Free Raspberry Pi Poster

The Raspberry Pi is a computer with no casing, no keyboard, no hard disk and no screen. Despite all that, it’s taking the world by storm!

Get your free Raspberry Pi poster now, courtesy of Elektor, RS Components, and CC! Go ahead: download, print, and then enjoy!

Free Raspberry Pi Poster

RASPBERRY PI ESSENTIALS

Model A has 256-MB RAM, one USB port, and no Ethernet port (network connection). Model B has 512-MB RAM, two USB ports, and an Ethernet port.

The Raspberry Pi Model B, revision 2 board:

  • Status led labels: top led has label “ACT” and bottom led has label “100”
  • Header P2 is not populated
  • The text underneath the Raspberry Pi logo reads: “(C) 2011,12”
  • The area next to the micro usb port has CE and FCC logos and the text “Made in China or UK” along the board edge.
  • There are two 2.9-mm holes in the PCB, which can be used as mounting holes.
  • P5 is a new GPIO header with four additional GPIO pins and four power pins. Also note that some pin and I2C port numbers of connector P1 have been modified between revisions!
  • Header P6 (left from the HDMI port) was added, short these two pins to reset the computer or wake it up when powered down with the “sudo halt” command.

The Raspberry Pi measures 85.60 mm × 56 mm × 21 mm, with a little overlap for the SD card and connectors which project over the edges. It weighs 45 g.

The SoC is a Broadcom BCM2835. This contains an ARM ARM1176JZFS, with floating point, running at 700 MHz, and a Videocore 4 GPU. The GPU is capable of BluRay quality playback, using H.264 at 40 Mbps. It has a fast 3D core which can be accessed using the supplied OpenGL ES2.0 and OpenVG libraries.

The Raspberry Pi is capable of using hardware acceleration for MPEG-2 and VC-1 playback, but you’ll need to buy license keys at the Raspberry Pi Store to unlock this functionality.

Which programming languages can you use? Python, C/C++, Perl, Java, PHP/MySQL, Scratch, and many more that can run under Linux.

TROUBLESHOOTING TIPS

If you’re getting a flashing red PWR LED or random restarts during the booting process, it’s likely that your PSU or USB cable has problems. The Raspberry Pi is pretty picky and requires a solid 5-V/1000-mA power supply. For other issues and more troubleshooting tips check out the extensive overview at the eLinux website

Circuitcellar.com is an Elektor International Media website.

Electrical Engineering Tools & Preparation (CC 25th Anniversary Issue Preview)

Electrical engineering is frequently about solving problems. Success requires a smart plan of action and the proper tools. But as all designers know, getting started can be difficult. We’re here to help.

You don’t have to procrastinate or spend a fortune on tools to start building your own electronic circuits. As engineer/columnist Jeff Bachiochi has proved countless times during the past 25 years,  there are hardware and software tools that fit any budget. In Circuit Cellar‘s 25th Anniversary issue, he offers some handy tips on building a tool set for successful electrical engineering. Bachiochi writes:

In this essay, I’ll cover the “build” portion of the design process. For instance, I’ll detail various tips for prototyping, circuit wiring, enclosure preparation, and more. I’ll also describe several of the most useful parts and tools (e.g., protoboards, scopes, and design software) for working on successful electronic design projects. When you’re finished with this essay, you’ll be well on your way to completing a successful electronic design project.

The Prototyping Process

Prototyping is an essential part of engineering. Whether you’re working on a complicated embedded system or a simple blinking LED project, building a prototype can save you a lot of time, money, and hassle in the long run. You can choose one of three basic styles of prototyping: solderless breadboard, perfboard, and manufactured PCB. Your project goals, your schedule, and your circuit’s complexity are variables that will influence your choice. (I am not including styles like flying leads and wire-wrapping.)

Prototyping Tools

The building phase of a design might include wiring up your circuit design and altering an enclosure to provide access to any I/O on the PCB. Let’s begin with some tools that you will need for circuit prototyping.

The nearby photo shows a variety of small tools that I use when wiring a perfboard or assembling a manufactured PCB. The needle-nose pliers/cutter is the most useful.

