Tuesday’s Newsletter: IoT Tech Focus

Coming to your inbox tomorrow: Circuit Cellar’s IoT Technology Focus newsletter. Tomorrow’s newsletter covers what’s happening with Internet-of-Things (IoT) technology–-from devices to gateway networks to cloud architectures. This newsletter tackles news and trends about the products and technologies needed to build IoT implementations and devices.

Bonus: We’ve added Drawings for Free Stuff to our weekly newsletters. Make sure you’ve subscribed to the newsletter so you can participate.

Already a Circuit Cellar Newsletter subscriber? Great!
You’ll get your IoT Technology Focus newsletter issue tomorrow.

Not a Circuit Cellar Newsletter subscriber?
Don’t be left out! Sign up now:

Our weekly Circuit Cellar Newsletter will switch its theme each week, so look for these in upcoming weeks:

Embedded Boards.(2/26) The focus here is on both standard and non-standard embedded computer boards that ease prototyping efforts and let you smoothly scale up to production volumes.

Analog & Power. (3/5) This newsletter content zeros in on the latest developments in analog and power technologies including DC-DC converters, AD-DC converters, power supplies, op amps, batteries and more.

Microcontroller Watch (3/12) This newsletter keeps you up-to-date on latest microcontroller news. In this section, we examine the microcontrollers along with their associated tools and support products.

March Circuit Cellar: Sneak Preview

The March issue of Circuit Cellar magazine is out next week!. We’ve rounded up an outstanding selection of in-depth embedded electronics articles just for you, and rustled them all into our 84-page magazine.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 

Here’s a sneak preview of March 2019 Circuit Cellar:

POWER MAKES IT POSSIBLE

Power Issues for Wearables
Wearable devices put extreme demands on the embedded electronics that make them work—and power is front and center among those demands. Devices spanning across the consumer, fitness and medical markets all need an advanced power source and power management technologies to perform as expected. Circuit Cellar Chief Editor Jeff Child examines how today’s microcontroller and power electronics are enabling today’s wearable products.

Power Supplies for Medical Systems
Over the past year, there’s been an increasing trend toward new products that have some sort of application or industry focus. That means supplies that include either certifications, special performance specs or tailored packaging intended for a specific application area such as medical. This Product Focus section updates readers on these technology trends and provides a product gallery of representative medical-focused power supplies.

DESIGN RESOURCES, ISSUES AND CHALLENGES

Flex PCB Design Services
While not exactly a brand-new technology, flexible printed circuit boards are a critical part of many of today’s challenging embedded system applications from wearable devices to mobile healthcare electronics. Circuit Cellar’s Editor-in-Chief, Jeff Child, explores the Flex PCB design capabilities available today and whose providing them.

Design Flow Ensures Automotive Safety
Fault analysis has been around for years, and many methods have been created to optimize evaluation of hundreds of concurrent faults in specialized simulators. However, there are many challenges in running a fault campaign. Mentor’s Doug Smith presents an improved formal verification flow that reduces the number of faults while simultaneously providing much higher quality of results.

Cooling Electronic Systems
Any good embedded system engineer knows that heat is the enemy of reliability. As new systems cram more functionality at higher speeds into ever smaller packages, it’s no wonder an increasing amount of engineering mindshare is focusing on cooling electronic systems. In this article, George Novacek reviews some of the essential math and science around cooling and looks are several cooling technologies—from cold pates to heat pipes.

MICROCONTROLLER PROJECTS WITH ALL THE DETAILS

MCU-Based Solution Links USB to Legacy PC I/O
In PCs, serial interfaces have now been just about completely replaced by USB. But many of those interfaces are still used in control and monitoring embedded systems. In this project article, Hossam Abdelbaki describes his ATSTAMP design. ATSTAMP is an MCS-51 (8051) compatible microcontroller chip that can be connected to the USB port of any PC via any USB-to-serial bridge currently available in the market.

Pet Collar Uses GPS and Wi-Fi
The PIC32 has proven effective for a myriad of applications, so why not a dog collar? Learn how Cornell graduates Vidya Ramesh and Vaidehi Garg built a GPS-enabled pet collar prototype. The article discusses the hardware peripherals used in the project, the setup, and the software. It also describes the motivation behind the project, and possibilities to expand the project in the future.

