IoT Sensor Node Gets LoRaWAN Certification

Advantech offers its standardized M2.COM IoT LoRaWAN certified sensor node WISE-1510 with integrated ARM Cortex-M4 processor and LoRa transceiver. The module the  is able to provide multi-interfaces for sensors and I/O control such as UART, I2C, SPI, GPIO, PWM and ADC. The WISE-1510 sensor node is well suited for for smart cities, WISE-1510_3D _S20170602171747agriculture, metering, street lighting and environment monitoring. With power consumption optimization and wide area reception, LoRa  sensors or applications with low data rate requirements can achieve years of battery life and kilometers of long distance connection.

WISE-1510 has has received LoRaWAN certification from the LoRa Alliance. Depending on deployment requirements, developers can select to use Public LoRaWAN network services or build a private LoRa system with WISE-3610 LoRa IoT gateway. Advantech’s WISE-3610  is a Qualcomm ARM Cortex A7 based hardware platform with private LoRa ecosystem solution that can connect up to 500 WISE-1510 sensor node devices. Powered by Advantech’s WISE-PaaS IoT Software Platform, WISE-3610 features automatic cloud connection through its WISE-PaaS/WISE Agent service, manages wireless nodes and data via WSN management APIs, and helps customers streamline their IoT data acquisition development through sensor service APIs, and WSN drivers.

Developers can leverage microprocessors on WISE-1510 to build their own applications. WISE-1510 offers unified software—ARM Mbed OS and SDK for easy development with APIs and related documents. Developers can also find extensive resources from Github such as code review, library integration and free core tools. WISE-1510 also offers worldwide certification which allow developers to leverage their IoT devices anywhere. Using Advantech’s WISE-3610 LoRa IoT Gateway, WISE-1510 can be connected to WISE-  PaaS/RMM or  ARM Mbed Cloud service with IoT communication protocols including LWM2M, CoAP, and MQTT. End-to-end integration assists system integrators to overcome complex challenges and helps them build IoT applications quickly and easily.

WISE-1510 features and specifications:

  • ARM Cortex-M4 core processor
  • Compatible support for public LoRaWAN or private LoRa networks
  • Great for low power/wide range applications
  • Multiple I/O interfaces for sensor and control
  • Supports wide temperatures  -40 °C to 85 °C

Advantech |

Low-Power AC Input LED Drivers

XPThe DLE25 and DLE35 series of AC input LED drivers incorporate universal input with active power factor correction in a two-power stage design to eliminate flicker while providing a high-efficiency solution. The series includes dimmable constant current versions with PWM, voltage, and resistance programming capabilities.

The DLE25 and DLE35 drivers are packaged in an IP67-rated 3.68“ × 2.89“ × 1.29“ enclosure and are waterproof to depths up to 1 m, making them suitable for use in almost any outdoor application. Typical operating efficiency is in the 78% to 83% range.

Accommodating the extended universal input voltage range from 90 to 305 VAC, the DLE series supports the 277 VAC system used in the US. The series complies with EN61347 and UL8750 safety approvals and Class B conducted and radiated noise limits as specified by EN55015.

The DLE25 series costs $21.06 in 500-piece quantities.

XP Power, Ltd.

Flexible I/O Expansion for Rugged Applications

WynSystemsThe SBC35-CC405 series of multi-core embedded PCs includes on-board USB, gigabit Ethernet, and serial ports. These industrial computers are designed for rugged embedded applications requiring extended temperature operation and long-term availability.

The SBC35-CC405 series features the latest generation Intel Atom E3800 family of processors in an industry-standard 3.5” single-board computer (SBC) format COM Express carrier. A Type 6 COM Express module supporting a quad-, dual-, or single-core processor is used to integrate the computer. For networking and communications, the SBC35-CC405 includes two Intel I210 gigabit Ethernet controllers with IEEE 1588 timestamping and 10-/100-/1,000-Mbps multispeed operation. Four Type-A connectors support three USB 2.0 channels and one high-speed USB 3.0 channel. Two serial ports support RS-232/-422/-485 interface levels with clock options up to 20 Mbps in the RS-422/-485 mode and up to 1 Mbps in the RS-232 mode.