These are my smallest hand tools. With them I can poke, pinch, bend, cut, smooth, clean, and trim parts, boards, and enclosures. I can use the set of special driver tips to open almost any product that uses security screws.

Don’t skimp on this; a good pair will last many years. …

Once everything seems to be in order, you can fill up the sockets. You might need to provide some stimulus if you are building something like a filter. A small waveform generator is great for this. There are even a few hand probes that will provide outputs that can stimulate your circuitry. An oscilloscope might be the first “big ticket” item in which you invest. There are some inexpensive digital scope front ends that use an app running on a PC for display and control, but I suggest a basic analog scope (20 MHz) if you can swing it (starting at less than $500).

If the circuit doesn’t perform the expected task, you should give the wiring job a quick once over. Look to see if something is missing, such as an unconnected or misconnected wire. If you don’t find something obvious, perform a complete continuity check of all the components and their connections using an ohmmeter.

I use a few different meters. One has a transistor checker. Another has a high-current probe. For years I used a small battery-powered hand drill before purchasing the Dremel and drill press. The tweezers are actually an SMT parts measurer. Many are unmarked and impossible to identify without using this device (and the magnifier).

It usually will be a stupid mistake. To do a complete troubleshooting job, you’ll need to know how the circuit is supposed to work. Without that knowledge, you can’t be expected to know where to look and what to look for.

Make a Label

You’ll likely want to label your design… Once printed, you can protect a label by carefully covering it with a single strip of packing tape.

The label for this project came straight off a printer. Using circuit-mount parts made assembling the design a breeze.

A more expensive alternative is to use a laminating machine that puts your label between two thin plastic sheets. There are a number of ways to attach your label to an enclosure. Double-sided tape and spray adhesive (available at craft stores) are viable options.”

Ready to start innovating? There’s no time like now to begin your adventure.

Check out the upcoming anniversary issue for Bachiochi’s complete essay.

Game On with the Arduino Esplora

Every time the Arduino team is about to release a new board, we expect something great in terms of better specs, more I/Os, a faster processor, more memory—or, well, just something to “fill the gap,” such as small-scale versions. With “Esplora” the Arduino team pleasantly surprises us again!

Arduino Esplora

The brand new Esplora is targeted toward gaming applications. It consists of a gamepad-shaped development board that includes an Arduino-compatible Atmel ATmega32U4, a light sensor, a temperature sensor, an accelerometer, a joystick, push buttons, a slider, an RGB LED, and a buzzer.

The Esplora is as a ready-to-use solution for designers who don’t want to deal with soldering or prototyping by means of discrete components. In fact, it comes preprogrammed with a controller script, so you only have to connect it to a PC, download the free game “Super Tux Cart,” and have fun.

An additional color LCD will be released soon in order to create a portable console. The only drawback is you can’t directly connect standard Arduino shields to it , mainly because of space limitations. Nevertheless, the board itself includes enough features to make it interesting.

The Esplora should enable you to implement a controller for almost any application you dream up. In our case, we’re sure it will bring back nice memories of the time when we were too young for soldering irons but already pros with gamepads!—Jaime González Arintero Berciano, Elektor International Media

 

PCB Service for Prototypes

Elektor recently inked a deal with Eurocircuits for the production and sale of PCBs. The decision is an important step toward delivering valuable services to Elektor members.

All of Elektor’s PCB orders will be handled by Eurocircuits. If you have a nice design yourself, you can try the Elektor PCB Service for prototypes or small production runs. Visit ElektorPCBService.com for more information.

Elektor.TV visited the Eurocircuits booth at the Electronics Show in Munich. In the video Dirk Stans (a Eurocircuits owner) comments on some of the company’s services and deliverables.

CircuitCellar.com is an Elektor International Media site.

Pi-Face: A New Raspberry Pi Accessory

Ready for the Pi-Face Digital? What’s that? you ask.

