s current location.

The SKM53 GPS receiver is connected to the RL78’s UART2. All data from the GPS receiver is stored on the SD card. As soon as a valid GPS position is received, the system calculates the sun’s position and moves the platform into the most ideal position.

A compact stepper motor is needed to tilt the platform in very small steps. The platform had to be tilted from fully vertical to fully horizontal in approximately 6 h when the sun was exactly following the equator, so speed wasn’t really an issue. I wanted to do very fine tilting, so I also needed a set of gears to slow down the platform tilting.

I used an inexpensive, easy-to-use, generic 5-V 28BYJ-48 stepper motor (see Figure 4). According to the specifications, the 28BYJ-48 stepper motor has a 1/64 gear reduction ratio and 64 steps per rotation (5.625°/step) of its internal motor shaft.

An important consideration here is that you don’t want to retain power on the stepper motor to keep it in position. This particular stepper motor has some internal gears that prevent the platform from flipping back when the stepper motor is not powered.

The stepper motor can be controlled by the well-known ULN2003 high-voltage high-current Darlington transistor array. The ULN2003 is connected to P71-P74. Each of the ULN2003’s four outputs is connected to one of the stepper motor’s coils. When two neighbor coils are set high (e.g., P72 and P73), the stepper motor will step in that direction.

When it comes to solar panels, you can build your own panel out of individual solar cells or buy a fully assembled one with known specifications. I used a no-name 10-W solar panel. The size (337 mm long × 205 mm wide × 18 mm high) was acceptable and it delivered more than enough energy. I used a charge controller to protect the battery from overcharging and to prevent it from supplying power to the solar panel at night.

Like solar panels, many charge controllers and battery protectors can be used in such a system. I chose the lazy approach: Just take one off the shelf. The CMP12/24 charge controller is specially designed for small solar systems. It has a stabilized 12-V output, which is taken from the connected battery. It can handle up to 12 A of charging or load current and, according to the specifications, it consumes about 20 mA of quiescent current. There is some room for improvement, but it worked for my project.

I had some 7805 voltage regulators lying around, which I figured could do the job and supply just enough power when the system was starting up. However, when it comes to power saving, the 7805 is not the way to go. It’s a linear regulator that works by taking the difference between the input and output voltages and burning it up as wasted heat.

What I needed was a switching regulator or a buck converter. I used a National Semiconductor (now Texas Instruments) LM2596. Note: The LM2596 is made by several companies and is available in inexpensive, high-quality modules (most cost a little more than $1 per converter). These ready-to-use modules already have the necessary capacitors, diodes, and so forth on board, so it’s really a matter of plug and play.

I used a lead acid RT1219 12-V 1.9-AH battery for power storage. You can use any 12-V battery with sufficient capacity.

Editor’s Note: Check out other projects from the 2012 Renesas RL78 Green Energy Challenge.

MCU-Based Experimental Glider with GPS Receiver

When Jens Altenburg found a design for a compass-controlled glider in a 1930s paperback, he was inspired to make his own self-controlled model aircraft (see Photo 1)

Photo 1: This is the cover of an old paperback with the description of the compass-controlled glider. The model aircraft had a so-called “canard” configuration―a very modern design concept. Some highly sophisticated fighter planes are based on the same principle. (Photo used with permission of Ravensburger.)

Photo 1: This is the cover of an old paperback with the description of the compass-controlled glider. The model aircraft had a so-called “canard” configuration―a very modern design concept. Some highly sophisticated fighter planes are based on the same principle. (Photo used with permission of Ravensburger.)

His excellent article about his high-altitude, low-cost (HALO) experimental glider appears in Circuit Cellar’s April issue. The MCU-based glider includes a micro-GPs receiver and sensors and can climb to a preprogrammed altitude and find its way back home to a given coordinate.

Altenburg, a professor at the University of Applied Sciences Bingen in Germany, added more than a few twists to the 80-year-old plan. An essential design tool was the Reflex-XTR flight simulation software he used to trim his 3-D glider plan and conduct simulated flights.

