The Transistor: Something for Every DIY-er

The Transistor is a UT-based hackerspace. Its members have a love for all things open source and DIY. They enjoy working with embedded electronics and have created their own version of Arduino.

Orem

Location 1187 S 1480 W Orem, UT 84058
Members 55

Salt Lake City

Location 440 S 700 E
Unit #102, Salt Lake City, UT 84102
Members 18

The Transistor Hackerspace

Founder Deven Fore tells us about The Transistor:

ROBBERT: Tell us about your meeting space!

DEVEN: We currently have two locations. One in Salt Lake City, UT and one in Orem, UT.

Our Salt Lake City location is about 1,000 sq ft in a nice office building. We have one main area and two smaller rooms.

Our Orem location is about 5,700 sq ft in a large warehouse that also has offices. We have sectioned off a wood shop, a metal shop, a clean CNC, an assembly area, a members desks area, a lounge, a server room, an electronics room, and a few other dedicated areas.

ROBBERT: What tools do you have in your space? (Soldering stations? Oscilloscopes? 3-D printers?)

DEVEN: Too many things to list. All the general things you would expect, such as:

  • Soldering irons
  • Oscilloscopes
  • Analyzers
  • PCB work stations
  • Laser cutter
  • Vinyl cutter
  • Heat press
  • Chop saws
  • Mini lathe
  • Servers
  • Air tools
  • Cut-off saws
  • Mig welder
  • V90 FireBall router
  • A couple small miscellaneous CNC routers
  • 3-D printers
  • Networking gear

ROBBERT: Are there any tools your group really wants or needs?

DEVEN: We would love to have a large mill (CNC or manual) some day. Also, just all-around upgrades to current equipment.

ROBBERT: Does your group work with embedded tech (Arduino, Raspberry Pi, embedded security, MCU-based designs, etc.)?

DEVEN: All the time.

ROBBERT: Can you tell us about some of your group’s recent tech projects?

DEVEN: Currently we are working on miniature MAME cabinets. They are two player and will hold up to a 22″ LCD. We will release the CNC plans to the public as soon as we are done.

We’re working on a lot of miscellaneous projects: software, hardware, security, and so forth.

We’re also currently working on building some displays for The Living Planet Aquarium, in Sandy UT.

ROBBERT: What’s the craziest project your group or group members have completed?

DEVEN: Nothing too crazy. We built a drink cooler a year or so ago for the Red Bull Challenge. We designed and build a few full-size four-player MAME cabinets (planned for release to the public on our website, and featured in J. Baichtal’s Hack This: 24 Incredible Hackerspace Projects from the DIY Movement (Que Publishing, 2011).

4-player MAME cabinet

4-player MAME cabinet

ROBBERT: Do you have any events or initiatives you’d like to tell us about? Where can we learn more about it?

DEVEN: Lots of things are going on right now. Nothing specific, aside from working with the aquarium. We have a lot of public events/user groups that meet at our space. Our calender is on our website if you are interested in specifics.

ROBBERT: What would you like to say to fellow hackers out there?

DEVEN: Have fun, be productive, be safe.

Want to learn more about The Transistor? Check out their Facebook or MeetUp page!

Check out their calender to see what The Transistor is up to.

Show us your hackerspace! Tell us about your group! Where does your group design, hack, create, program, debug, and innovate? Do you work in a 20′ × 20′ space in an old warehouse? Do you share a small space in a university lab? Do you meet a local coffee shop or bar? What sort of electronics projects do you work on? Submit your hackerspace and we might feature you on our website!

Ace Monster Toys – 3D Printing, DIY Book Scanners and “Dirty Shops”

Ace Monster Toys is a Hackerspace in the East San Francisco Bay Area dedicated to education, hacking, and maker culture since September 2010. They are a membership based group with regular free open-to-the-public classes and events. They are open to anyone and non-members are welcome.

Location 6050 Lowell Street, Oakland, CA
Members 55
Website AceMonsterToys.org

Ace Monster Toys Hackerspace

Here’s what Ace Monster Toys member David has to say about his group:
Tell us about your meeting space!

Our space is 1600 sq ft, divided among three rooms, one upstairs and two downstairs. The upstairs is the “less dirty” area, with desks for working on projects, space for meetings and classes, electronics work area, and 3D printers. Downstairs is the “dirty shop,” in which one room is mostly woodworking tools with a large CNC mill and the other room contains the laser cutter and some storage. We have many shelves where members can put their projects in boxes as well as a few small storage lockers, both upstairs and downstairs.

What tools do you have in your space? (Soldering stations? Oscilloscopes? 3-D printers?)