Pi-Face at Electronica 2012 (Source: Elektor.tv)

Pi Interface Digital, or Pi-Face Digital, is a Raspberry Pi accessory board Premier Farnell will begin distributing in early 2013. You can plug it into a Raspberry Pi and start designing immediately. Plus, you can connect sensors to Pi-Face Digital for a variety of purposes, such as temperature- or pressure-monitoring applications.

The following useful information is posted at the University of Manchester’s School of Computer Science site.

Pi-Face Digital is the first of a range of interfaces to allow the Raspberry Pi to control and manipulate the real world. It allows the Raspberry Pi to read switches connected to it – a door sensor or pressure pad perhaps, a microswitch or reed switch, or a hand held button. With appropriate easy to write code, the Raspberry Pi then drives outputs, powering motors, actuator, LEDs, light bulbs or anything you can imagine to respond to the inputs… The hardware provides an easy and consistent programming interface, in Scratch (as shown running on a Raspberry Pi in the photograph) and Python with good observability to promote easy development, and reduce technology barriers.

It will cost approximately €20 to €30. You can register at element14.

Want to see Pi-Face in action? Check it out on Elektor.tv!

CircuitCellar.com is an Elektor International Media publication.

Free Webinar: Bridge Android & Your Electronics Projects

Do you want to add a powerful wireless Android device to your own projects? Now you can, and doing so is easier than you think.

With their high-resolution touchscreens, ample computing power, WLAN support, and telephone functions, Android smartphones and tablets are ideal for use as control centers in your projects. But until now, it has been difficult to connect them to external circuitry. Elektor’s AndroPod interface board, which adds a serial TTL port and an RS-485 port to the picture, changes this situation.

The Elektor AndroPod module

In a free webinar on June 21, 2012, Bernhard Wörndl-Aichriedler (codesigner of the AndroPod Interface) will explain how easy it is to connect your own circuitry to an Android smartphone using the AndroPod interface. Click here to register.

Elektor Academy and element14 have teamed up to bring you a series of exclusive webinars covering blockbuster projects from recent editions of Elektor magazine. Participation in these webinars is completely free!

Webinar: AndroPod – Bridging Android and Your Electronics Projects
Date: Thursday June 21, 2012
Time: 16:00 CET
Presenter: Bernhard Wörndl-Aichriedler (Codesigner of the Andropod Interface)
Language: English

CircuitCellar.com is an Elektor International Media publication.

DesignSpark chipKIT Challenge 2012 Winners Named

The results for the DesignSpark chipKIT Challenge are now final. Dean Boman won First Prize for his chipKIT-based Energy Monitoring System, which provides users real-time home electrical usage data. A web server provides usage tracking on a circuit-by-circuit basis. It interfaces with a home automation system for long-term monitoring and data logging.

Dean Boman's Energy Monitoring System (Source: D. Boman)

Second prize went to Raul Alvarez for his Home Energy Gateway consumption monitor, which features an embedded gateway/web server that communicates with “smart” devices.

Raul Alvarezs Home Energy Gateway (Source: R. Alvarez)

Graig Pearen won Third Prize for his PV Array Tracker (Sun Seeker) project, which tracks, monitors, and adjusts PV arrays based on weather conditions.

Graig Pearen's PV Array Tracker (Source: G. Pearen)

Click HERE for a list of all the winners. You can review their project abstracts, documentation, schematics, diagrams, code, and more.

Participants in the competition were challenged develop innovative, energy-efficient designs with eco-friendly footprints. Entries were required to include an extension card developed using the DesignSpark PCB software tool and the Microchip Max32 chipKIT development board.

According to the documentation on the design challenge site:

The chipKIT™ Max32™ development platform is a 32-bit Arduino solution that enables hobbyists and academics to easily and inexpensively integrate electronics into their projects, even if they do not have an electronic-engineering background.

The platform consists of two PIC32-based development boards and open-source software that is compatible with the Arduino programming language and development environment. The chipKIT™ hardware is compatible with existing 3.3V Arduino shields and applications, and can be developed using a modified version of the Arduino IDE and existing Arduino resources, such as code examples, libraries, references and tutorials.