Jens also researched other early autopilots, including the one used by the Fiesler Fi 103R German V-1 flying bomb. Known as buzz bombs during World War II, these rough predecessors of the cruise missile were launched against London after D-Day. Fortunately, they were vulnerable to anti-aircraft fire, but their autopilots were nonetheless mechanical engineering masterpieces (see Figure 1)

“Equipped with a compass, a single-axis gyro, and a barometric pressure sensor, the Fiesler Fi 103R German V-1 flying bomb flew without additional control,” Altenburg says. “The compass monitored the flying direction in general, the barometer controlled the altitude, and the gyro responded to short-duration disturbances (e.g., wind gusts).”

Figure 1: These are the main components of the Fieseler Fi 103R German V-1 flying bomb. The flight controller was designed as a mechanical computer with a magnetic compass and barometric pressure sensor for input. Short-time disturbances were damped with the main gyro (gimbal mounted) and two auxiliary gyros (fixed in one axis). The “mechanical” computer was pneumatically powered. The propeller log on top of the bomb measured the distance to the target.

Figure 1: These are the main components of the Fieseler Fi 103R German V-1 flying bomb. The flight controller was designed as a mechanical computer with a magnetic compass and barometric pressure sensor for input. Short-time disturbances were damped with the main gyro (gimbal mounted) and two auxiliary gyros (fixed in one axis). The “mechanical” computer was pneumatically powered. The propeller log on top of the bomb measured the distance to the target.

Altenburg adapted some of the V-1’s ideas into the flight control system for his 21st century autopilot glider. “All the Fi 103R board system’s electromechanical components received an electronic counterpart,” he says. “I replaced the mechanical gyros, the barometer, and the magnetic compass with MEMS. But it’s 2014, so I extended the electronics with a telemetry system and a GPS sensor.” (See Figure 2)

Figure 2: This is the flight controller’s block structure. The main function blocks are GPS, CPU, and power. GPS data is processed as a control signal for the servomotor.

Figure 2: This is the flight controller’s block structure. The main function blocks are GPS, CPU, and power. GPS data is processed as a control signal for the servomotor.

His article includes a detailed description of his glider’s flight-controller hardware, including the following:

Highly sophisticated electronics are always more sensitive to noise, power loss, and so forth. As discussed in the first sections of this article, a glider can be controlled by only a magnetic compass, some coils, and a battery. What else had to be done?

I divided the electronic system into different boards. The main board contains only the CPU and the GPS sensor. I thought that would be sufficient for basic functions. The magnetic and pressure sensor can be connected in case of extra missions. The telemetry unit is also a separate PCB.

Figure 3 shows the main board. Power is provided by a CR2032 lithium coin-cell battery. Two low-dropout linear regulators support the hardware with 1.8 and 2.7 V. The 1.8-V line is only for the GPS sensor. The second power supply provides the CPU with a stable voltage. The 2.7 V is the lowest voltage for the CPU’s internal ADC.

It is extremely important for the entire system to save power. Consequently, the servomotor has a separate power switch (Q1). As long as rudder movement isn’t necessary, the servomotor is powered off. The servomotor’s gear has enough drag to hold the rudder position without electrical power. The servomotor’s control signal is exactly the same as usually needed. It has a 1.1-to-2.1-ms pulse time range with about a 20-ms period. Two connectors (JP9 and JP10) are available for the extension boards (compass and telemetry)..

I used an STMicroelectronics LSM303DLM, which is a sensor module with a three-axis magnetometer and three-axis accelerometer. The sensor is connected by an I2C bus. The Bosch Sensortec BMP085 pressure sensor uses the same bus.

For telemetry, I applied an AXSEM AX5043 IC, which is a complete, narrow-band transceiver for multiple standards. The IC has an excellent link budget, which is the difference between output power in Transmit mode and input sensitivity in Receive mode. The higher the budget, the longer the transmission distance.

The AX5043 is also optimized for battery-powered applications. For modest demands, a standard crystal (X1, 16-MHz) is used for clock generation. In case of higher requirements, a temperature-compensated crystal oscillator (TCXO) is recommended.

The main board’s hardware with a CPU and a GPS sensor is shown. A CR2032 lithium coin-cell battery supplies the power. Two regulators provide 1.8  and 2.7 V for the GPS and the CPU. The main outputs are the servomotor’s signal and power switch.

