RTG4 Radiation-Tolerant FPGAs for High-speed Signal Processing Applications

Microsemi Corp. today announced availability of its RTG4 high-speed, signal-processing radiation-tolerant FPGA family. The RTG4’s reprogrammable flash technology offers complete immunity to radiation-induced configuration upsets in the harshest radiation environments, requiring no configuration scrubbing, unlike SRAM FPGA technology. RTG4 supports space applications requiring up to 150,000 logic elements and up to 300 MHz of system performance.Microsemi RTG4-  3-4view

Typical uses for RTG4 include remote sensing space payloads, such as radar, imaging and spectrometry in civilian, scientific and commercial applications. These applications span across weather forecasting and climate research, land use, astronomy and astrophysics, planetary exploration, and earth sciences. Other applications include mobile satellite services (MSS) communication satellites, as well as high altitude aviation, medical electronics and civilian nuclear power plant control. Such applications have historically used expensive radiation-hardened ASICs, which force development programs to incur substantial cost and schedule risk. RTG4 allows programs to access the ease-of-use and flexibility of FPGAs without sacrificing reliability or performance.

The flexibility, reliability and performance of RTG4 FPGAs make it much easier to achieve this. RTG4 is Microsemi’s latest development in a long history of radiation-tolerant FPGAs that are found in many NASA and international space programs.

Key product features include:

  • Up to 150,000 logic elements; each includes a four-input combinatorial look-up table (LUT4) and a flip-flop with built-in single event upset (SEU) and single event transient (SET) mitigation
  • High system performance, up to 300 MHz
  • 24 serial transceivers, with operation from 1 Gbps to 3.125 Gbps
  • 16 SEU- and SET-protected SpaceWire clock and data recovery circuits
  • 462 SEU- and SET-protected multiply-accumulate mathblocks
  • More than 5 Mb of on-board SEU-protected SRAM
  • Single event latch-up (SEL) and configuration memory upset immunity
  • Total ionizing dose (TID) beyond 100 Krad

Engineering silicon, Libero SoC development software, and RTG4 development kits are available now. RTG4 FPGAs and development kits have already shipped to some of the 120+ customers engaged in the RTG4 lead customer program. Flight units qualified to MIL-STD-883 Class B are expected to be available in early 2016.

Microsemi will present more information on RTG4 FPGAs in a live webinar on May 6 and will also be hosting Microsemi Space Forum events in the U.S., India and Europe starting in June, presenting information on RTG4 FPGAs and the extensive range of Microsemi space products.

Source: Microsemi Corp.

Improved Radiation Meter Webinar

Want to learn about Elektor’s improved radiation meter? On February 16, Elektor technical editor Thijs Beckers will host a webinar at element14 about the radiation meter, which is a DIY system that can measure alpha, beta, and gamma radiation.

(Improved Radiation Meter – Source: Elektor.com)

According to Elektor, all that’s required to measure radiation is “a simple PIN photodiode and a suitable preamplifier circuit.” The system features “an optimized preamplifier and a microcontroller-based counter. The microcontroller takes care of measuring time and pulse rate, displaying the result in coun

ts per minute.The device we describe can be used with different sensors to measure gamma and alpha radiation. It is particularly suitable for long-term measurements and for examining weakly radioactive samples.”

Its FREE to register at www.element14.com/community/events/3185.

Start Time: 2/16/12 9:00 AM CST (America/Chicago)
End Time: 2/16/12 10:00 AM CST (America/Chicago)
Location: Online event

Elektor International Media is the parent company of Circuit Cellar.