The chipKIT™ Basic I/O Shield (part # TDGL005) is compatible with the chipKIT™ Max32™ board, and offers users simple push buttons, switches, LEDs, I2C™ EEPROM, I2C temperature sensor, and a 128 x 32 pixel organic LED graphic display.

 

Click HERE for a list of all the winners. You can review their project abstracts, documentation, schematics, diagrams, code, and more.

Circuit Cellar/Elektor Inc. is the Contest Administrator.

Elektor Weekly Wrap-Up: “Elektor Projects” Site, Arduino Webinar, & Special Issue Prep

It’s been a remarkable week for Elektor International Media. Staffers launched a new community site, announced an upcoming Android-related webinar, and worked with U.S.-based colleagues to plan Circuit Cellar’s 25th anniversary special edition.

Elektor Projects Community Site

Elektor announced this week of a new community website—Elektor Projects—for “Elektor Plus” members. Elektor Projects is a site where members can share electronics experiences, read about designs, and participate in electronics projects, games, and challenges. Check it out at www.elektor-projects.com.

Elektor's new community website, Elektor-Projects.com

The site enables members to:

  • Present projects and get published in Elektor magazine
  • Sell products through the web shop
  • Build a reputation by showing of your skills in projects, contributions, comments, games and contests.

Click here to join the site!

Elektor staff celebrated the launch of Elektor Projects with a special cake. Any beer to go with it?

Webninar: Arduino Controlled by LabVIEW

Elektor announced Wednesday it is teaming up with element14 to deliver a webinar on connecting Arduino and LabVIEW using LIFA.

Arduino and LabVIEW are handy programming environments for designers of all levels, especially those who do not know how to program (or don’t want to). Both platforms enable rapid application development.

In this webinar Elektor editor Clemens Valens will cover how to get start with LabVIEW and LIFA. He’ll detail how to develop a virtual instrument to blink the LED on Elektor’s Arduino-compatible board called Platino.

In addition, Valens will cover LIFA, add a custom relay board, and replace the USB cable by a Bluetooth connection to the PC. In the end, users will be able to wirelessly monitor the status of the Arduino/Platino/Relay system on an iPad or Android tablet anywhere in the world.

Webinar: Arduino Controlled by LabVIEW
Date: Thursday, May 24, 2012
Time: 15:00 GMT (16:00 CET)
Presenter: Clemens Valens (Elektor Contributing Editor)
Language: English

Click here to register for the webinar.

25 Year Anniversary Issue

Elektor Director Don Akkermans met with Elektor US and Circuit Cellar staff in Connecticut this week to discuss the various exciting endeavors on tap for the rest of 2012 and beyond.

One particularly exciting development under discussion was Circuit Cellar’s 25th Anniversary Special! We’re planning an amazing 25th anniversary edition of Circuit Cellar, with essays by columnists and industry leaders on the past, present, and future of embedded design, programming, and computer technology. Elektor staffers will be among the contributors.

Stay tuned for more information in the coming weeks about this must-have collector’s item!

CircuitCellar.com is an Elektor group publication.

Issue 262: Full-Featured SBCs at Your Fingertips

Fact 1: Easy-to-use, full-featured SBCs are popping up everywhere. Fact 2: Open-source software is becoming more commonplace each day. (Even Microsoft Corp. has begun taking open source seriously.) Conclusion: It’s an opportune time to be an electronics innovator.

In Circuit Cellar May 2012, Steve Ciarcia surveys some of the more affordable, 32-bit hardware options at your disposal. In “Power to the People” he writes:

While last month I may have implied that 8 bits is enough to control the world, there are significant things happening in high-end, 32-bit embedded processors that might really produce that inevitability. There are quite a few new system-on-chip-based, low-cost, single-board computers (SBCs) specifically designed to compete with or augment the smartphone and pad computer market. These and other full-feature budget SBCs are something you should definitely keep on your radar.