The SBC35-CC405 series also includes two MiniPCIe connectors and one IO60 connector to enable additional I/O expansion. Both MiniPCIe connectors support half-length and full-length cards with screw-down mounting for improved shock and vibration durability. One MiniPCIe connector also supports bootable mSATA solid-state disks while the other connector includes USB. The IO60 connector provides access to the I2C, SPI, PWM, and UART signals enabling a simple interface to sensors, data acquisition, and other low-speed I/O devices.

The SBC35-CC405 runs over a 10-to-50-VDC input power range and operates at temperatures from –40°C to 85°C. Enclosures, power supplies, and configuration services are also available.

Linux, Windows, and other x86 OSes can be booted from the CFast, mSATA, SATA, or USB interfaces, providing flexible data storage options. WinSystems provides drivers for Linux and Windows 7/8 as well as preconfigured embedded OSes.
The single-core SBC35-CC405 costs $499.

Winsystems, Inc.

HMI Development on Intelligent Displays

4dsystems_HRES4D Systems and Future Technology Devices International Limited (FTDI) (aka, FTDI Chip) recently introduced the 4DLCD-FT843. The intelligent display solution incorporates FTDI Chip’s FT800 Embedded Video Engine (EVE) with the subsequent introduction of two additional products. This combined product gives design engineers a foundation on which to quickly and easily construct human-machine interfaces (HMIs).

The first of these products is the ADAM (Arduino Display Adaptor Module). This 47.5-mm × 53.4-mm Arduino-compatible shield permits communication between the Arduino via the SPI. The shield is suitable for use with Arduino Uno, Due, Duemilanove, Leonardo, Mega 1280/2560, and Pro 5V. The shield’s micro-SD card provides the Arduino-based display system with ample data storage. The 4DLCD-FT843 can use the micro-SD card to retrieve objects (e.g., images, sounds, fonts, etc.). Drawing power from the Arduino’s 5-V bus, the ADAM regulates the 4DLCD-FT843’s supply to 3.3 V. The FT800 EVE controller can handle many of the graphics functions that would otherwise need to be managed by the Arduino.

The ADAM is complemented by the 4DLCD-FT843-Breakout. With a 26.5-mm × 12-mm footprint, this simple breakout module enables the 4DLCD-FT843 to be attached to a general host or breadboard for prototyping purposes. It features a 10-way FPC connection for attachment with the 4DLCD-FT843 along with a 10-way, 2.54-mm pitch male pin header that enables it to directly connect to the host board. Both products support a –10°C-to-70°C operational temperature range.

The EVE-driven 4DLCD-FT843 has a 4.3” TFT QWVGA display with a four-wire resistive touchscreen. It features a 64-voice polyphonic sound synthesizer, a mono PWM audio output, a programmable interrupt controller, a PWM dimming controller for the display’s backlight, and a flexible ribbon connector.

Contact 4D Systems or FTDI Chip for pricing.

4D Systems

Future Technology Devices International Limited (FTDI) (aka, FTDI Chip)

An Engineer Who Retires to the Garage

Jerry Brown, of Camarillo, CA, retired from the aerospace industry five years ago but continues to consult and work on numerous projects at home. For example, he plans to submit an article to Circuit Cellar about a Microchip Technology PIC-based computer display component (CDC) he designed and built for a traffic-monitoring system developed by a colleague.

Jerry Brown sits at his workbench. The black box atop the workbench is an embedded controller and is part of a traffic monitoring system he has been working on.

Jerry Brown sits at his workbench. The black box atop the workbench is an embedded controller and part of  his traffic monitoring system project.

“The traffic monitoring system is composed of a beam emitter component (BEC), a beam sensor component (BSC), and the CDC, and is intended for unmanned use on city streets, boulevards, and roadways to monitor and record the accumulative count, direction of travel, speed, and time of day for vehicles that pass by a specific location during a set time period,” he says.

Brown particularly enjoys working with PWM LED controllers. Circuit Cellar editors look forward to seeing his project article. In the meantime, he sent us the following description and pictures of the space where he conceives and executes his creative engineering ideas.

Jerry's garage-based lab.

Brown’s garage-based lab.