Everything and the kitchen sink it seems like! Downstairs is a giant 80W laser cutter, a giant CNC router table (both capable of taking full sheets of plywood or other woods), a mini desktop CNC router, several different woodworking tools (bandsaw, chop saw, radial arm saw, table saw, router table, jointer, wood lathe, various power hand tools), a metal bandsaw, a micro metal lathe, a drill press, and a Zcorp powder based 3D printer. Upstairs we have several textile machines (serger, sewing machines), oscilloscopes, logic analyzers, soldering stations, three plastic FDM type 3D printers, a DIY book scanner, a large format inkjet printer, and a roomba or three.

Are there any tools your group really wants or needs?

A more reliable 3D printer would be pretty nice. Also a CNC mill capable of working metal would be really cool and would allow us to fabricate metal parts. A decent tabletop or larger metal lathe would expand our fabrication abilities. For textiles: Supplies for conductive sewing projects/classes… lilipad everything, conductive fabric, thread, battery packs, batteries. Not just for the classes themselves but also for prototyping projects.

Does your group work with embedded tech (Arduino, Raspberry Pi, embedded security, MCU-based designs, etc.)?

Yes! We have lots of Arduino and Raspberry Pi fans, but of course we have people who work with other microcontrollers as well (ARM based mostly I’d say).

Can you tell us about some of your group’s recent tech projects?

One group project we built was a laser shooting gallery — targets had light sensors and were attached to servo motors, would pop up, and then you had to shoot them with a laser pointer gun. There were sound effects and a score display. You can read more details about it here: wiki.acemonstertoys.org/Shooting_Gallery and there are some videos here: popmechnow.com/radioshack (on the left side) One of our members has been working on using a small desktop CNC router to make custom circuit boards. It uses a neat hack to probe the level of the bed to create more accurate cuts. The results have been pretty good. There’s lots of details about this project here: wiki.acemonstertoys.org/Milling_Circuit_Boards

Another cool and not too complex project is 3D scanning our members and then printing out the models on our 3D printer. We use an inexpensive xbox kinect to do the scanning, along with the free version of the software Skanect, and then we load that model into our Makergear Mosaic 3D printer and spit them out. Here’s a picture of two of our members in plastic model format:

3D Scans of Ace Monster Toys' members

What’s the craziest project your group or group members have completed?

Craziest? It’s hard to say, lots of crazy stuff comes out of this place. One impressive project is our Book Scanner, made from plywood, random hardware store nuts and bolts, and a bike brake cable which triggers the shutters on two cameras to photograph two pages at once. It’s gotten a lot of press, the inventor even gave a TED Talk about it. He made his own website for it, you can find more details here: www.diybookscanner.org

Do you have any events or initiatives you’d like to tell us about? Where can we learn more about it?

Our current biggest initiative is moving to a bigger space. We would like to double our square footage and offer more facilities & capabilities including accessibility. For events which are going on, many of them weekly, check out the calendar on our website or on meetup.acemonstertoys.org.

What would you like to say to fellow hackers out there?

“Collaboration and connection has done more to further my knowledge and to produce better, more creative art and projects and innovative ideas than any other factor. Be fearless. Ask questions, try it. Don’t be afraid to cut, or solder or try even when it seems hard or complicated. Everybody starts somewhere.” ~ Crafty Rachel

Check out Ace Monster Toys’ pages on Instructables and Facebook!

You can read all about their projects on their wiki page.

Show us your hackerspace! Tell us about your group! Where does your group design, hack, create, program, debug, and innovate? Do you work in a 20′ × 20′ space in an old warehouse? Do you share a small space in a university lab? Do you meet at a local coffee shop or bar? What sort of electronics projects do you work on? Submit your hackerspace and we might feature you on our website!

Electrostatic Cleaning Robot Project

How do you clean a clean-energy generating system? With a microcontroller (and a few other parts, of course). An excellent example is US designer Scott Potter’s award-winning, Renesas RL78 microcontroller-based Electrostatic Cleaning Robot system that cleans heliostats (i.e., solar-tracking mirrors) used in solar energy-harvesting systems. Renesas and Circuit Cellar magazine announced this week at DevCon 2012 in Garden Grove, CA, that Potter’s design won First Prize in the RL78 Green Energy Challenge.

This image depicts two Electrostatic Cleaning Robots set up on two heliostats. (Source: S. Potter)

The nearby image depicts two Electrostatic Cleaning Robots set up vertically in order to clean the two heliostats in a horizontal left-to-right (and vice versa) fashion.

The Electrostatic Cleaning Robot in place to clean

Potter’s design can quickly clean heliostats in Concentrating Solar Power (CSP) plants. The heliostats must be clean in order to maximize steam production, which generates power.

The robot cleaner prototype

Built around an RL78 microcontroller, the Electrostatic Cleaning Robot provides a reliable cleaning solution that’s powered entirely by photovoltaic cells. The robot traverses the surface of the mirror and uses a high-voltage AC electric field to sweep away dust and debris.

Parts and circuitry inside the robot cleaner

Object oriented C++ software, developed with the IAR Embedded Workbench and the RL78 Demonstration Kit, controls the device.

