Testing Power Supplies (EE Tip #112)

How can you determine the stability of your lab or bench-top supply? You can get a good impression of the stability of a power supply under various conditions by loading the output dynamically. This can be implemented using just a handful of components.

Power supply testing

Power supply testing

Apart from obvious factors such as output voltage and current, noise, hum and output resistance, it is also important that a power supply has a good regulation under varying load conditions. A standard test for this uses a resistor array across the output that can be switched between two values. Manufacturers typically use resistor values that correspond to 10% and 90% of the rated power output of the supply.

The switching frequency between the values is normally several tens of hertz (e.g. 40 Hz). The behavior of the output can then be inspected with an oscilloscope, from which you can deduce how stable the power supply is. At the rising edge of the square wave you will usually find an overshoot, which is caused by the way the regulator functions, the inductance of the internal and external wiring and any output filter.

This dynamic behavior is normally tested at a single frequency, but the designers in the Elektor Lab have tested numerous lab supplies over the years and it seemed interesting to check what happens at higher switching frequencies. The only items required for this are an ordinary signal generator with a square wave output and the circuit shown in Figure 1.Fig1-pwrsupply

You can then take measurements up to several megahertz, which should give you a really good insight for which applications the power supply is suitable. More often than not you will come across a resonance frequency at which the supply no longer remains stable and it’s interesting to note at which frequency that occurs.

The circuit really is very simple. The power MOSFET used in the circuit is a type that is rated at 80 V/75 A and has an on-resistance of only 10 mΩ (VGS = 10 V).

The output of the supply is continuously loaded by R2, which has a value such that 1/10th of the maximum output current flows through it (R2 = Vmax/0.1/max). The value of R1 is chosen such that 8/10th of the maximum current flows through it (R1 = Vmax/0.8/max). Together this makes 0.9/max when the MOSFET conducts. You should round the calculated values to the nearest E12 value and make sure that the resistors are able to dissipate the heat generated (using forced cooling, if required).

At larger output currents the MOSFET should also be provided with a small heatsink. The gate of the FET is connected to ground via two 100-Ω resistors, providing a neat 50-Ω impedance to the output of the signal generator. The output voltage of the signal generator should be set to a level between 5 V and 10 V, and you’re ready to test. Start with a low switching frequency and slowly increase it, whilst keeping an eye on the square wave on the oscilloscope. And then keep increasing the frequency… Who knows what surprises you may come across? Bear in mind though that the editorial team can’t be held responsible for any damage that may occur to the tested power supply. Use this circuit at your own risk!

— Harry Baggen and Ton Giesberts (Elektor, February 210)

High-Voltage Gate Driver IC

Allegro A4900 Gate Driver IC

Allegro A4900 Gate Driver IC

The A4900 is a high-voltage brushless DC (BLDC) MOSFET gate driver IC. It is designed for high-voltage motor control for hybrid, electric vehicle, and 48-V automotive battery systems (e.g., electronic power steering, A/C compressors, fans, pumps, and blowers).

The A4900’s six gate drives can drive a range of N-channel insulated-gate bipolar transistors (IGBTs) or power MOSFET switches. The gate drives are configured as three high-voltage high-side drives and three low-side drives. The high-side drives are isolated up to 600 V to enable operation with high-bridge (motor) supply voltages. The high-side drives use a bootstrap capacitor to provide the supply gate drive voltage required for N-channel FETs. A TTL logic-level input compatible with 3.3- or 5-V logic systems can be used to control each FET.

A single-supply input provides the gate drive supply and the bootstrap capacitor charge source. An internal regulator from the single supply provides the logic circuit’s lower internal voltage. The A4900’s internal monitors ensure that the high- and low-side external FET’s gate source voltage is above 9 V when active.

The control inputs to the A4900 offer a flexible solution for many motor control applications. Each driver can be driven with an independent PWM signal, which enables implementation of all motor excitation methods including trapezoidal and sinusoidal drive. The IC’s integrated diagnostics detect undervoltage, overtemperature, and power bridge faults that can be configured to protect the power switches under most short-circuit conditions. Detailed diagnostics are available as a serial data word.

The A4900 is supplied in a 44-lead QSOP package and costs $3.23 in 1,000-unit quantities.

