EMC Analysis During PCB Layout

Catch Issues Earlier

If your electronic product design fails EMC compliance testing for its target market, that product can’t be sold. That’s why EMC analysis is such an important step. In this article, Craig shows how implementing EMC analysis during the design phase provides an opportunity to avoid failing EMC compliance testing after fabrication.

By Craig Armenti,
Mentor, A Siemens Business

Electromagnetic Compatibility (EMC) is generally defined as the ability of a product to function in its environment without introducing electromagnetic disturbance. EMC compliance is a necessary condition for releasing products to market. Simply stated, if a product does not pass EMC compliance testing for the target market, the product cannot be sold. Regulatory bodies around the world define limits on the radiated and conducted emissions that a device is allowed to produce. Automotive and aerospace manufacturers can set even stricter standards for their suppliers. Design teams are well aware of the importance of ensuring their product is EMC compliant. All that said, many do not attempt to perform EMC analysis during design.

There is a perception that EMC analysis during PCB layout can be a time-consuming task that is challenging to set up and properly configure, with difficult-to-interpret results. Historically, the focus of analysis during design has been on Signal Integrity (SI) and Power Integrity (PI). Manual EMC “analysis” typically is performed post-fabrication, based on the results of testing the actual product. What is often overlooked is that implementing EMC analysis during the design phase provides an opportunity to avoid failing EMC compliance testing after fabrication.

Figure 1
EMC analysis implemented during PCB layout

The current generation of ECAD tools offers EMC analysis functionality that is easy to use, with well-documented rule checks that often include an explanation for each principle and advice on how to address issues. Implementing EMC analysis at appropriate points during PCB layout, prior to fabrication, can mitigate the need for redesign(s) that affect both product development cost and overall time to market (Figure 1).

EMC Simplified

EMC can be a confusing topic, especially for new engineers and designers or those not well versed in the subject matter. Furthermore, there is often confusion as to the difference between electromagnetic compatibility (EMC) and electromagnetic interference (EMI). Although this article is not intended to be an in-depth tutorial on EMC and EMI theory, a quick review of the definitions is appropriate.
As previously stated, EMC is generally defined as the ability of a product to function in its environment without introducing electromagnetic disturbance. Specifically, the product must:

• Tolerate a stated degree of interference
• Not generate more than a stated amount of interference
• Be self-compatible

EMI is generally defined as disturbance that affects an electrical circuit, due to either electromagnetic induction or electromagnetic radiation.

To further simplify the two definitions: EMC is how vulnerable the product is to the environment, and EMI is what the product introduces into the environment (Figure 2).

Figure 2
The four basic EMC/EMI coupling mechanisms relative to the source and victim

The complexity of the topic contributes to the perception that implementing EMC analysis during PCB layout can be a time-consuming task that is challenging to set up and properly configure, with results that are difficult to interpret. The alternative, however, foregoing automated in-design analysis and waiting to test the actual product post-fabrication, has the potential to be significantly more time consuming and costly. Although EMC test labs are not required to provide the average EMC testing pass rate, several studies suggest that the first time pass rate is approximately 50%. Furthermore, EMC compliance failure has been cited as the second cause for redesigns in the automotive industry. Given that an EMC failure will require one or more redesigns that affect both product development costs and overall time to market, performing EMC analysis during PCB layout (designing for EMC compliance) is essential.

Left-Shift to Layout

The term “left-shift” within the engineering space is often used to describe the act of moving (or shifting) a task that would normally occur toward a later phase of the design process, to occur also during an earlier phase. . …

Read the full article in the July 336 issue of Circuit Cellar

Mentor | www.mentor.com

Don’t miss out on upcoming issues of Circuit Cellar. Subscribe today!

Note: We’ve made the October 2017 issue of Circuit Cellar available as a free sample issue. In it, you’ll find a rich variety of the kinds of articles and information that exemplify a typical issue of the current magazine.

July Circuit Cellar: Sneak Preview

The July issue of Circuit Cellar magazine is coming soon. And we’ve rustled up a great herd of embedded electronics articles for you to enjoy.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 

Here’s a sneak preview of July 2018 Circuit Cellar:

TECHNOLOGIES FOR THE INTERNET-OF-THINGS

Wireless Standards and Solutions for IoT  
One of the critical enabling technologies making the Internet-of-Things possible is the set of well-established wireless standards that allow movement of data to and from low-power edge devices. Here, Circuit Cellar’s Editor-in-Chief, Jeff Child, looks at key wireless standards and solutions playing a role in IoT.

Product Focus: IoT Device Modules
The rapidly growing IoT phenomenon is driving demand for highly integrated modules designed to interface with IoT devices. This Product Focus section updates readers on this technology trend and provides a product album of representative IoT interface modules.

TOOLS AND TECHNIQUES AT THE DESIGN PHASE

EMC Analysis During PCB Layout
If your electronic product design fails EMC compliance testing for its target market, that product can’t be sold. That’s why EMC analysis is such an important step. In his article, Mentor Graphics’ Craig Armenti shows how implementing EMC analysis during the design phase provides an opportunity to avoid failing EMC compliance testing after fabrication.

Extreme Low-Power Design
Wearable consumer devices, IoT sensors and handheld systems are just a few of the applications that strive for extreme low-power consumption. Beyond just battery-driven designs, today’s system developers want no-battery solutions and even energy harvesting. Circuit Cellar’s Editor-in-Chief, Jeff Child, dives into the latest technology trends and product developments in extreme low power.

Op Amp Design Techniques
Op amps can play useful roles in circuit designs linking the real analog world to microcontrollers. Stuart Ball shares techniques for using op amps and related devices like comparators to optimize your designs and improve precision.

Wire Wrapping Revisited
Wire wrapping may seem old fashioned, but this tried and true technology can solve some tricky problems that arise when you try to interconnect different kinds of modules like Arduino, Raspberry Pi and so on. Wolfgang Matthes steps through how to best employ wire wrapping for this purpose and provides application examples.

DEEP DIVES ON MOTOR CONTROL AND MONITORING

BLDC Fan Current
Today’s small fans and blowers depend on brushless DC (BLDC) motor technology for their operation. In this article, Ed Nisley explains how these seemingly simple devices are actually quite complex when you measure them in action. He makes some measurements on the motor inside a tangential blower and explores how the data relates to the basic physics of moving air.

Electronic Speed Control (Part 1)
An Electronic Speed Controller (ESC) is an important device in motor control designs, especially in the world of radio-controlled (RC) model vehicles. In Part 1, Jeff Bachiochi lays the groundwork by discussing the evolution of brushed motors to brushless motors. He then explores in detail the role ESC devices play in RC vehicle motors.

MCU-Based Motor Condition Monitoring
Thanks to advances in microcontrollers and sensors, it’s now possible to electronically monitor aspects of a motor’s condition, like current consumption, pressure and vibration. In this article, Texas Instrument’s Amit Ashara steps through how to best use the resources on an MCU to preform condition monitoring on motors. He looks at the signal chain, connectivity issues and A-D conversion.

AND MORE FROM OUR EXPERT COLUMNISTS

Verifying Code Readout Protection Claims
How do you verify the security of microcontrollers? MCU manufacturers often make big claims, but sometimes it is in your best interest to verify them yourself. In this article, Colin O’Flynn discusses a few threats against code readout and looks at verifying some of those claimed levels.

Thermoelectric Cooling (Part 1)
When his thermoelectric water color died prematurely, George Novacek was curious whether it was a defective unit or a design problem. With that in mind, he decided to create a test chamber using some electronics combined with components salvaged from the water cooler. His tests provide some interesting insights into thermoelectric cooling.