Build a CNC Panel Cutter Controller

Want a CNC panel cutter and controller for your lab, hackspace, or workspace? James Koehler of Canada built an NXP Semiconductors mbed-based system to control a three-axis milling machine, which he uses to cut panels for electronic equipment. You can customize one yourself.

Panel Cutter Controller (Source: James Koehler)

According to Koehler:

Modern electronic equipment often requires front panels with large cut-outs for LCD’s, for meters and, in general, openings more complicated than can be made with a drill. It is tedious to do this by hand and difficult to achieve a nice finished appearance. This controller allows it to be done simply, quickly and to be replicated exactly.

Koehler’s design is an interesting alternative to a PC program. The self-contained controller enables him to run a milling machine either manually or automatically (following a script) without having to clutter his workspace with a PC. It’s both effective and space-saving!

The Controller Setup (Source: James Koehler)

How does it work? The design controls three stepping motors.

The Complete System (Source: James Koehler)

Inside the controller are a power supply and a PCB, which carries the NXP mbed module plus the necessary interface circuitry and a socket for an SD card.

The Controller (Source: James Koehler)

Koehler explains:

In use, a piece of material for the panel is clamped onto the milling machine table and the cutting tool is moved to a starting position using the rotary encoders. Then the controller is switched to its ‘automatic’ mode and a script on the SD card is then followed to cut the panel. A very simple ‘language’ is used for the script; to go to any particular (x, y) position, to lift the cutting tool, to lower the cutting tool, to cut a rectangle of any dimension and to cut a circle of any dimension, etc. More complex instructions sequences such as those needed to cut the rectangular opening plus four mounting holes for a LCD are just combinations, called macros, of those simple instructions; every new device (meter mounting holes, LCD mounts, etc.) will have its own macro. The complete script for a particular panel can be any combination of simple commands plus macros. The milling machine, a Taig ‘micro mill’, with stepping motors is shown in Figure 2. In its ‘manual’ mode, the system can be used as a conventional three axis mill controlled via the rotary encoders. The absolute position of the cutting tool is displayed in units of either inches, mm or thousandths of an inch.

Click here to read Koehler’s project abstract. Click here to read his complete documentation PDF, which includes block diagrams, schematics, and more.

This project won Third Place in the 2010 NXP mbed Design Challenge and is posted as per the terms of the Challenge.

 

 

Raspberry Pi: Is It for You?

Unless you’ve been locked in your lab or design studio for the past several weeks, you’ve likely heard about Raspberry Pi, which is a compact, affordable computer that has been creating a buzz on the ‘Net for some time now. The group behind the computer is the Raspberry Pi Foundation, which is a UK-based charity that has an ever-growing following of more than 52,000 followers on Twitter!

(Source: TechTheFuture.com and The Raspberry Pi Foundation)

According to the Raspberry Pi Foundation, “The Raspberry Pi is a credit-card sized computer that plugs into your TV and a keyboard. It’s a capable little PC which can be used for many of the things that your desktop PC does, like spreadsheets, word-processing and games. It also plays high-definition video. We want to see it being used by kids all over the world to learn programming.”

The 85.60 mm × 53.98 mm × 17 mm Raspberry Pi weighs in at 45 g. It features a Broadcom BCM2835, including an ARM1176JZFS and a Videocore 4 GPU.

So, how can Circuit Cellar members use Raspberry Pi? Well, look at it in three ways. One, you can use it in a design of your own. Grab one and start building as soon as you can get your hands on one. Two, you can learn from the “story” of the Raspberry Pi Foundation—how it formed, how it works as a charity—and consider launching a tech foundation of your own. Three, you can design a low-cost embedded design platform or rapid prototyping solution—something distinguishable from the usual suspects of Arduino and mbed—and bring it to market.

In a recent post titled “What Are You Doing!?” at TechTheFuture.com, Tessel Renzenbrink detailed an interview with Eben Upton, a founder and trustee of the Raspberry Pi Foundation. Tessel writes:

Raspberry Pi is grabbing the attention with a $25 computer ($35 for a networked model). In the middle of the storm is Eben Upton. Why is he convinced that a computer which has no casing, no keyboard, no HD and no screen, will be successful? It is time to put the question to him: ‘what are you doing?’

‘We wanted to have a computer especially for Python, and there is a great tradition of naming computers after fruit: like Apricot, Acorn and even today there are computers named after fruit. So Raspberry is following the line of a rich tradition with the Pi, and yes, we wanted this connection with Python. That is where the Pi comes in’, explains Eben when asked for the name Raspberry Pi. And why is it a charity that brings this computer to the market? ‘That all has to do with value creation’, Eben continues. ‘I’ve been involved in several start-ups and then you always end up with the question; how will this create value?’. ‘In this case I do not have to worry about creating value. I can concentrate on designing and producing the board. The Raspberry Pi can be seen as a ‘white label’ product. If there are people out there with a commercial idea for this product, they are more then welcome’.

The Raspberry Pi is a bare PCB board; no keyboard, no HD, no screen.. how will this product become successful? ‘Basically, there is no reason why a computer has to cost more than $50. The peripherals like a screen and keyboard and storage will create a higher price, but with the Raspberry Pi we have taken another route – a normal TV can be used as a screen’, comments Eben. ‘Combine that with a ‘charity shop’ keyboard for a few dollars and you have a full working system’. He further emphazises that ‘the Raspberry is specifically aiming at youngsters learning to program’.

And how about the Raspberry Pi being ‘the next big thing’ after Arduino? There are many hints in that direction on the Internet? ‘The Raspberry Pi is different from the Arduino. The Arduino is great for direct applications and there are dozens of programs available. The Raspberry Pi is a computer system – designed to work with a screen and keyboard, a completely different idea. You can even watch videos with this thing. What might be interesting is the possibility to use the Raspberry Pi as a host for the Arduino board – the combination of these two, resulting in low priced systems can be very interesting and useful’.

‘There is also a difference the flexibility and usability, adds Eben. We have chosen for Broadcom chips and they are not easy to get in the market, making it very difficult to call the Raspberry Pi an ‘open source’ project. We are hoping to take this development into the open source direction, but that will require a new design’.

Can designers use the Raspberry Pi for different applications? ‘Yes, no problem. There is plenty of I/O (I2C and UART) to start using it for whatever challenges you’.

The first batch of 10,000 Pi’s has now arrived from the factory – what will be the next step? ‘Another 10,000 we hope and that is all just the start of it…’

You can read the entire post at TechTheFuture.com.

If you want to check out other kits and modules, visit the CC Webshop.

TechTheFuture.com is part of the Elektor group.