Allegro MicroSystems, LLC
www.allegromicro.com

Solar Cells Explained (EE Tip #104)

All solar cells are made from at least two different materials, often in the form of two thin, adjacent layers. One of the materials must act as an electron donor under illumination, while the other material must act as an electron acceptor. If there is some sort of electron barrier between the two materials, the result is an electrical potential. If each of these materials is now provided with an electrode made from an electrically conductive material and the two electrodes are connected to an external load, the electrons will follow this path.

Source: Jens Nickels, Elektor, 070798-I, 6/2009

Source: Jens Nickels, Elektor, 070798-I, 6/2009

The most commonly used solar cells are made from thin wafers of polycrystalline silicon (polycrystalline cells have a typical “frosty” appearance after sawing and polishing). The silicon is very pure, but it contains an extremely small amount of boron as a dopant (an intentionally introduced impurity), and it has a thin surface layer doped with phosphorus. This creates a PN junction in the cell, exactly the same as in a diode. When the cell is exposed to light, electrons are released and holes (positive charge carriers) are generated. The holes can recombine with the electrons. The charge carriers are kept apart by the electrical field of the PN junction, which partially prevents the direct recombination of electrons and holes.

The electrical potential between the electrodes on the top and bottom of the cell is approximately 0.6 V. The maximum current (short-circuit current) is proportional to the surface area of the cell, the impinging light energy, and the efficiency. Higher voltages and currents are obtained by connecting cells in series to form strings and connecting these strings of cells in parallel to form modules.

The maximum efficiency achieved by polycrystalline cells is 17%, while monocrystalline cells can achieve up to 22%, although the overall efficiency is lower if the total module area is taken into account. On a sunny day in central Europe, the available solar energy is approximately 1000 W/m2, and around 150 W/m2 of this can be converted into electrical energy with currently available solar cells.

Source: Jens Nickels, Elektor, 070798-I, 6/2009

Source: Jens Nickels, Elektor, 070798-I, 6/2009

Cells made from selenium, gallium arsenide, or other compounds can achieve even higher efficiency, but they are more expensive and are only used in special applications, such as space travel. There are also other approaches that are aimed primarily at reducing costs instead of increasing efficiency. The objective of such approaches is to considerably reduce the amount of pure silicon that has to be used or eliminate its use entirely. One example is thin-film solar cells made from amorphous silicon, which have an efficiency of 8 to 10% and a good price/performance ratio. The silicon can be applied to a glass sheet or plastic film in the form of a thin layer. This thin-film technology is quite suitable for the production of robust, flexible modules, such as the examples described in this article.

Battery Charging

From an electrical viewpoint, an ideal solar cell consists of a pure current source in parallel with a diode (the outlined components in the accompanying schematic diagram). When the solar cell is illuminated, the typical U/I characteristic of the diode shifts downward (see the drawing, which also shows the opencircuit voltage UOC and the short-circuit current ISC). The panel supplies maximum power when the load corresponds to the points marked “MPP” (maximum power point) in the drawing. The power rating of a cell or panel specified by the manufacturer usually refers to operation at the MPP with a light intensity of 100,000 lux and a temperature of 25°C. The power decreases by approximately 0.2 to 0.5 %/°C as the temperature increases.

A battery can be charged directly from a panel without any problems if the open-circuit voltage of the panel is higher than the nominal voltage of the battery. No voltage divider is necessary, even if the battery voltage is only 3 V and the nominal voltage of the solar panel is 12 V. This is because a solar cell always acts as a current source instead of a voltage source.

If the battery is connected directly to the solar panel, a small leakage current will flow through the solar panel when it is not illuminated. The can be prevented by adding a blocking diode to the circuit (see the schematic). Many portable solar modules have a built-in blocking diode (check the manufacturer’s specifications).

This simple arrangement is adequate if the maximum current from the solar panel is less than the maximum allowable overcharging current of the battery. NiMH cells can be overcharged for up to 100 hours if the charging current (in A) is less than one-tenth of their rated capacity in Ah. This means that a panel with a rated current of 2 A can be connected directly to a 20-Ah battery without any problems. However, under these conditions the battery must be fully discharged by a load from time to time.

Practical Matters

When positioning a solar panel, you should ensure that no part of the panel is in the shade, as otherwise the voltage will decrease markedly, with a good chance that no current will flow into the connected battery.