Figure 3: The main board’s hardware with a CPU and a GPS sensor is shown. A CR2032 lithium coin-cell battery supplies the power. Two regulators provide 1.8 and 2.7 V for the GPS and the CPU. The main outputs are the servomotor’s signal and power switch.

Altenburg’s article also walks readers through the mathematical calculations needed to provide longitude, latitude, and course data to support navigation and the CPU’s most important sensor— the u-blox Fastrax UC430 GPS. He also discusses his experience using the Renesas Electronics R5F100AA microcontroller to equip the prototype board. (Altenburg’s glider won honorable mention in the 2012 Renesas RL78 Green Energy Challenge, see Photos 2 and 3).

The full article is in the April issue, now available for download by members or single-issue purchase.

One of the final steps is mounting the servomotor for rudder control. Thin cords connect the servomotor horn and the rudder. Two metal springs balance mechanical tolerances.

Photo 2: One of the final steps is mounting the servomotor for rudder control. Thin cords connect the servomotor horn and the rudder. Two metal springs balance mechanical tolerances.

Photo 2: This is the well-equipped high-altitude low-cost (HALO) experimental glider.

Photo 3: This is the well-equipped high-altitude low-cost (HALO) experimental glider.

Q&A: Scott Potter (Engineering a Way To Clean Solar Mirrors)

Designer and technology executive Scott Potter won first prize in the 2012 RL78 Green Energy Challenge, presented by Renesas Electronics in partnership with Circuit Cellar and Elektor magazines. The global contest called on participants to develop green energy designs utilizing Renesas’s RL78 microcontrollers. Scott won with his solar-powered electrostatic cleaning robot, which removes dust and debris from the tracking mirrors of large-scale concentrating solar power plants.—Mary Wilson, Managing Editor

Scott Potter

MARY: Where do you live and what is your current occupation?

SCOTT: I live in Los Gatos, CA, and I’m a senior director at Jasper Wireless, a company providing machine-to-machine (M2M) data communications services. I have been with Jasper since the beginning in 2005 when the company started with four people and a plan. Now Jasper is approaching 150 employees and we are a global company. I have served many roles at Jasper, working on location technology, device middleware, back-end reporting, and front-end software.

My other job is as an inventor at Taft Instruments. We are just now forming around the technology I developed for the RL78 design challenge. We are finding there is a big need for this solution in the solar industry, which is poised for tremendous growth in the next few years.

MARY: How did you first become interested in embedded electrical design? What is your educational background?

SCOTT: I started working for my father at his startup in the basement of our home in Long Island when I was a teenager (child labor laws were more lax back then). We were doing embedded electronics design along with mechanical modeling and prototyping. I learned from the best and it has stuck with me all these years. I went on to get a BSEE from Tufts University and I toyed with the idea of business school, but it never gripped me like engineering.

MARY: Why did you enter the 2012 Renesas RL78 Green Energy Challenge? What about its focus appealed to you?

SCOTT: The green energy design challenge came along at the perfect time. I had been working on the cleaning robot for a few months when I saw the challenge. The microcontroller I had originally picked was turning out to be not a great choice, and the challenge made me take a look at the RL78. The part was perfect, and the challenge gave me a goal to work toward.

MARY: How did the idea of designing a robot to clean solar-tracking mirrors (i.e., heliostats) for solar power plants come to you?

SCOTT: I can’t say it came to me all at once. I have participated in solar technology development sporadically throughout my career, and I have always tried to stay abreast of the latest developments. After the lessons learned from the parabolic trough concentrators, the move to high-concentration concentrating solar power (CSP) plants, which more efficiently convert solar power to electrical power, struck me as the right thing to do.

The high-concentration CSP plant utilizes hundreds of thousands of mirrors spread over many acres. The mirrors reflect sunlight onto a centrally located tower, which creates intense heat that drives a steam turbine generator.

The efficiency gains from the higher temperatures will make this the dominant technology for utility scale power generation. But there is a high maintenance cost associated with all of those mirror surfaces, especially in environments where water is scarce. A number of people have realized this and proposed various solutions to keeping the surfaces clean. Unfortunately, none of the proposed solutions will work well at the scale of a large utility plant.

I experimented with quite a few waterless cleaning techniques before coming back to electrostatics. It was my wife, Dia, who reminded me that NASA had been cleaning dust off panels on space missions for years using electrostatic principles. She convinced me to stop working with the forced-air concept I was doing at the time and switch to electrostatics. It was definitely the right choice.