Guitar Video Game Uses PIC32
While music-playing video games are fun, their user interfaces tend leave a lot to be desired. Learn how Cornell students Jake Podell and Jonah Wexler designed and built a musical video game that’s interfaced with using a custom-built wireless guitar controller. The game is run on a Microchip PIC32 MCU and uses a TFT LCD display to show notes that move across the screen towards a strum region.

… AND MORE FROM OUR EXPERT COLUMNISTS

Non-Evasive Current Sensor
Gone are the days when you could do most of your own maintenance on your car’s engine. Today they’re sophisticated electronic systems. But there are some things you can do with the right tools. In his article, By Jeff Bachiochi talks about how using the timing light on his car engine introduced him to non-contact sensor technology. He talks about the types of probes available and how to use them to read the magnitude of alternating current (AC

Impedance Spectroscopy using the AD5933
Impedance spectroscopy is the measurement of a device’s impedance (or resistance) over a range of frequencies. Brian Millier has designed many voltammographs and conductivity meters over the years. But he recently came across the Analog Devices AD5933 chip made by which performs most all the functions needed to do impedance spectroscopy. In this article, explores the technology, circuit design and software that serve these efforts.

Side-Channel Power Analysis
Side-channel power analysis is a method of breaking security on embedded systems, and something Colin O’Flynn has covered extensively in his column. This time Colin shows how you can prove some of the fundamental assumptions that underpin side-channel power analysis. He uses the open-source ChipWhisperer project with Jupyter notebooks for easy interactive evaluation.

Tuesday’s Newsletter: Microcontroller Watch

Coming to your inbox tomorrow: Circuit Cellar’s Microcontroller Watch newsletter. Tomorrow’s newsletter keeps you up-to-date on latest microcontroller news. In this section, we examine the microcontrollers along with their associated tools and support products.

Bonus: We’ve added Drawings for Free Stuff to our weekly newsletters. Make sure you’ve subscribed to the newsletter so you can participate.

Already a Circuit Cellar Newsletter subscriber? Great!
You’ll get your Microcontroller Watch newsletter issue tomorrow.

Not a Circuit Cellar Newsletter subscriber?
Don’t be left out! Sign up now:

Our weekly Circuit Cellar Newsletter will switch its theme each week, so look for these in upcoming weeks:

IoT Technology Focus. (2/19) Covers what’s happening with Internet-of-Things (IoT) technology–-from devices to gateway networks to cloud architectures. This newsletter tackles news and trends about the products and technologies needed to build IoT implementations and devices.

Embedded Boards.(2/26) The focus here is on both standard and non-standard embedded computer boards that ease prototyping efforts and let you smoothly scale up to production volumes.

Analog & Power. (3/5) This newsletter content zeros in on the latest developments in analog and power technologies including DC-DC converters, AD-DC converters, power supplies, op amps, batteries and more.

Tuesday’s Newsletter: Analog & Power

Coming to your inbox on Tuesday: Circuit Cellar’s Analog & Power newsletter. This newsletter content zeros in on the latest developments in analog and power technologies including ADCs, DACs, DC-DC converters, AD-DC converters, power supplies, op amps, batteries and more.

Bonus: We’ve added Drawings for Free Stuff to our weekly newsletters. Make sure you’ve subscribed to the newsletter so you can participate.

Already a Circuit Cellar Newsletter subscriber? Great!
You’ll get your Analog & Power newsletter issue tomorrow.

Not a Circuit Cellar Newsletter subscriber?
Don’t be left out! Sign up now:

Our weekly Circuit Cellar Newsletter will switch its theme each week, so look for these in upcoming weeks:

Microcontroller Watch. (2/12) This newsletter keeps you up-to-date on latest microcontroller news. In this section, we examine the microcontrollers along with their associated tools and support products.

IoT Technology Focus. (2/19) Covers what’s happening with Internet-of-Things (IoT) technology–-from devices to gateway networks to cloud architectures. This newsletter tackles news and trends about the products and technologies needed to build IoT implementations and devices.

Embedded Boards.(2/26) The focus here is on both standard and non-standard embedded computer boards that ease prototyping efforts and let you smoothly scale up to production volumes.