IAR Embedded Workbench IDE

The RL78 microcontroller uses the following for system control:

• 20 Digital I/Os used as system control lines

• 1 ADC monitors solar cell voltage

• 1 Interval timer provides controller time tick

• Timer array unit: 4 timers capture the width of sensor pulses

• Watchdog timer for system reliability

• Low voltage detection for reliable operation in intermittent solar conditions

• RTC used in diagnostic logs

• 1 UART used for diagnostics

• Flash memory for storing diagnostic logs

The complete project (description, schematics, diagrams, and code) is now available on the Challenge website.

 

DIY Green Energy Design Projects

Ready to start a low-power or energy-monitoring microcontroller-based design project? You’re in luck. We’re featuring eight award-winning, green energy-related designs that will help get your creative juices flowing.

The projects listed below placed at the top of Renesas’s RL78 Green Energy Challenge.

Electrostatic Cleaning Robot: Solar tracking mirrors, called heliostats, are an integral part of Concentrating Solar Power (CSP) plants. They must be kept clean to help maximize the production of steam, which generates power. Using an RL78, the innovative Electrostatic Cleaning Robot provides a reliable cleaning solution that’s powered entirely by photovoltaic cells. The robot traverses the surface of the mirror and uses a high voltage AC electric field to sweep away dust and debris.

Parts and circuitry inside the robot cleaner

Cloud Electrofusion Machine: Using approximately 400 times less energy than commercial electrofusion machines, the Cloud Electrofusion Machine is designed for welding 0.5″ to 2″ polyethylene fittings. The RL78-controlled machine is designed to read a barcode on the fitting which determines fusion parameters and traceability. Along with the barcode data, the system logs GPS location to an SD card, if present, and transmits the data for each fusion to a cloud database for tracking purposes and quality control.

Inside the electrofusion machine (Source: M. Hamilton)

The Sun Chaser: A GPS Reference Station: The Sun Chaser is a well-designed, solar-based energy harvesting system that automatically recalculates the direction of a solar panel to ensure it is always facing the sun. Mounted on a rotating disc, the solar panel’s orientation is calculated using the registered GPS position. With an external compass, the internal accelerometer, a DC motor and stepper motor, you can determine the solar panel’s exact position. The system uses the Renesas RDKRL78G13 evaluation board running the Micrium µC/OS-III real-time kernel.

[Video: ]

Water Heater by Solar Concentration: This solar water heater is powered by the RL78 evaluation board and designed to deflect concentrated amounts of sunlight onto a water pipe for continual heating. The deflector, armed with a counterweight for easy tilting, automatically adjusts the angle of reflection for maximum solar energy using the lowest power consumption possible.

RL78-based solar water heater (Source: P. Berquin)

Air Quality Mapper: Want to make sure the air along your daily walking path is clean? The Air Quality Mapper is a portable device designed to track levels of CO2 and CO gasses for constructing “Smog Maps” to determine the healthiest routes. Constructed with an RDKRL78G13, the Mapper receives location data from its GPS module, takes readings of the CO2 and CO concentrations along a specific route and stores the data in an SD card. Using a PC, you can parse the SD card data, plot it, and upload it automatically to an online MySQL database that presents the data in a Google map.

Air quality mapper design (Source: R. Alvarez Torrico)

Wireless Remote Solar-Powered “Meteo Sensor”: You can easily measure meteorological parameters with the “Meteo Sensor.” The RL78 MCU-based design takes cyclical measurements of temperature, humidity, atmospheric pressure, and supply voltage, and shares them using digital radio transceivers. Receivers are configured for listening of incoming data on the same radio channel. It simplifies the way weather data is gathered and eases construction of local measurement networks while being optimized for low energy usage and long battery life.

The design takes cyclical measurements of temperature, humidity, atmospheric pressure, and supply voltage, and shares them using digital radio transceivers. (Source: G. Kaczmarek)

Portable Power Quality Meter: Monitoring electrical usage is becoming increasingly popular in modern homes. The Portable Power Quality Meter uses an RL78 MCU to read power factor, total harmonic distortion, line frequency, voltage, and electrical consumption information and stores the data for analysis.

The portable power quality meter uses an RL78 MCU to read power factor, total harmonic distortion, line frequency, voltage, and electrical consumption information and stores the data for analysis. (Source: A. Barbosa)

High-Altitude Low-Cost Experimental Glider (HALO): The “HALO” experimental glider project consists of three main parts. A weather balloon is the carrier section. A glider (the payload of the balloon) is the return section. A ground base section is used for communication and display telemetry data (not part of the contest project). Using the REFLEX flight simulator for testing, the glider has its own micro-GPS receiver, sensors and low-power MCU unit. It can take off, climb to pre-programmed altitude and return to a given coordinate.

High-altitude low-cost experimental glider (Source: J. Altenburg)