MARY: What does the system do? What problems does it solve for power plants? How is the device different from what is already available for the task of cleaning heliostats?

SCOTT: Our patent-pending device is unique in many ways. It is completely autonomous, requiring no external power or water. The installation time is less than 10 s per heliostat, after which the device will remain attached and operating maintenance free for the life of the plant. We borrowed a marketing term from the military for this: “Set it and forget it.”

Most of the competing products have a long installation time and require some external wiring and maintenance. These can be logistical problems in a field of hundreds of thousands of mirrors.

Our device is also unique in that it cleans continuously. This prevents accumulation of organic materials on the surface, which can mix with dew and make a bio-film on the surface. That film bakes on and requires vigorous scrubbing to remove. We also have a feature to handle the dew, or frost, if it’s present.

MARY: What were some of your design challenges along the way and how did you address them?

SCOTT: They were numerous. The first challenge was the power source. It is important that this device be entirely self-powered to avoid having to install any wiring. I had to find a solar-panel configuration that provided enough power at the right voltage levels. I started with lower voltages and had a lot of trouble with the boost converters.

I also couldn’t use any battery storage because of the life requirement. This means that everything has to operate intermittently, gracefully shutting down when the sun fades and then coming up where it left off when the sun returns.

The next challenge was the mechanical drive. This had to grip the mirror tightly enough to resist a stream of water from a cleaning hose (infrequent cleaning with water will probably still be performed). And it had to do this with no power applied.

Another big challenge was the high-voltage electronics. It turns out there is little off-the-shelf technology available for the kind of high-voltage circuitry I needed. Large line output power transformers (LOPTs) for old cathode ray tubes (CRTs) are too large and expensive.

Some of the resonant high-voltage circuits used for cold cathode fluorescent lighting (CCFL) can be used as building blocks, but I had to come up with quite a few innovations to be able to control this voltage to perform the cleaning task. I had more than a few scorched breadboards before arriving at the current design, which is very small, light, and powerful.

MARY: You recently formed Taft Instruments (click here for Taft website). Who are the players in the company and what services does it provide?

SCOTT: We formed Taft instruments to commercialize this cleaning technology. We have been very fortunate to attract a very talented team that has made tremendous progress promoting the company in industry and attracting investment.

We have Steve Gluck and Gary Valinoti, both highly respected Wall Street executives who have galvanized the company and provided opportunities I could never have imagined. They are now recruiting the rest of the team and we are talking to some extremely qualified people. And of course my wife, Dia, is making numerous contributions that she will probably never get credit for.

MARY: How’s business? How would you describe the market for your product and the potential for growth and reach (both domestically and globally)?

SCOTT: We are not at the commercial deployment stage just yet. Our immediate focus is on the field trials we are starting with a number of industry players and the US Department of Energy National Laboratories. We fully expect the trials to be successful and for our large-scale rollouts to begin in about a year.

The market potential for this is tremendous. I’m not sure anyone fully realizes yet the global transformation that is about to take place. Now that the “grid parity” point is near (the point where the cost of solar power is competitive with fossil fuels), solar will become one of the fastest-growing markets we have seen in a century.

Entire national energy pictures will change from single-digit percentages to being dominated by solar. It is a very exciting time in the solar industry, and we are very happy to be part of it.

MARY: Are you individually—or is your company—developing any new designs? If so, can you tell us something about them?

SCOTT: Yes. I can’t say much, but we are working on some very interesting new technologies that will improve on the electrostatic cleaning principles. This technology will vastly expand the base that we can work with.

MARY: You describe yourself as a “serial entrepreneur” with a strong technical background in electronics, software, hardware, and systems design. That combination of skills comes in handy when establishing a new business. But it also helped you land your day job eight years ago as Director of Location Technology at Jasper Wireless. What do you see as future key trends in M2M communications?

SCOTT: M2M has really taken off since we began in 2005. Back then, there were only a few applications people had envisioned taking wireless. That list has exploded, and some analysts are predicting volumes of M2M endpoints that exceed the human population by tenfold!