Next Newsletter: ICs for Consumer Electronics

Coming to your inbox tomorrow: Circuit Cellar’s ICs for Consumer Electronics newsletter. Today’;s consumer electronic product designs demand ICs that enable low-power, high-functionality and cutthroat costs. Today’s microcontroller, analog IC and power chip vendors are laser-focused on this lucrative, high-stakes market. This newsletter looks at the latest technology trends and product developments in for consumer electronics ICs.

Bonus: We’ve added Drawings for Free Stuff to our weekly newsletters. Make sure you’ve subscribed to the newsletter so you can participate.

Already a Circuit Cellar Newsletter subscriber? Great!
You’ll get your
ICs for Consumer Electronics newsletter issue tomorrow.

Not a Circuit Cellar Newsletter subscriber?
Don’t be left out! Sign up now:

Our weekly Circuit Cellar Newsletter will switch its theme each week, so look for these in upcoming weeks:

Analog & Power. (2/5) This newsletter content zeros in on the latest developments in analog and power technologies including DC-DC converters, AD-DC converters, power supplies, op amps, batteries and more.

Microcontroller Watch (2/12) This newsletter keeps you up-to-date on latest microcontroller news. In this section, we examine the microcontrollers along with their associated tools and support products.

IoT Technology Focus. (2/19) Covers what’s happening with Internet-of-Things (IoT) technology–-from devices to gateway networks to cloud architectures. This newsletter tackles news and trends about the products and technologies needed to build IoT implementations and devices.

Next Newsletter: Embedded Boards

Coming to your inbox tomorrow: Circuit Cellar’s Embedded Boards newsletter. Tomorrow’s newsletter content focuses on both standard and non-standard embedded computer boards that ease prototyping efforts and let you smoothly scale up to production volumes.

Bonus: We’ve added Drawings for Free Stuff to our weekly newsletters. Make sure you’ve subscribed to the newsletter so you can participate.

Already a Circuit Cellar Newsletter subscriber? Great!
You’ll get your
Embedded Boards newsletter issue tomorrow.

Not a Circuit Cellar Newsletter subscriber?
Don’t be left out! Sign up now:

Our weekly Circuit Cellar Newsletter will switch its theme each week, so look for these in upcoming weeks:

January has a 5th Tuesday, so we’re bringing you a bonus newsletter:
ICs for Consumer Electronics (1/28)  Today’;s consumer electronic product designs demand ICs that enable low-power, high-functionality and cutthroat costs. Today’;s microcontroller, analog IC and power chip vendors are laser-focused on this lucrative, high-stakes market. This newsletter looks at the latest technology trends and product developments in for consumer electronics ICs.

Analog & Power. (2/5) This newsletter content zeros in on the latest developments in analog and power technologies including DC-DC converters, AD-DC converters, power supplies, op amps, batteries and more.

Microcontroller Watch (2/12) This newsletter keeps you up-to-date on latest microcontroller news. In this section, we examine the microcontrollers along with their associated tools and support products.

IoT Technology Focus. (2/19) Covers what’s happening with Internet-of-Things (IoT) technology–-from devices to gateway networks to cloud architectures. This newsletter tackles news and trends about the products and technologies needed to build IoT implementations and devices.

Building a Generator Control System

Three-Phase Power

Three-phase electrical power is a critical technology for heavy machinery. Learn how these two US Coast Guard Academy students built a physical generator set model capable of producing three-phase electricity. The article steps through the power sensors, master controller and DC-DC conversion design choices they faced with this project.
(Caption for lead image: From left to right: Aaron Dahlen, Caleb Stewart, Kent Altobelli and Christopher Gosvener.).

By Kent Altobelli and Caleb Stewart

Three-phase electrical power is typically used by heavy machinery due to its constant power transfer, and is used on board US Coast Guard cutters to power shipboard systems while at sea. In most applications, electrical power is generated by using a prime mover such as a diesel engine, steam turbine or water turbine to drive the shaft of a synchronous generator mechanically. The generator converts mechanical power to electrical power by using a field coil (electromagnet) on its spinning rotor to induce a changing current in its stationary stator coils. The flow of electrons in the stator coils is then distributed by conductors to energize various systems, such as lights, computers or pumps. If more electrical power is required by the facility, more mechanical power is needed to drive the generator, so more fuel, steam or water is fed to the prime mover. Together, the prime mover and the generator are referred to as a generator set “genset”.

