November Circuit Cellar: Sneak Preview

The November issue of Circuit Cellar magazine is coming soon. Clear your decks for a new stack of in-depth embedded electronics articles prepared for you to enjoy.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 

Here’s a sneak preview of November 2018 Circuit Cellar:

SOLUTIONS FOR SYSTEM DESIGNS

3D Printing for Embedded Systems
Although 3D printing for prototyping has existed for decades, it’s only in recent years that it’s become a mainstream tool for embedded systems development. Today the ease of use of these systems has reached new levels and the types of materials that can be used continues to expand. This article by Circuit Cellar’s Editor-in-Chief, Jeff Child looks at the technology and products available today that enable 3D printing for embedded systems.

Add GPS to Your Embedded System
We certainly depend on GPS technology a lot these days, and technology advances have brought fairly powerful GPS functionally into our pockets. Today’s miniaturization of GPS receivers enables you to purchase an inexpensive but capable GPS module that you can add to your embedded system designs. In this article, Stuart Ball shows how to do this and take advantage of the GPS functionality.

FCL for Servo Drives
Servo drives are a key part of many factory automation systems. Improving their precision and speed requires attention to fast-current loops and related functions. In his article, Texas Instruments’ Ramesh Ramamoorthy gives an overview of the functional behavior of the servo loops using fast current loop algorithms in terms of bandwidth and phase margin.

FOCUS ON ANALOG AND POWER

Analog and Mixed-Signal ICs
Analog and mixed-signal ICs play important roles in a variety of applications. These applications depend heavily on all kinds of interfacing between real-world analog signals and the digital realm of processing and control. Circuit Cellar’s Editor-in-Chief, Jeff Child, dives into the latest technology trends and product developments in analog and mixed-signal chips.

Sleeping Electronics
Many of today’s electronic devices are never truly “off.” Even when a device is in sleep mode, it draws some amount of power—and drains batteries. Could this power drain be reduced? In this project article, Jeff Bachiochi addresses this question by looking at more efficient ways to for a system to “play dead” and regulate power.

BUILDING CONNECTED SYSTEMS FOR THE IoT EDGE

Easing into the IoT Cloud (Part 1)
There’s a lot of advantages for the control/monitoring of devices to communicate indirectly with the user interface for those devices—using some form of “always-on” server. When this server is something beyond one in your home, it’s called the “cloud.” Today it’s not that difficult to use an external cloud service to act as the “middleman” in your system design. In this article, Brian Millier looks at the technologies and services available today enabling you to ease in to the IoT cloud.

Sensors at the Intelligent IoT Edge
A new breed of intelligent sensors has emerged aimed squarely at IoT edge subsystems. In this article, Mentor Graphics’ Greg Lebsack explores what defines a sensor as intelligent and steps through the unique design flow issues that surround these kinds of devices.

FUN AND INTERESTING PROJECT ARTICLES

MCU-Based Project Enhances Dance Game
Microcontrollers are perfect for systems that need to process analog signals such as audio and do real-time digital control in conjunction with those signals. Along just those lines, learn how two Cornell students Michael Solomentsev and Drew Dunne recreated the classic arcade game “Dance Dance Revolution” using a Microchip Technology PIC32 MCU. Their version performs wavelet transforms to detect beats from an audio signal to synthesize dance move instructions in real-time without preprocessing.

Building an Autopilot Robot (Part 2)
In part 1 of this two-part article series, Pedro Bertoleti laid the groundwork for his autopiloted four-wheeled robot project by exploring the concept of speed estimation and speed control. In part 2, he dives into the actual building of the robot. The project provides insight to the control and sensing functions of autonomous electrical vehicles.

… AND MORE FROM OUR EXPERT COLUMNISTS

Embedded System Security: Live from Las Vegas
This month Colin O’Flynn summarizes a few interesting presentations from the Black Hat conference in Las Vegas. He walks you through some attacks on bitcoin wallets, x86 backdoors and side channel analysis work—these and other interesting presentations from Black Hat.

Highly Accelerated Product Testing
It’s a fact of life that every electronic system eventually fails. Manufacturers use various methods to weed out most of the initial failures before shipping their product. In this article, George Novacek discusses engineering attempts to bring some predictability into the reliability and life expectancy of electronic systems. In particular, he focuses on Highly Accelerated Lifetime Testing (HALT) and Highly Accelerated Stress Screening (HASS).

September Circuit Cellar: Sneak Preview

The September issue of Circuit Cellar magazine is coming soon. Clear your decks for a new stack of in-depth embedded electronics articles prepared for you to enjoy.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 

Here’s a sneak preview of September 2018 Circuit Cellar:

MOTORS, MOTION CONTROL AND MORE

Motion Control for Robotics
Motion control technology for robotic systems continues to advance, as chip- and board-level solutions evolve to meet new demands. These involve a blending of precise analog technologies to control position, torque and speed with signal processing to enable accurate, real-time motor control. Here, Circuit Cellar’s Editor-in-Chief, Jeff Child, looks the latest technology and product advances in motion control for robotics.

