4-Channel Automotive PMIC Meets Vehicle Camera Needs

Maxim Integrated Products has introduced a compact MAX20049 power management IC (PMIC) that integrates four power supplies into a tiny footprint. The device offers many options to support various output voltages, while also providing fault mitigation by flagging faults and shifts in output voltages.

Automotive camera modules tend to be size-constrained, so designers are constantly in search of a power management solution that can pack the necessary power and functionality into a small form factor. The 4-channel MAX20049 power management IC is almost 30 percent more compact than competitive solutions and offers the highest efficiency among other quad-power power management ICs in its class, says Maxim.

The chip offers many options to support modules that need various output voltages for different mixes of sensors and serializers, enabling designers to make changes in layout as needed or to fine-tune the IC to meet specific application requirements. The MAX20049 provides fault mitigation, a feature required by designers to help flag faults and shifts in output voltages to ensure that the cameras are working as needed.


  • Small Solution Size: has a PCB footprint that is almost 30 percent smaller than that of the closest competitor (38 mm2 compared to 53.3 mm2)
    • 4 outputs (dual bucks and dual LDOs) in a 3 mm x 3 mm QFN package
    • Protection unavailable in competitive products include over-voltage protection, under-voltage lockout, external power good (PGOOD) signal and cycle-by-cycle current limit
  • High Efficiency: system efficiency at full load is 74 percent (versus 69 percent for discrete automotive solutions)
  • Thermal performance plus high efficiency contributes to overall optimized performance
  • Flexibility: the dual buck converters and low-noise LDO support a wide voltage input range from 4V to 17 V, enabling power-over-coax (POC), typically from 8 V to 10 V. There is also an option of using one of the buck converters as an intermediate supply for generating typical sensor + serializer rails
    • Optimizes thermal performance and minimizes coax inrush current at startup
    • Flexible sequencing and fixed output voltages supporting various image sensors
  • Fault Mitigation: flags faults and shifts in output voltages to ensure cameras are working as intended
    • Once an over- or under-voltage signal is detected, the PGOOD pin will assert low
    • Cycle-by-cycle current limit implemented by the respective converter if either output is shorted
  • Low Noise: spread spectrum and 2.2 MHz switching frequency mitigates electromagnetic interference (EMI) to meet CISPR low-noise specifications

Maxim Integrated | www.maximintegrated.com



MCU Enables 3D Graphics in Car Displays

Cypress Semiconductor has announced a new series in its Traveo automotive microcontroller family with more memory to support a hybrid instrument cluster with 3D graphics and up to 6 traditional gauges, as well as a head-up display. The highly integrated, single-chip devices in the S6J32xEK series include an advanced 3D and 2.5D graphics engine and provide scalability with Cypress’ low-pin-count HyperBus memory interface. The series continues Cypress’ expansion of its broad automotive portfolio with differentiated system performance via its MCUs, wireless radios, capacitive-touch solutions, memories and Power Management ICs (PMICs).
Cypress Traveo Automotive MCUs 2017

The Traveo S6J32xEK series integrates up to 4MB of high-density embedded flash, 512 KB RAM and 2 MB of Video RAM, an ARM Cortex-R5 core at 240 MHz performance, a Low-Voltage Differential Signaling (LVDS) video output, a Low-Voltage Transistor-Transistor Logic (LVTTL) video output and a 6x stepper motor control. This combination enables the devices to serve as single-chip solutions to drive two displays. The devices have up to two 12-pin HyperBus memory interfaces that dramatically improve read and write performance of graphical data and other data or code.

A single HyperBus interface can be used to connect to two memories for Firmware Over-The-Air (FOTA) updates, which enable end-users to get software fixes and new features and applications for their vehicles on-the-go. The devices support all in-vehicle networking standards required for instrument clusters, including Controller Area Network-Flexible Data (CAN-FD) and Ethernet AVB. Additionally, the series provides robust security with integrated enhanced secure hardware extension (eSHE) support.