Because the load expects a specific voltage and frequency for normal operation, the genset must regulate its output using a combination of its throttle setting and rotor field strength. When a real load, such as a light bulb, is switched on, it consumes more real power from the electrical distribution bus, and the load physically slows down the genset, reducing the output frequency and voltage. The shaft rotational speed determines the number of times per second the rotor’s magnetic field sweeps past the stator coils, and determines the frequency of the sinusoidal output. Increasing the throttle returns the frequency and voltage to their setpoints.

When a partially reactive load—for example, an induction motor—is switched on, it consumes real power, but also adds a complex component called “reactive power.” This causes a voltage change due to the way a generator produces the demanded phase offset between supplied voltage and current. An inductive load, common in industrial settings, causes the voltage output to sag, whereas a capacitive load causes the voltage to rise. Voltage induced in the stator is controlled by changing the strength of the rotor’s electromagnetic field that sweeps past the stator coils in accordance with Faraday’s Law of inductance. Increasing the voltage supply to the rotor’s electromagnet increases the magnetic field and brings the voltage back up to its setpoint.

The objective of our project was to build a physical generator set model capable of producing three-phase electricity, and maintain each “Y”-connected phase at an output voltage of 120 ±5 V RMS (AC) and frequency of 60 ±0.5 Hz. When the load on the system changes, provided the system is not pushed beyond its operating limits, the control system should be capable of returning the output to the acceptable voltage and frequency ranges within 3 seconds. When controlling multiple gensets paralleled in island operation, the distributed system should be able to meet the same voltage and frequency requirements, while simultaneously balancing the real and reactive power from all online gensets.

Two Configurations

Gensets supply power in two conceptually different configurations: “island” operation with stand-alone or paralleled (electrically connected) gensets, or gensets paralleled to an “infinite” bus.” In island operation, the entire electrical bus is relatively small—either one genset or a small number of total gensets—so any changes made by one genset directly affects the voltage and frequency of the electrical bus. When paralleled to an infinite bus such as the power grid, the bus is too powerful for a single genset to change the voltage or frequency. Coast Guard cutters use gensets in island operation, so that is the focus of this article.

When in island operation, deciding how much to compensate for a voltage or frequency change is accomplished using either droop or isochronous (iso) control. Droop control uses a proportional response to reduce error between the genset output and the desired setpoint. For example, if the frequency of the output drops, then the throttle of the prime mover is opened correspondingly to generate more power and raise the frequency back up. Since a proportional response cannot ever achieve the setpoint when loaded (a certain amount of constant error is required to keep the throttle open), the output frequency tends to decrease linearly with an increase in power output. A no-load to full-load droop of 2.4 Hz is typical for a generator in the United States, but this can usually be adjusted by the user.

Frequency control typically uses a mechanical governor to provide the proportional throttle response to meet real power demand. Voltage control typically uses an automatic voltage regulator (AVR) to manipulate the field coil strength to meet reactive power demand. Isochronous mode is more challenging, because it always works to return the genset output to the setpoint. Maintaining zero error on the output usually requires some combination of a proportional response to compensate for load fluctuation quickly, and also a long-term fine-tuning compensation to ensure the steady-state output achieves the setpoint.

If two or more gensets are paralleled, the combined load is supplied by the combined power output of the gensets. As before, maintaining the expected operating voltage and frequency is the first priority, but with multiple gensets, careful changes to the throttle and field can also redistribute the real and reactive power to meet real and reactive power demand efficiently.

If the average throttle or field setting is increased, then the overall bus frequency or voltage, respectively, also increases. If the average throttle or field setting stays the same while two gensets adjust their settings in opposite directions, the frequency or voltage stay the same, but the genset that increased their throttle or field provides a greater portion of the real or reactive power. Redistribution is important because it allows gensets to produce real power at peak efficiency and share reactive power evenly, because excessive reactive power generation derates the generator. Reactive currents flowing through the windings cause heat without producing real, useful power.