These devices typically have a high-end, 32-bit processor, such as ARM Cortex-A8, running 400 MHz to 1,000 MHz, coupled with a GPU core (and sometimes a separate DSP core) along with 128 MB to 512 MB of DDR SDRAM. These boards typically boot a full-up desktop operating system (OS)—such as Linux or Android (and soon Windows 8)—and often contain enough graphics horsepower for full-frame rate HD video and gaming.

Texas Instruments made a significant splash a few years ago with the introduction of the BeagleBoard SBC (beagleboard.org, $149 at the time) with their OMAP3530 chip along with 256-MB of flash memory and 128 MB of SDRAM running Angstrom Linux on a high-resolution HDMI monitor. That board has since been superseded by the BeagleBoard-xM (1,000 MHz and 512 MB) at the same price and supplemented by the BeagleBone board. Selling for just $89, BeagleBone includes a 600-MHz AM3517 processor, 256-MB SDRAM, a 2-GB microSD card, and Ethernet (something the original BeagleBoard lacked).

All of the software for these boards is open source, and a significant community of developers has grown up around them. In particular, a lot of effort has been put into software infrastructure, with a number of OSes now ported to many of these boards, along with languages (both compiled and interpreted) and application frameworks, such as XBMC for multimedia and home-theater applications.

Another SBC that has been generating a lot of buzz lately is the Raspberry Pi board (raspberrypi.org), mainly because the “B” version is priced at just $35. Raspberry Pi is based on a Broadcom chip, which is unexpected. Broadcom traditionally only gave hardware documentation and software drivers to major customers, like set-top box manufacturers, not to an open-source marketplace. Apparently, the only proprietary piece of software for the Raspberry Pi board will be the driver/firmware for the GPU core. Unfortunately, as I write this, there are a few lingering manufacturing issues, and Raspberry Pi still awaits shipping.

Both the concept and size of an “SBC” are evolving as well. In addition to the bare development boards, a number of interesting second-level products based on these chips has begun to appear. Take a look at designsomething.org. A couple of projects in particular are Pandora’s Pandora Handheld and Always Innovating’s HDMI Dongle. The former is a pocket-sized computer that flips open to reveal an 800 × 480 touchscreen and an alphanumeric keypad with gaming controls. Besides the obvious applications as a video viewer, gaming platform, and “super PDA,” I see huge opportunities for this box as a user interface for things like USB-based test instruments.

The Always Innovating HDMI Dongle is amazing for how much functionality they’ve crammed into a small package: it’s no bigger than a USB thumb drive (it also needs a USB socket for power), but it can turn any TV with an HDMI input jack and USB socket into a fully functional, Android-based computer with 1080p HD video playback, games, and Wi-Fi-based Internet access. These dongles might easily become distributed home theater nodes, delivering high-quality video and audio to multiple rooms from a common file server; or, one of the other low-cost SBCs might become the brain of a robot that can see and understand the world around it using open-source computer vision (OpenCV).

While it makes an old hardware guy like me feel less useful, it’s clear that the hardware—or, more specifically, the necessity to always design unique hardware—is no longer the bottleneck when it comes to powerful embedded applications. In a turnaround from decades ago, the ball is now clearly in the court of the software developers.

The applications for these boards and “thumb-thingies” are endless. Basically, they have the hardware muscle to handle anything that a smartphone or pad computer can do for much less. A lot of work has already been done on the OS and middleware layers. We just need to dive in and create the applications! Then it basically becomes a simple matter of programming. Of course, you know how much I personally look forward to that.

Circuit Cellar 262 (May 2012) is on newsstands now. Click here for a free preview of the issue.

Tech Highlights from Design West: RL78, AndroPod, Stellaris, mbed, & more

The Embedded Systems Conference has always been a top venue for studying, discussing, and handling the embedded industry’s newest leading-edge technologies. This year in San Jose, CA, I walked the floor looking for the tech Circuit Cellar and Elektor members would love to get their hands on and implement in novel projects. Here I review some of the hundreds of interesting products and systems at Design West 2012.

RENESAS

Renesas launched the RL78 Design Challenge at Design West. The following novel RL78 applications were particularly intriguing.