Most modules have integrated bypass diodes connected in reverse parallel with the solar cells. These diodes prevent reverse polarization of any cells that are not exposed to sunlight, so the current from the other cells flows through the diodes, which can cause overheating and damage to the cells. To reduce costs, it is common practice to fit only one diode to a group of cells instead of providing a separate diode for each cell.

—Jens Nickels, Elektor, 070798-I, 6/2009

Simple Guitar Transmitter (EE Tip #102)

You need a guitar amplifier to play an electric guitar. The guitar must be connected with a cable to the amplifier, which you might consider an inconvenience. Most guitar amplifiers operate off the AC power line. An electric guitar fitted with a small transmitter offers several advantages. You can make the guitar audible via an FM tuner/amplifier, for example. Both the connecting cable and amplifier are then unnecessary. With a portable FM broadcast radio or, if desired, a boombox, you can play in the street or in subway.

Source: Elektor 3/2009

Source: Elektor 3/2009

stations (like Billy Bragg). In that case, everything is battery-powered and independent of a fixed power point. (You might need a permit, though.)

Designing a transmitter to do this is not necessary. A variety of low-cost transmitters are available. The range of these devices is often not more than around 30′, but that’s likely plenty for most applications. Consider a König FMtrans20 transmitter. After fitting the batteries and turning it on, you can detect a carrier signal on the radio. Four channels are available, so it should always be possible to find an unused part of the FM band. A short cable with a 3.5-mm stereo audio jack protrudes from the enclosure. This is the audio input. The required signal level for sufficient modulation is about 500 mVPP.

If a guitar is connected directly, the radio’s volume level will have to be high to get sufficient sound. In fact, it will have to be so high that the noise from the modulator will be quite annoying. Thus, a preamplifier for the guitar signal is essential.

To build this preamplifier into the transmitter, you first have to open the enclosure. The two audio channels are combined. This is therefore a single channel (mono) transmitter. Because the audio preamplifier can be turned on and off at the same time as the transmitter, you also can use the transmitter’s on-board power supply for power. In our case, that was about 2.2 V. This voltage is available at the positive terminal of an electrolytic capacitor. Note that 2.2 V is not enough to power an op-amp. But with a single transistor the gain is already big enough and the guitar signal is sufficiently modulated. The final implementation of the modification involves soldering the preamplifier circuit along an edge of the PCB so that everything still fits inside the enclosure. The stereo cable is replaced with a 11.8″ microphone cable, fitted with a guitar plug (mono jack). The screen braid of the cable acts as an antenna as well as a ground connection for the guitar signal. The coil couples the low-frequency signal to ground, while it isolates the high-frequency antenna signal. While playing, the cable with the transmitter just dangles below the guitar, without being a nuisance. If you prefer, you can also secure the transmitter to the guitar with a bit of double-sided tape.

—Gert Baars, “Simple Guitar Transmitter,” Elektor,  080533-1, 3/2009.

Two-Channel CW Laser Diode Driver with an MCU Interface

The iC-HT laser diode driver enables microcontroller-based activation of laser diodes in Continuous Wave mode. With this device, laser diodes can be driven by the optical output power (using APC), the laser diode current (using ACC), or a full controller-based power control unit.

The maximum laser diode current per channel is 750 mA. Both channels can be switched in parallel for high laser diode currents of up to 1.5 A. A current limit can also be configured for each channel.

Internal operating points and voltages can be output through ADCs. The integrated temperature sensor enables the system temperature to be monitored and can also be used to analyze control circuit feedback. Logarithmic DACs enable optimum power regulation across a large dynamic range. Therefore, a variety of laser diodes can be used.

The relevant configuration is stored in two equivalent memory areas. Internal current limits, a supply-voltage monitor, channel-specific interrupt-switching inputs, and a watchdog safeguard the laser diodes’ operation through iC-HT.

The device can be also operated by pin configuration in place of the SPI or I2C interface, where external resistors define the APC performance targets. An external supply voltage can be controlled through current output device configuration overlay (DCO) to reduce the system power dissipation (e.g., in battery-operated devices or systems).

The iC-HT operates on 2.8 to 8 V and can drive both blue and green laser diodes. The diode driver has a –40°C-to-125°C operating temperature range and is housed in a 5-mm × 5-mm, 28-pin QFN package.

The iC-HT costs $13.20 in 1,000-unit quantities.

iC-Haus GmbH
www.ichaus.com