The Traveo S6J32xEK series include 50 channels of 12-bit Analog to Digital Converters (ADC), 12 channels of multi-function serial interfaces and I2S interfaces with an audio to output the complex, high-quality sounds required in today’s instrument clusters. The devices’ support for Ethernet AVB delivers increased bandwidth in multimedia applications and reduced programming time. The S6J32xEK series offers functional safety features to support Automotive Safety Integrity Level (ASIL) B, and the devices feature a wide ambient temperature range of -40˚C to +105˚C. The Traveo family is backed by a comprehensive tools and software ecosystem that simplifies system integration, including AUTOSAR MCAL 4.0.3 support.

The Traveo S6J32xEK series is sampling now and will be in production in the first quarter of 2018. The MCUs are available in a 208-pin and 216-pin thermally enhanced quad flat package (TEQFP).

Cypress Semiconductor | www.cypress.com

Multiphase 12-A DC-DC Buck Converter

Dialog Semiconductor recently announced the DA9210-A power management IC (PMIC). A multiphase, automotive-grade, 12A DC-DC buck converter, the DA9210-A supplies the high current core rails of microprocessor devices. Designed for automotive applications, the DA9210-A is optimized for the supply of CPUs and GPUs and can support load currents of up to 12 A in single-chip configuration and 24 A in dual parallel configuration.

The PMIC’s features, benefits, and specs:

  • High efficiency over a wide output range
  • Accepts input voltages from 2.8 to 5.5 VDC
  • Delivers an output voltage between 0.3 and 1.57 V, with ±2.5% output voltage accuracy
  • 3-MHz nominal switching frequency
  • Fully AEC-Q100 grade 3 qualified
  • 42 WL-CSP package

Source: Dialog Semiconductor

Quad Channel DPWM Step-Down Controller

Exar Corp. has introduced the XR77128, a universal PMIC that drives up to four independently controlled external DrMOS power stages at currents greater than 40 A for the latest 64-bit ARM processors, FPGAs, DSPs and ASICs. DrMOS technology is quickly growing in popularity in telecom and networking applications. These same applications find value in Exar’s Programmable Power technology which allows low component count, rapid development, easy system integration, dynamic control and telemetry. Depending on output current requirements, each output can be independently configured to directly drive external MOSFETs or DrMOS power stages.EX045_XR77128

The XR77128 is quickly configured to power nearly any FPGA, SoC, or DSP system through the use of Exar’s design tool, PowerArchitect, and programmed through an I²C-based SMBus compliant serial interface. It can also monitor and dynamically control and configure the power system through the same I²C interface. Five configurable GPIOs allow for fast system integration for fault reporting and status or for sequencing control.  A new Arduino-based development platform allows software engineers to begin code development for telemetry and dynamic control long before their hardware is available.

The XR77128 is available in a RoHS-compliant, green/halogen free space-saving 7 mm × 7 mm TQFN. It costs $7.75 in 1000-piece quantities.

Source: Exar Corp.

Quad Output Programmable Universal PMIC

Exar Corp. recently announced the XR77129, a quad output programmable universal PMIC with an input operating voltage range of 6 to 40 V. Its patented control architecture is well suited for 40-V inputs using a 17-bit wide PID voltage mode VIN feed forward architecture. This controller offers a single input, quad output, step-down switching regulator controller with integrated gate drivers and dual LDO outputs. It can also monitor and dynamically control and configure the power system through an I2C interface. Five configurable GPIOs allow for fast system integration for fault reporting and status or for sequencing control.Exar-EX039_xr77129

The XR77129 can be configured to power nearly any FPGA, SoC, or DSP system with the use of Exar’s PowerArchitect and programmed through an I²C-based SMBus compliant serial interface. PowerArchitect 5.2 has been upgraded to support the additional capabilities of the XR77129 including output voltage ranges beyond the native 0.6 to 5.5 V with the use of external feedback resistors. The XR77129 wide input voltage range, low quiescent current of 450 µA (standby) and 4 mA (operating) make it a logical choice for a wide range of systems, including 18 to 36 VDC, 24 VDC or rectified AC systems used in the industrial automation and embedded applications.

The XR77129 is available now in an RoHS-compliant, green/halogen-free, space-saving 7 mm × 7 mm TQFN. It costs $9.95 in 1,000-piece quantities..

Summary of features:
•       6 to 40 V input voltage
•       Quad channel step-down controller
•       Digital PWM 105 kHz to 1.23 MHz operation
•       SMBus-compliant I²C interface
•       Supported by PowerArchitect 5.2 or later

Source: Exar