  • An RL78 L12 MCU powered by a lemon:

    A lemon powers the RL78 (Photo: Circuit Cellar)

  • An RL78 kit used for motor control:

    The RL78 used for motor control (Photo: Circuit Cellar)

  • An RL78 demo for home control applications:

    The RL78 used for home control (Photo: Circuit Cellar)

TEXAS INSTRUMENTS

Circuit Cellar members have used TI products in countless applications. Below are two interesting TI Cortex-based designs

A Cortex-M3 digital guitar (you can see the Android connection):

TI's digital guitar (Photo: Circuit Cellar)

Stellaris fans will be happy to see the Stellaris ARM Cortex -M4F in a small wireless application:

The Stellaris goes wireless (Photo: Circuit Cellar)

NXP mbed

Due to the success of the recent NXP mbed Design Challenge, I stopped at the mbed station to see what exciting technologies our NXP friends were exhibiting. They didn’t disappoint. Check out the mbed-based slingshot developed for playing Angry Birds!

mbed-Based sligshot for going after "Angry Birds" (Photo: Circuit Cellar)

Below is a video of the project on the mbedmicro YouTube page:

FTDI

I was pleased to see the Elektor AndroPod hard at work at the FTDI booth. The design enables users to easily control a robotic arm with Android smartphones and tablets.

FTDI demonstrates robot control with Android (Photo: Circuit Cellar)

As you can imagine, the possible applications are endless.

The AndroPod at work! (Photo: Circuit Cellar)

Build a CNC Panel Cutter Controller

Want a CNC panel cutter and controller for your lab, hackspace, or workspace? James Koehler of Canada built an NXP Semiconductors mbed-based system to control a three-axis milling machine, which he uses to cut panels for electronic equipment. You can customize one yourself.

Panel Cutter Controller (Source: James Koehler)

According to Koehler:

Modern electronic equipment often requires front panels with large cut-outs for LCD’s, for meters and, in general, openings more complicated than can be made with a drill. It is tedious to do this by hand and difficult to achieve a nice finished appearance. This controller allows it to be done simply, quickly and to be replicated exactly.

Koehler’s design is an interesting alternative to a PC program. The self-contained controller enables him to run a milling machine either manually or automatically (following a script) without having to clutter his workspace with a PC. It’s both effective and space-saving!

The Controller Setup (Source: James Koehler)

How does it work? The design controls three stepping motors.

The Complete System (Source: James Koehler)

Inside the controller are a power supply and a PCB, which carries the NXP mbed module plus the necessary interface circuitry and a socket for an SD card.

The Controller (Source: James Koehler)

Koehler explains:

In use, a piece of material for the panel is clamped onto the milling machine table and the cutting tool is moved to a starting position using the rotary encoders. Then the controller is switched to its ‘automatic’ mode and a script on the SD card is then followed to cut the panel. A very simple ‘language’ is used for the script; to go to any particular (x, y) position, to lift the cutting tool, to lower the cutting tool, to cut a rectangle of any dimension and to cut a circle of any dimension, etc. More complex instructions sequences such as those needed to cut the rectangular opening plus four mounting holes for a LCD are just combinations, called macros, of those simple instructions; every new device (meter mounting holes, LCD mounts, etc.) will have its own macro. The complete script for a particular panel can be any combination of simple commands plus macros. The milling machine, a Taig ‘micro mill’, with stepping motors is shown in Figure 2. In its ‘manual’ mode, the system can be used as a conventional three axis mill controlled via the rotary encoders. The absolute position of the cutting tool is displayed in units of either inches, mm or thousandths of an inch.

Click here to read Koehler’s project abstract. Click here to read his complete documentation PDF, which includes block diagrams, schematics, and more.

This project won Third Place in the 2010 NXP mbed Design Challenge and is posted as per the terms of the Challenge.

 

 

Raspberry Pi: Is It for You?

Unless you’ve been locked in your lab or design studio for the past several weeks, you’ve likely heard about Raspberry Pi, which is a compact, affordable computer that has been creating a buzz on the ‘Net for some time now. The group behind the computer is the Raspberry Pi Foundation, which is a UK-based charity that has an ever-growing following of more than 52,000 followers on Twitter!