We have seen large growth in a number of different verticals over the years, the most apparent one right now being automotive, with all the car companies providing connected services. Jasper is uniquely positioned to offer a global solution to these companies through our carrier partners.

MARY: Over the years, you have gained expertise in areas ranging from embedded electronics and wireless, to applications of the global positioning and geographic information systems (GPS and GIS). What do you enjoy most and what are some career highlights? Is one your involvement in the development of a GPS for the New York fire department’s recovery operations after the collapse of the World Trade Center?

SCOTT: What I enjoy most is working with motivated teams to create compelling products and services. One of my proudest moments was when our team at Links Point rose to the 9/11 challenge. At the time, I was a founder and the chief technology officer of Links Point, which provided GPS and location mapping.

When the request came from the New York fire department for a solution to locating remains at the recovery site, the team dedicated themselves to providing a solution no first responder had ever had access to previously. And we did that in record time. We had to come up with a proposal in a half-day and implement it within three days. You have to realize that GPS and PDAs were very new at the time and there were a lot of technical challenges. We also had to compete with some other companies that were proposing more accurate surveying equipment, such as laser ranging.

Our product, a PDA with a GPS attachment, won out in the end. The advantages of our handheld devices were that they were rugged and that firefighters could easily carry them into Ground Zero. We got the opportunity and honor of serving the  FDNY because of the extreme talent, dedication, and professionalism of my team. I would like to mention them: Jerry Kochman, Bill Campbell, Murray Levine, Dave Mooney, and Lucas Hjelle.

MARY: What is the most important piece of advice you would give to someone trying to make a marketable product of his or her design for an electrical device?

SCOTT: Whatever the device, make sure you are passionate about it and committed to seeing it come through. There is a quote that Dia framed for me hanging in my lab—this is attributed to Goethe, but there is some question about that. Anyway, the quote is very inspirational:

“Until one is committed, there is hesitancy, the chance to draw back. Concerning all acts of initiative (and creation), there is one elementary truth that ignorance of which kills countless ideas and splendid plans: that the moment one definitely commits oneself, then Providence moves too. All sorts of things occur to help one that would never otherwise have occurred. A whole stream of events issues from the decision, raising in one’s favor all manner of unforeseen incidents and meetings and material assistance, which no man could have dreamed would have come his way. Whatever you can do, or dream you can do, begin it. Boldness has genius, power, and magic in it. Begin it now.” I

Editor’s note: For more details, schematics, and a video of Scott Potter’s solar-powered electrostatic cleaning robot, click here.

RL78 Challenge Winner’s Workspace in Lewisville, TX

Lewisville, TX-based electrical engineer Michael Hamilton has been a busy man. During the past 10 years, he created two companies: A&D Technologies, which supplies wireless temperature and humidity controllers, and Point & Track, which provides data-gathering apps and other business intelligence tools. And in his spare time, he designed a cloud electrofusion machine for welding 0.5″ to 2″ polyethylene fittings. It  won Second Prize in the 2012 Renesas RL78 Green Energy Challenge.

In an interview slated for publication in Circuit Cellar 273 (April 2013), Hamilton describes some of his projects, shares details about his first microcontroller design, and more.

Michael Hamilton in his workspace. Check out the CNC machine and 3-D printer.

During the interview process, he also provided a details about his workspace, in which he has a variety of interesting tools ranging from a CNC machine to a MakerBot 3-D printer. Hamilton said:

I have a three-axis CNC machine and MakerBot 3-D printer. I use the CNC machine to cut out enclosures and the 3-D printer to create bezels for LCDs and also to create 3-D prototypes. These machines are extremely useful if you need to make any precise cuts or if you want to create 3-D models of future products.

Hamilton also noted:

I recently purchased a Rigol Technologies DSA-815-TG spectrum analyzer. This device is a must-have, right behind the oscilloscope. It enables you to see all the noise/interference present in a PCB design and also test it for EMI issues.

Michael Hamilton’s test bench and DSA815

He has a completely separate area for PCB work.

A separate space for PCB projects

Overall, this is an excellent setup. Hamilton clearly has a nice collection must-have EE tools and test equipment, as well as a handy CNC machine and decent desktop storage system. The separate PCB bench is a great feature that helps keep the space orderly and clean.

As for the 3-D printer, well, it’s awesome.