Four Conditions

Before the breaker can be closed to parallel generators, four conditions need to be met between the oncoming generators and the bus to ensure smooth load transfer:

1) The oncoming generator should have the same or a slightly higher voltage than the bus.
2) The oncoming generator should have the same or a slightly higher frequency than the bus.
3) The phase angles need to match. For example, the oncoming generator “A” phase needs to be at 0 degrees when the bus “A” phase is at 0 degrees.
4) The phase sequences need to be the same. For example, A-B-C for the oncoming generator needs to match the A-B-C phase sequence of the bus.

Meeting these conditions can be visualized using Figure 1, which shows a time vs. voltage representation of an arbitrary, balanced three-phase signal. The bus and the generator each have their own corresponding plots resembling Figure 1, and the two should only be electrically connected if both plots line up and therefore satisfy the four conditions listed above.

Figure 1
Arbitrary three phase sinusoid

If done properly, closing the breaker will be anticlimactic, and the gensets will happily find a new equilibrium. The gensets should be adjusted immediately to ensure the load is split evenly between gensets. If there is an electrical mismatch, the generator will instantly attempt to align its electrical phase with the bus, bringing the prime mover along for a wild ride and potentially causing physical damage—in addition to making a loud BANG! Idaho National Laboratories demonstrated the physical damage caused by electrical mismatch in its 2007 Aurora Generator Test.

Three primary setups for parallel genset operation are discussed here: droop-droop, isochronous-droop, and isochronous-isochronous. The simplest mode of parallel operation between two or more gensets is a droop-droop mode, where both gensets are in droop mode and collectively find a new equilibrium frequency and voltage according to the real and reactive power demands of the load.

Isochronous-droop (iso-droop) mode is slightly more complex, where one genset is in droop mode and the other is in iso mode. The iso genset always provides the power required to maintain a specific voltage and frequency, and the droop genset produces a constant real power corresponding to that one point on its droop curve. Because the iso genset works more or less depending on the load, it is also termed the “swing” generator.

Finally, isochronous-isochronous (iso-iso) is the most complex. In iso-iso mode, both gensets attempt to maintain the specified output voltage and frequency. While this sounds ideal, this mode has the potential for instability during transient loading, because individual genset control systems may not be able to differentiate between a change in load and a change in the other genset’s power output. Iso-iso mode usually requires direct communication or a higher level controller to monitor both gensets, so they respond to load changes without fighting each other. With no external communication, one genset could end up supplying the majority of the power to the load while the second genset is idling, seeing no need to contribute because the bus voltage and frequency are spot on! At some point one genset could even resist the other genset, consuming real power and causing the generator to “motor” the prime mover. Unchecked, this condition will damage prime movers, so a reverse power relay is usually in place to trip the genset offline, leaving only one genset to supply the entire load.

System Design

Each genset simulated on the Hampden Training Bench had a custom sensor monitoring the generator voltage, current, and frequency output, a small computer running control calculations and a pair of DC-to-DC converters to close the control loop on the generator’s rotational velocity and field strength. The genset was simulated by coupling a 330 W brushed DC motor acting as the prime mover to a four-pole 330 W synchronous generator (Figure 2).

Figure 2
Simulated genset on the Hampden Training Bench

Our power sensor was a custom-designed circuit board with an 8-bit microcontroller (MCU) employed to sample the genset output continuously and provide RMS voltage, RMS current, real power, reactive power, and frequency upon request. The control system ran on a Linux computer with custom software designed to poll the sensor for data, calculate the appropriate control response to return the system to the set point and generate corresponding pulse width modulated (PWM) outputs. Finally, the PWM outputs controlled the DC-to-DC converter to step down the DC supply voltage to drive the prime mover and energize the generator field coil. The component relationships are shown in Figure 3, where the diesel engine in a typical genset was replaced by our DC motor.

Figure 3
Genset component layout

Since this project was a continuation of a previous year of work by Elise Sako and Jasper Campbell, several lessons were learned that required the system be redesigned from the ground up. One of the largest design constraint from the previous year was the decision to use a variable frequency drive (VFD) to drive an induction motor as the prime mover. While this solution is acceptable, it introduces inherent delay in the control loop, because the VFD is designed to execute commands as smoothly but not necessarily as quickly as possible.

Another design constraint was the decision to power the generator field coil using DC regulated by an off-the-shelf silicon controller rectifier (SCR) chopper. Again, while this is an acceptable solution, the system output suffered from the SCR’s slow response time (refresh rate is limited to the AC supply frequency), and voltage output regulation was non-ideal (capacitor voltage refresh again limited by the frequency of the AC supply).