(Source: TechTheFuture.com and The Raspberry Pi Foundation)

According to the Raspberry Pi Foundation, “The Raspberry Pi is a credit-card sized computer that plugs into your TV and a keyboard. It’s a capable little PC which can be used for many of the things that your desktop PC does, like spreadsheets, word-processing and games. It also plays high-definition video. We want to see it being used by kids all over the world to learn programming.”

The 85.60 mm × 53.98 mm × 17 mm Raspberry Pi weighs in at 45 g. It features a Broadcom BCM2835, including an ARM1176JZFS and a Videocore 4 GPU.

So, how can Circuit Cellar members use Raspberry Pi? Well, look at it in three ways. One, you can use it in a design of your own. Grab one and start building as soon as you can get your hands on one. Two, you can learn from the “story” of the Raspberry Pi Foundation—how it formed, how it works as a charity—and consider launching a tech foundation of your own. Three, you can design a low-cost embedded design platform or rapid prototyping solution—something distinguishable from the usual suspects of Arduino and mbed—and bring it to market.

In a recent post titled “What Are You Doing!?” at TechTheFuture.com, Tessel Renzenbrink detailed an interview with Eben Upton, a founder and trustee of the Raspberry Pi Foundation. Tessel writes:

Raspberry Pi is grabbing the attention with a $25 computer ($35 for a networked model). In the middle of the storm is Eben Upton. Why is he convinced that a computer which has no casing, no keyboard, no HD and no screen, will be successful? It is time to put the question to him: ‘what are you doing?’

‘We wanted to have a computer especially for Python, and there is a great tradition of naming computers after fruit: like Apricot, Acorn and even today there are computers named after fruit. So Raspberry is following the line of a rich tradition with the Pi, and yes, we wanted this connection with Python. That is where the Pi comes in’, explains Eben when asked for the name Raspberry Pi. And why is it a charity that brings this computer to the market? ‘That all has to do with value creation’, Eben continues. ‘I’ve been involved in several start-ups and then you always end up with the question; how will this create value?’. ‘In this case I do not have to worry about creating value. I can concentrate on designing and producing the board. The Raspberry Pi can be seen as a ‘white label’ product. If there are people out there with a commercial idea for this product, they are more then welcome’.

The Raspberry Pi is a bare PCB board; no keyboard, no HD, no screen.. how will this product become successful? ‘Basically, there is no reason why a computer has to cost more than $50. The peripherals like a screen and keyboard and storage will create a higher price, but with the Raspberry Pi we have taken another route – a normal TV can be used as a screen’, comments Eben. ‘Combine that with a ‘charity shop’ keyboard for a few dollars and you have a full working system’. He further emphazises that ‘the Raspberry is specifically aiming at youngsters learning to program’.

And how about the Raspberry Pi being ‘the next big thing’ after Arduino? There are many hints in that direction on the Internet? ‘The Raspberry Pi is different from the Arduino. The Arduino is great for direct applications and there are dozens of programs available. The Raspberry Pi is a computer system – designed to work with a screen and keyboard, a completely different idea. You can even watch videos with this thing. What might be interesting is the possibility to use the Raspberry Pi as a host for the Arduino board – the combination of these two, resulting in low priced systems can be very interesting and useful’.

‘There is also a difference the flexibility and usability, adds Eben. We have chosen for Broadcom chips and they are not easy to get in the market, making it very difficult to call the Raspberry Pi an ‘open source’ project. We are hoping to take this development into the open source direction, but that will require a new design’.

Can designers use the Raspberry Pi for different applications? ‘Yes, no problem. There is plenty of I/O (I2C and UART) to start using it for whatever challenges you’.

The first batch of 10,000 Pi’s has now arrived from the factory – what will be the next step? ‘Another 10,000 we hope and that is all just the start of it…’

You can read the entire post at TechTheFuture.com.

If you want to check out other kits and modules, visit the CC Webshop.

TechTheFuture.com is part of the Elektor group.