My workspace, which I call my “lab,” is on one side of my two-car garage and is fairly well equipped. (If you think it looks a bit messy, you should have seen it before I straightened it up for the “photo shoot.”)  

I have a good supply of passive and active electronic components, which are catalogued and, along with other parts and supplies, are stored in the cabinets and shelves alongside and above the workbench. I use the computer to write and compile software programs and to program PIC flash microcontrollers.  

The photos show the workbench and some of the instrumentation I have in the lab, including a waveform generator, a digital storage oscilloscope, a digital multimeter, a couple of power supplies, and a soldering station.  

The black box visible on top of the workbench is an embedded controller and is part of the traffic monitoring system that I have been working on.

Instruments in Jerry's lab include a waveform generator, a digital storage oscilloscope, a digital multimeter, a couple of power supplies, and a soldering station.

Instruments in Brown’s lab include a waveform generator, a digital storage oscilloscope, a digital multimeter, a couple of power supplies, and a soldering station. 

Brown has a BS in Electrical Engineering and a BS in Business Administration from California Polytechnic State University in San Luis Obispo, CA. He worked in the aerospace industry for 30 years and retired as the Principal Engineer/Manager of a Los Angeles-area aerospace company’s electrical and software design group.

Client Profile: Invenscience LC

Invenscience2340 South Heritage Drive, Suite I
Nibley UT, 84321

CONTACT: Collin Lewis,

EMBEDDED PRODUCTS: Torxis Servos and various servo controllers

FEATURED PRODUCT: Invenscience features a wide range of unique servo controllers that generate the PWM signal for general RC servomotors of all brands and Torxis Servos. (The Simple Slider Servo Controller is pictured.) Included in this lineup are:

  • Gamer joystick controllers
  • Conventional joystick controllers
  • Equalizer-style slider controllers
  • Android device Bluetooth controllers

All of these controllers provide power and the radio control (RC) PWM signal necessary to make servos move without any programming effort.

EXCLUSIVE OFFER: Use the promo code “CC2014” to receive a 10% discount on all purchases through March 31, 2014.

Circuit Cellar prides itself on presenting readers with information about innovative companies, organizations, products, and services relating to embedded technologies. This space is where Circuit Cellar enables clients to present readers useful information, special deals, and more.

Amplifier Classes from A to H

Engineers and audiophiles have one thing in common when it comes to amplifiers. They want a design that provides a strong balance between performance, efficiency, and cost.

If you are an engineer interested in choosing or designing the amplifier best suited to your needs, you’ll find columnist Robert Lacoste’s article in Circuit Cellar’s December issue helpful. His article provides a comprehensive look at the characteristics, strengths, and weaknesses of different amplifier classes so you can select the best one for your application.

The article, logically enough, proceeds from Class A through Class H (but only touches on the more nebulous Class T, which appears to be a developer’s custom-made creation).

“Theory is easy, but difficulties arise when you actually want to design a real-world amplifier,” Lacoste says. “What are your particular choices for its final amplifying stage?”

The following article excerpts, in part, answer  that question. (For fuller guidance, download Circuit Cellar’s December issue.)

The first and simplest solution would be to use a single transistor in linear mode (see Figure 1)… Basically the transistor must be biased to have a collector voltage close to VCC /2 when no signal is applied on the input. This enables the output signal to swing

Figure 1—A Class-A amplifier can be built around a simple transistor. The transistor must be biased in so it stays in the linear operating region (i.e., the transistor is always conducting).

Figure 1—A Class-A amplifier can be built around a simple transistor. The transistor must be biased in so it stays in the linear operating region (i.e., the transistor is always conducting).

either above or below this quiescent voltage depending on the input voltage polarity….

This solution’s advantages are numerous: simplicity, no need for a bipolar power supply, and excellent linearity as long as the output voltage doesn’t come too close to the power rails. This solution is considered as the perfect reference for audio applications. But there is a serious downside.

Because a continuous current flows through its collector, even without an input signal’s presence, this implies poor efficiency. In fact, a basic Class-A amplifier’s efficiency is barely more than 30%…

How can you improve an amplifier’s efficiency? You want to avoid a continuous current flowing in the output transistors as much as possible.

