Low Power PC/104-Plus SBC has Rich I/O

Winsystems has announced Its new PPM-C412 series for demanding environments and applications. It offers a broad spectrum of I/O features and the ability to expand functionality in a densely populated, standalone SBC solution. The board delivers greater performance and a clear upgrade path for current PPM-LX800 users while providing full ISA-compatible PC/104-Plus expansion.

WinSystems_PPM_C412At the heart of the board is a Vortex DX3 System on Chip (SOC), which offers a 32-bit x86 architecture with a dual-core microprocessor. The PPM-C412 incorporates dual Ethernet ports coupled with four serial ports, four USB channels and an LPT port for myriad communications options. It also includes dual simultaneous display outputs, one LVDS and one VGA, for Human Machine Interface (HMI) displays. Further, It provides 24 GPIO for monitoring and control, resulting in an I/O-rich, rugged SBC occupying minimal space. The PPM-C412 can be used on its own or in combination with the PC/104-Plus bus to expand functionality and capitalize on its full ISA compatibility, averting the need to re-engineer system architectures.

The PPM-C412 is specifically built for rugged industrial environments, with low power requirements, up to 2 GB RAM and an operating temperature range of -40ºC to +85ºC. With a 10-year availability, this new SBC also extends the product life of systems using commercial off the shelf (COTS) and proprietary PC/104 expansion modules.

Winsystems I www.winsystems.com

Emulating Legacy Interfaces

Do It with Microcontrollers

There’s a number of important legacy interface technologies—like ISA and PCI—that are no longer supported by the mainstream computing industry. In his article Wolfgang examines ways to use inexpensive microcontrollers to emulate the bus signals of legacy interconnect schemes.

By Wolfgang Matthes

Many of today’s PC users have never heard of interfaces like the ISA bus or the PCI bus. But in the realm of industrial and embedded computers, they are still very much alive. Large numbers of add-on cards and peripherals are out there. Many of them are even still being manufactured today—especially PCI cards and PC/104 modules for industrial control and measurement applications. In many cases, bandwidth requirements for those applications are low. As a result, it is possible to emulate the interfaces with inexpensive microcontrollers. That essentially means using a microcontroller instead of an industrial or embedded PC host.

Photo 1 - The PC/104 specifications relate to small modules, which can be stacked one above the other.

Photo 1 – The PC/104 specifications relate to small modules, which can be stacked one above the other.

To develop and bring up such a device is a good exercise in engineering education. But it has its practical uses too. Industrial-grade modules and cards are designed and manufactured for reliability and longevity. That makes them far superior to the kits, boards, shields and so on, that are intended primarily for educational purposes and tinkering. Moreover, a microcontroller platform can be programmed independently—without operating systems and device drivers. These industrial-grade boards can operate in environments that consume considerably less power and are free from the noise typical of the interior of personal computers. The projects depicted here are open source developments. Descriptions, schematics, PCB files and program sources are available for downloading.

Fields of Use

The basic idea is to make good use of peripheral modules and add-in cards. Photo 1 shows examples. Typical applications are based on industrial or embedded personal computers. The center of the system is the host—the PC. Peripheral modules or cards are attached to a standardized expansion interface, that is, in principle, an extended processor bus. That means the processor of the PC can directly address the registers within the devices. The programming interface is the processor’s instruction set. As a result, latencies are low and the peripheral modules can be programmed somewhat like microcontroller ports—without regard to complicated communication protocols. For example, if the peripheral was attached to communication interfaces like USB or Ethernet, that would complicate matters. Common expansion interfaces are the legacy ISA bus, the PCI bus and the PCI Express (PCIe) interface. …

We’ve made the October 2017 issue of Circuit Cellar available as a sample issue. In it, you’ll find a rich variety of the kinds of articles and information that exemplify a typical issue of the current magazine.
Don’t miss out on upcoming issues of Circuit Cellar. Subscribe today!

 

PC/104-Plus SBC Features On-Board TPM Security

Versalogic is now shipping the “Liger”-a new high-performance PC/104-Plus single board computer (SBC). Based on Intel’s Kaby Lake processor, Liger combines high performance processing and high performance video with moderate power consumption (12 to 14 W typical). It features hardware-level security using an on-board Trusted Platform Module (TPM) security chip, and backwards compatibility with systems using PC/104-Plus (ISA or PCI) expansion.

PR_EPM-43_HI

Liger is designed for applications which require extreme CPU and video processing performance in a compact 108 x 96 mm (4.3 x 3.8″) PC/104 footprint.The Liger’s on-board TPM security chip can lock out unauthorized hardware and software access. It provides a secure “Root of Trust” processing environment for defense, medical, and industrial applications that require hardware-level security functions. Additional security is provided through built-in AES (Advanced Encryption Standard) instructions.

Versalogic | www.versalogic.com