To solve these performance constraints, we selected the responsive and easily controllable DC motor as the prime mover so the DC output from our Hampden Training Bench could be used as the power supply for both the DC motor and the generator field coil. By greatly simplifying the electrical control of the genset, we reduced implementation cost and improved control system response time. …

Read the full article in the February 343 issue of Circuit Cellar
(Full article word count: 6116 words; Figure count: 14 Figures.)

Don’t miss out on upcoming issues of Circuit Cellar. Subscribe today!

Note: We’ve made the October 2017 issue of Circuit Cellar available as a free sample issue. In it, you’ll find a rich variety of the kinds of articles and information that exemplify a typical issue of the current magazine.

120 W and 240 W DIN Rail Power Supplies Boast 93% Efficiency

TDK has announced the introduction of 120 W and 240 W rated models to the DRB series of AC-DC DIN rail mount power supplies. Their narrow width allows additional devices to be installed on the rail, saving cabinet space. The high 93% efficiency produces less internal waste heat enabling electrolytic capacitors to run cooler, extending field operating life to greater than 7 years at 75% load, 230Vac input. Applications include industrial process control, factory automation, semiconductor fabrication and test and measurement equipment.

Rated for continuous operation at 120 W and 240 W, the DRBs can deliver a +20% peak load for up to 10 seconds. The power supplies are currently available with a 24V output, adjustable from 24 V to 28 V, and can accept an 85 to 264 Vac input withstanding surges of up to 300 Vac for 5 seconds. The operating ambient temperature is -25oC to +70oC, -40oC cold start, derating linearly above 55oC to 50% load at 70oC.

In addition to a front panel LED, an isolated DC OK opto-coupled signal is provided to show the output status either locally or remotely. The DRB120 and DRB240 have a rugged metal enclosure measuring 124 mm in height, 125 mm deep and narrow widths of 35 mm and 41 mm respectively.

Input to output isolation is 3,000 Vac, input to ground 1500 Vac and the output to ground is 500Vac. Both models are certified to the safety standards of IEC/UL/CSA/EN 60950-1, IEC/UL/CSA/EN 62368-1, UL508, IEC/EN 62477-1 (OVC III) and are CE marked in accordance to the Low Voltage, EMC and RoHS Directives. The DRBs are compliant to EN55011-B, EN55032-B, CISPR11-B, CISPR22-B, EN61204-3 (Class A) radiated and conducted emissions, EN 61000-3-2 harmonics, IEC 61000-4 immunity and SEMI F47 line dip standards.

TDK Lambda | www.us.tdk-lambda.com

 

Tuesday’s Newsletter: IoT Tech Focus

Coming to your inbox tomorrow: Circuit Cellar’s IoT Technology Focus newsletter. Tomorrow’s newsletter covers what’s happening with Internet-of-Things (IoT) technology–-from devices to gateway networks to cloud architectures. This newsletter tackles news and trends about the products and technologies needed to build IoT implementations and devices.

Bonus: We’ve added Drawings for Free Stuff to our weekly newsletters. Make sure you’ve subscribed to the newsletter so you can participate.

Already a Circuit Cellar Newsletter subscriber? Great!
You’ll get your IoT Technology Focus newsletter issue tomorrow.

Not a Circuit Cellar Newsletter subscriber?
Don’t be left out! Sign up now:

Our weekly Circuit Cellar Newsletter will switch its theme each week, so look for these in upcoming weeks:

Embedded Boards.(1/22) The focus here is on both standard and non-standard embedded computer boards that ease prototyping efforts and let you smoothly scale up to production volumes.

January has a 5th Tuesday, so we’re bringing you a bonus newsletter:
ICs for Consumer Electronics (1/28)  Today’;s consumer electronic product designs demand ICs that enable low-power, high-functionality and cutthroat costs. Today’;s microcontroller, analog IC and power chip vendors are laser-focused on this lucrative, high-stakes market. This newsletter looks at the latest technology trends and product developments in for consumer electronics ICs

Analog & Power. (2/5) This newsletter content zeros in on the latest developments in analog and power technologies including DC-DC converters, AD-DC converters, power supplies, op amps, batteries and more.