Class-B amplifiers use a pair of complementary transistors in a push-pull configuration (see Figure 2). The transistors are biased in such a way that one of the transistors conducts when the input signal is positive and the other conducts when it is negative. Both transistors never conduct at the same time, so there are very few losses. The current always goes to the load…

A Class-B amplifier has more improved efficiency compared to a Class-A amplifier. This is great, but there is a downside, right? The answer is unfortunately yes.
The downside is called crossover distortion…

Figure 2—Class-B amplifiers are usually built around a pair of complementary transistors (at left). Each transistor  conducts 50% of the time. This minimizes power losses, but at the expense of the crossover distortion at each zero crossing (at right).

Figure 2—Class-B amplifiers are usually built around a pair of complementary transistors (at left). Each transistor conducts 50% of the time. This minimizes power losses, but at the expense of the crossover distortion at each zero crossing.

As its name indicates, Class-AB amplifiers are midway between Class A and Class B. Have a look at the Class-B schematic shown in Figure 2. If you slightly change the transistor’s biasing, it will enable a small current to continuously flow through the transistors when no input is present. This current is not as high as what’s needed for a Class-A amplifier. However, this current would ensure that there will be a small overall current, around zero crossing.

Only one transistor conducts when the input signal has a high enough voltage (positive or negative), but both will conduct around 0 V. Therefore, a Class-AB amplifier’s efficiency is better than a Class-A amplifier but worse than a Class-B amplifier. Moreover, a Class-AB amplifier’s linearity is better than a Class-B amplifier but not as good as a Class-A amplifier.

These characteristics make Class-AB amplifiers a good choice for most low-cost designs…

There isn’t any Class-C audio amplifier Why? This is because a Class-C amplifier is highly nonlinear. How can it be of any use?

An RF signal is composed of a high-frequency carrier with some modulation. The resulting signal is often quite narrow in terms of frequency range. Moreover, a large class of RF modulations doesn’t modify the carrier signal’s amplitude.

For example, with a frequency or a phase modulation, the carrier peak-to-peak voltage is always stable. In such a case, it is possible to use a nonlinear amplifier and a simple band-pass filter to recover the signal!

A Class-C amplifier can have good efficiency as there are no lossy resistors anywhere. It goes up to 60% or even 70%, which is good for high-frequency designs. Moreover, only one transistor is required, which is a key cost reduction when using expensive RF transistors. So there is a high probability that your garage door remote control is equipped with a Class-C RF amplifier.

Class D is currently the best solution for any low-cost, high-power, low-frequency amplifier—particularly for audio applications. Figure 5 shows its simple concept.
First, a PWM encoder is used to convert the input signal from analog to a one-bit digital format. This could be easily accomplished with a sawtooth generator and a voltage comparator as shown in Figure 3.

This section’s output is a digital signal with a duty cycle proportional to the input’s voltage. If the input signal comes from a digital source (e.g., a CD player, a digital radio, a computer audio board, etc.) then there is no need to use an analog signal anywhere. In that case, the PWM signal can be directly generated in the digital domain, avoiding any quality loss….

As you may have guessed, Class-D amplifiers aren’t free from difficulties. First, as for any sampling architecture, the PWM frequency must be significantly higher than the input signal’s highest frequency to avoid aliasing….The second concern with Class-D amplifiers is related to electromagnetic compatibility (EMC)…

Figure 3—A Class-D amplifier is a type of digital amplifier (at left). The comparator’s output is a PWM signal, which is amplified by a pair of low-loss digital switches. All the magic happens in the output filter (at right).

Figure 3—A Class-D amplifier is a type of digital amplifier. The comparator’s output is a PWM signal, which is amplified by a pair of low-loss digital switches. All the magic happens in the output filter.

Remember that Class C is devoted to RF amplifiers, using a transistor conducting only during a part of the signal period and a filter. Class E is an improvement to this scheme, enabling even greater efficiencies up to 80% to 90%. How?
Remember that with a Class-C amplifier, the losses only occur in the output transistor. This is because the other parts are capacitors and inductors, which theoretically do not dissipate any power.