Microcontroller Watch (2/12) This newsletter keeps you up-to-date on latest microcontroller news. In this section, we examine the microcontrollers along with their associated tools and support products.

Tuesday’s Newsletter: Microcontroller Watch

Coming to your inbox tomorrow: Circuit Cellar’s Microcontroller Watch newsletter. Tomorrow’s newsletter keeps you up-to-date on latest microcontroller news. In this section, we examine the microcontrollers along with their associated tools and support products.

Bonus: We’ve added Drawings for Free Stuff to our weekly newsletters. Make sure you’ve subscribed to the newsletter so you can participate.

Already a Circuit Cellar Newsletter subscriber? Great!
You’ll get your Microcontroller Watch newsletter issue tomorrow.

Not a Circuit Cellar Newsletter subscriber?
Don’t be left out! Sign up now:

Our weekly Circuit Cellar Newsletter will switch its theme each week, so look for these in upcoming weeks:

IoT Technology Focus. (1/15) Covers what’s happening with Internet-of-Things (IoT) technology–-from devices to gateway networks to cloud architectures. This newsletter tackles news and trends about the products and technologies needed to build IoT implementations and devices.

Embedded Boards.(1/22) The focus here is on both standard and non-standard embedded computer boards that ease prototyping efforts and let you smoothly scale up to production volumes.

January has a 5th Tuesday, so we’re bringing you a bonus newsletter:
ICs for Consumer Electronics (1/28)  Today’;s consumer electronic product designs demand ICs that enable low-power, high-functionality and cutthroat costs. Today’;s microcontroller, analog IC and power chip vendors are laser-focused on this lucrative, high-stakes market. This newsletter looks at the latest technology trends and product developments in for consumer electronics ICs.

Analog & Power. (2/5) This newsletter content zeros in on the latest developments in analog and power technologies including DC-DC converters, AD-DC converters, power supplies, op amps, batteries and more.

Wednesday’s Newsletter: Analog & Power

Coming to your inbox on Wednesday: Circuit Cellar’s Analog & Power newsletter. This newsletter content zeros in on the latest developments in analog and power technologies including ADCs, DACs, DC-DC converters, AD-DC converters, power supplies, op amps, batteries and more.

Bonus: We’ve added Drawings for Free Stuff to our weekly newsletters. Make sure you’ve subscribed to the newsletter so you can participate.

Already a Circuit Cellar Newsletter subscriber? Great!
You’ll get your Analog & Power newsletter issue tomorrow.

Not a Circuit Cellar Newsletter subscriber?
Don’t be left out! Sign up now:

Our weekly Circuit Cellar Newsletter will switch its theme each week, so look for these in upcoming weeks:

Microcontroller Watch. (1/8) This newsletter keeps you up-to-date on latest microcontroller news. In this section, we examine the microcontrollers along with their associated tools and support products.

IoT Technology Focus. (1/15) Covers what’s happening with Internet-of-Things (IoT) technology–-from devices to gateway networks to cloud architectures. This newsletter tackles news and trends about the products and technologies needed to build IoT implementations and devices.

Embedded Boards.(1/22) The focus here is on both standard and non-standard embedded computer boards that ease prototyping efforts and let you smoothly scale up to production volumes.

Tuesday’s Newsletter: Microcontroller Watch

Coming to your inbox tomorrow: Circuit Cellar’s Microcontroller Watch newsletter. Tomorrow’s newsletter keeps you up-to-date on latest microcontroller news. In this section, we examine the microcontrollers along with their associated tools and support products.

Bonus: We’ve added Drawings for Free Stuff to our weekly newsletters. Make sure you’ve subscribed to the newsletter so you can participate.

Already a Circuit Cellar Newsletter subscriber? Great!
You’ll get your Microcontroller Watch newsletter issue tomorrow.

Not a Circuit Cellar Newsletter subscriber?
Don’t be left out! Sign up now:

Our weekly Circuit Cellar Newsletter will switch its theme each week, so look for these in upcoming weeks:

IoT Technology Focus. (12/18) Covers what’s happening with Internet-of-Things (IoT) technology–-from devices to gateway networks to cloud architectures. This newsletter tackles news and trends about the products and technologies needed to build IoT implementations and devices.

Embedded Boards.(12/24) (Monday) The focus here is on both standard and non-standard embedded computer boards that ease prototyping efforts and let you smoothly scale up to production volumes.

Analog & Power. (1/2) (Wednesday) This newsletter content zeros in on the latest developments in analog and power technologies including DC-DC converters, AD-DC converters, power supplies, op amps, batteries and more.

Tuesday’s Newsletter: Analog & Power

Coming to your inbox tomorrow: Circuit Cellar’s Analog & Power newsletter. Tomorrow’s newsletter content zeros in on the latest developments in analog and power technologies including ADCs, DACs, DC-DC converters, AD-DC converters, power supplies, op amps, batteries and more.

Bonus: We’ve added Drawings for Free Stuff to our weekly newsletters. Make sure you’ve subscribed to the newsletter so you can participate.

Already a Circuit Cellar Newsletter subscriber? Great!
You’ll get your Analog & Power newsletter issue tomorrow.

Not a Circuit Cellar Newsletter subscriber?
Don’t be left out! Sign up now:

Our weekly Circuit Cellar Newsletter will switch its theme each week, so look for these in upcoming weeks:

Microcontroller Watch. (12/11) This newsletter keeps you up-to-date on latest microcontroller news. In this section, we examine the microcontrollers along with their associated tools and support products.

IoT Technology Focus. (12/18) Covers what’s happening with Internet-of-Things (IoT) technology–-from devices to gateway networks to cloud architectures. This newsletter tackles news and trends about the products and technologies needed to build IoT implementations and devices.

Embedded Boards.(12/24) The focus here is on both standard and non-standard embedded computer boards that ease prototyping efforts and let you smoothly scale up to production volumes.

Next Newsletter: Embedded Boards

Coming to your inbox tomorrow: Circuit Cellar’s Embedded Boards newsletter. Tomorrow’s newsletter content focuses on both standard and non-standard embedded computer boards that ease prototyping efforts and let you smoothly scale up to production volumes.

Bonus: We’ve added Drawings for Free Stuff to our weekly newsletters. Make sure you’ve subscribed to the newsletter so you can participate.

Already a Circuit Cellar Newsletter subscriber? Great!
You’ll get your
Embedded Boards newsletter issue tomorrow.

Not a Circuit Cellar Newsletter subscriber?
Don’t be left out! Sign up now:

Our weekly Circuit Cellar Newsletter will switch its theme each week, so look for these in upcoming weeks:

Analog & Power. (12/4) This newsletter content zeros in on the latest developments in analog and power technologies including DC-DC converters, AD-DC converters, power supplies, op amps, batteries and more.

Microcontroller Watch (12/11) This newsletter keeps you up-to-date on latest microcontroller news. In this section, we examine the microcontrollers along with their associated tools and support products.

IoT Technology Focus. (12/18) Covers what’s happening with Internet-of-Things (IoT) technology–-from devices to gateway networks to cloud architectures. This newsletter tackles news and trends about the products and technologies needed to build IoT implementations and devices.

Tuesday’s Newsletter: IoT Tech Focus

Coming to your inbox tomorrow: Circuit Cellar’s IoT Technology Focus newsletter. Tomorrow’s newsletter covers what’s happening with Internet-of-Things (IoT) technology–-from devices to gateway networks to cloud architectures. This newsletter tackles news and trends about the products and technologies needed to build IoT implementations and devices.

Bonus: We’ve added Drawings for Free Stuff to our weekly newsletters. Make sure you’ve subscribed to the newsletter so you can participate.

Already a Circuit Cellar Newsletter subscriber? Great!
You’ll get your IoT Technology Focus newsletter issue tomorrow.

Not a Circuit Cellar Newsletter subscriber?
Don’t be left out! Sign up now:

Our weekly Circuit Cellar Newsletter will switch its theme each week, so look for these in upcoming weeks:

Embedded Boards.(11/27) The focus here is on both standard and non-standard embedded computer boards that ease prototyping efforts and let you smoothly scale up to production volumes.

Analog & Power. (12/4) This newsletter content zeros in on the latest developments in analog and power technologies including DC-DC converters, AD-DC converters, power supplies, op amps, batteries and more.

Microcontroller Watch (12/11) This newsletter keeps you up-to-date on latest microcontroller news. In this section, we examine the microcontrollers along with their associated tools and support products.