Because power is voltage multiplied by current, the power dissipated in the transistor would be null if either the voltage or the current was null. This is what Class-E amplifiers try to do: ensure that the output transistor never has a simultaneously high voltage across its terminals and a high current going through it….

Class G and Class H are quests for improved efficiency over the classic Class-AB amplifier. Both work on the power supply section. The idea is simple. For high-output power, a high-voltage power supply is needed. For low-power, this high voltage implies higher losses in the output stage.

What about reducing the supply voltage when the required output power is low enough? This scheme is clever, especially for audio applications. Most of the time, music requires only a couple of watts even if far more power is needed during the fortissimo. I agree this may not be the case for some teenagers’ music, but this is the concept.

Class G achieves this improvement by using more than one stable power rail, usually two. Figure 4 shows you the concept.

Figure 4—A Class-G amplifier uses two pairs of power supply rails. b—One supply rail is used when the output signal has a low power (blue). The other supply rail enters into action for high powers (red). Distortion could appear at the crossover.

Figure 4—A Class-G amplifier uses two pairs of power supply rails. b—One supply rail is used when the output signal has a low power (blue). The other supply rail enters into action for high powers (red). Distortion could appear at the crossover.

Turn Your Android Device into an Application Tool

A few years ago, the Android Open Accessory initiative was announced with the aim of making it easier for hardware manufacturers to create accessories that work with every Android device. Future Technology Devices International (FTDI) joined the initiative and last year introduced the FTD311D multi-interface Android host IC. The goal was to enable engineers and designers to make effective use of tablets and smartphones with the Android OS, according to Circuit Cellar columnist Jeff Bachiochi.

The FTD311D “provides an instant bridge from an Android USB port(B) to peripheral hardware over general purpose input-out (GPIO), UART, PWM, I2C Master, SPI Slave, or SPI Master interfaces,” Bachiochi says.

In the magazine’s December issue Bachiochi takes a comprehensive look at the USB Android host IC and how it works. By the end of his article, readers will have learned quite a bit about how to use FTDI’s apps and the FT311D chip to turn an Android device into their own I/0 tool.

Bachiochi used the SPI Master demo to read key presses and set LED states on this SPI slave 16-key touch panel.

Bachiochi used the SPI Master demo to read key presses and set LED states on this SPI slave 16-key touch panel.

Here is how Bachiochi describes the FT311D and its advantages:

The FT311D is a full-speed USB host targeted at providing access to peripheral hardware from a USB port on an Android device. While an Android device can be a USB host, many are mobile devices with limited power. For now, these On-The-Go (OTG) ports will be USB devices only (i.e., they can only connect to a USB host as a USB device).

Since the USB host is responsible for supplying power to a USB peripheral device, it would be bad design practice to enable a USB peripheral to drain an Android mobile device’s energy. Consequently, the FT311D takes on the task of USB host, eliminating any draw on the Android device’s battery.

All Android devices from V3.1 (Honeycomb) support the Android Open Accessory Mode (AOAM). The AOAM is the complete reverse of the conventional USB interconnect. This game-changing approach to attaching peripherals enables three key advantages. First, there is no need to develop special drivers for the hardware; second, it is unnecessary to root devices to alter permissions for loading drivers; and third, the peripheral provides the power to use the port, which ensures the mobile device battery is not quickly drained by the external hardware being attached.

Since the FT311D handles the entire USB host protocol, USB-specific firmware programming isn’t required. As the host, the FT311D must inquire whether the connected device supports the AOAM. If so, it will operate as an Open Accessory Mode device with one USB BULK IN endpoint and one USB BULK OUT endpoint (as well as the control endpoint.) This interface will be a full-speed (12-Mbps) USB enabling data transfer in and out.

The AOAM USB host has a set of string descriptors the Android OS is capable of reading. These strings are (user) associated with an Android OS application. The Android then uses these strings to automatically start the application when the hardware is connected. The FT311D is configured for one of its multiple interfaces via configuration inputs at power-up. Each configuration will supply the Android device with a unique set of string descriptors, therefore enabling different applications to run, depending on its setup.

The FT311D’s configuration determines whether each application will have access to several user interface APIs that are specific to each configuration.

The article goes on to examine the various interfaces in detail and to describe a number of demo projects, including a multimeter.

Many of Bachiochi's projects use printable ASCII text commands and replies. This enables a serial terminal to become a handy user I/O device. This current probe circuit outputs its measurements in ASCII-printable text.

Many of Bachiochi’s projects use printable ASCII text commands and replies. This enables a serial terminal to become a handy user I/O device. This current probe circuit outputs its measurements in ASCII-printable text.

Multimeters are great tools. They have portability that enables them to be brought to wherever a measurement must be made. An Android device has this same ability. Since applications can be written for these devices, they make a great portable application tool. Until the AOAM’s release, there was no way for these devices to be connected to any external circuitry and used as an effective tool.

I think FTDI has bridged this gap nicely. It provided a great interface chip that can be added to any circuit that will enable an Android device to serve as an effective user I/O device. I’ve used the chip to quickly interface with some technology to discover its potential or just test its abilities. But I’m sure you are already thinking about the other potential uses for this connection.

Bachiochi is curious to hear from readers about their own ideas.

If you think the AOAM has future potential, but you want to know what’s involved with writing Android applications for a specific purpose, send me an e-mail and I’ll add this to my list of future projects!

You can e-mail Bachiochi at or post your comment here.


High-Voltage Gate Driver IC

Allegro A4900 Gate Driver IC

Allegro A4900 Gate Driver IC

The A4900 is a high-voltage brushless DC (BLDC) MOSFET gate driver IC. It is designed for high-voltage motor control for hybrid, electric vehicle, and 48-V automotive battery systems (e.g., electronic power steering, A/C compressors, fans, pumps, and blowers).

The A4900’s six gate drives can drive a range of N-channel insulated-gate bipolar transistors (IGBTs) or power MOSFET switches. The gate drives are configured as three high-voltage high-side drives and three low-side drives. The high-side drives are isolated up to 600 V to enable operation with high-bridge (motor) supply voltages. The high-side drives use a bootstrap capacitor to provide the supply gate drive voltage required for N-channel FETs. A TTL logic-level input compatible with 3.3- or 5-V logic systems can be used to control each FET.

A single-supply input provides the gate drive supply and the bootstrap capacitor charge source. An internal regulator from the single supply provides the logic circuit’s lower internal voltage. The A4900’s internal monitors ensure that the high- and low-side external FET’s gate source voltage is above 9 V when active.

The control inputs to the A4900 offer a flexible solution for many motor control applications. Each driver can be driven with an independent PWM signal, which enables implementation of all motor excitation methods including trapezoidal and sinusoidal drive. The IC’s integrated diagnostics detect undervoltage, overtemperature, and power bridge faults that can be configured to protect the power switches under most short-circuit conditions. Detailed diagnostics are available as a serial data word.

The A4900 is supplied in a 44-lead QSOP package and costs $3.23 in 1,000-unit quantities.

Allegro MicroSystems, LLC

PWM Controller Uses BJTs to Reduce Costs

Dialog iW1679 Digital PWM Controller

Dialog iW1679 Digital PWM Controller

The iW1679 digital PWM controller drives 10-W power bipolar junction transistor (BJT) switches to reduce  costs in 5-V/2-A smartphone adapters and chargers. The controller enables designers to replace field-effect transistors (FETs) with lower-cost BJTs to provide lower standby power and higher light-load and active average efficiency in consumer electronic products.

The iW1679 uses Dialog’s adaptive multimode PWM/PFM control to dynamically change the BJT switching frequency. This helps the system improve light-load efficiency, power consumption, and electromagnetic interference (EMI). The iW1679 provides high, 83% active average efficiency; maintains high efficiency at loads as light as 10%. It achieves less than 30-mW no-load standby power with fast standby recovery time. The controller meets stringent global energy efficiency standards, including: US Department of Energy, European Certificate of Conformity (CoC) version 5, and Energy Star External Power Supplies (EPS) 2.0.

The iW1679 offers a user-configurable, four-level cable drop compensation option. It comes in a standard, low-cost, eight-lead SOIC package and provides protection from fault conditions including output short-circuit, output overvoltage, output overcurrent, and overtemperature.

The iW1679 costs $0.29 each in 1,000-unit quantities.

Dialog Semiconductor