Electronic Speed Control (Part 3)
Radio-controlled drones are one among many applications that depend on the use of an Electronic Speed Controller (ESC) as part of its motor control design. After observing the operation of a number of ESC modules, in this part Jeff Bachiochi focuses in more closely on the interaction of the ESC with the BLDC motor.

BUILDING CONNECTED SYSTEMS

Product Focus: IoT Gateways
IoT gateways are a smart choice to facilitate bidirectional communication between IoT field devices and the cloud. Gateways also provide local processing and storage capabilities for offline services as well as near real-time management and control of edge devices. This Product Focus section updates readers on these technology trends and provides a product gallery of representative IoT gateways.

Wireless Weather Station
Integrating wireless technologies into embedded systems has become much easier these days. In this project article, Raul Alvarez Torrico describes his home-made wireless weather station that monitors ambient temperature, relative humidity, wind speed and wind direction, using Arduino and a pair of cheap Amplitude Shift Keying (ASK) radio modules.

FOCUS ON ANALOG AND POWER TECHNOLOGY

Frequency Modulated DDS
Prompted by a reader’s query, Ed became aware that you can no longer get crystal oscillator modules tuned to specific frequencies. With that in mind, Ed set out to build a “Channel Element” replacement around a Teensy 3.6 board and a DDS module. In this article, Ed Nisley explains how the Teensy’s 32-bit datapath and 180 MHz CPU clock affect the DDS frequency calculations. He then explores some detailed timings.

Power Supplies / Batteries
Sometimes power decisions are left as an afterthought in system designs. But your choice of power supply or battery strategy can have a major impact on your system’s capabilities. Circuit Cellar’s Editor-in-Chief, Jeff Child, dives into the latest technology trends and product developments in power supplies and batteries.

Murphy’s Laws in the DSP World (Part 3)
Unpredictable issues crop up when you move from the real world of analog signals and enter the world of digital signal processing (DSP). In Part 3 of this article series, Mike Smith and Mai Tanaka focuses on strategies for how to—or how to try to—avoid Murphy’s Laws when doing DSP.

SYSTEM DESIGN ISSUES IN VIDEO AND IMAGING

Virtual Emulation for Drones
Drone system designers are integrating high-definition video and other features into their SoCs. Verifying the video capture circuitry, data collection components and UHD-4K streaming video capabilities found in drones is not trivial. In his article, Mentor’s Richard Pugh explains why drone verification is a natural fit for hardware emulation because emulation is very efficient at handling large amounts of streamed data.

LIDAR 3D Imaging on a Budget
Demand is on the rise for 3D image data for use in a variety of applications, from autonomous cars to military base security. That has spurred research into high precision LIDAR systems capable of creating extremely clear 3D images to meet this demand. Learn how Cornell student Chris Graef leveraged inexpensive LIDAR sensors to build a 3D imaging system all within a budget of around $200.

AND MORE FROM OUR EXPERT COLUMNISTS

Velocity and Speed Sensors
Automatic systems require real-life physical attributes to be measured and converted to electrical quantities ready for electronic processing. Velocity is one such attribute. In this article, George Novacek steps through the math, science and technology behind measuring velocity and the sensors used for such measurements.

Recreating the LPC Code Protection Bypass
Microcontroller fuse bits are used to protect code from being read out. How well do they work in practice? Some of them have been recently broken. In this article Colin O’Flynn takes you through the details of such an attack to help you understand the realistic threat model.

August Circuit Cellar: Sneak Preview

The August issue of Circuit Cellar magazine is coming soon. Be on the lookout for a whole shipload of top-notch embedded electronics articles for you to enjoy.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 

Here’s a sneak preview of August 2018 Circuit Cellar:

FPGAs REDEFINE THE DEFINITION OF “SYSTEM”

FPGA System Design
Long gone now are the days when FPGAs were thought of as simple programmable circuitry for interfacing and glue logic. Today, FPGAs are powerful system chips with on-chip processors, signal processing functionality and rich offerings or high-speed connectivity. Here, Circuit Cellar’s Editor-in-Chief, Jeff Child, looks at the latest technology and trends in FPGA system design.

Managing FPGA Design Complexity
Modern FPGAs can contain millions of logic gates and thousands of embedded DSP processors allowing FPGA hardware designers to create extremely sophisticated and complex application-specific hardware functions. In this article, Pentek’s Bob Sgandurra explores how today’s FPGA technology has revamped the roles of both hardware and software engineers as well as how dealing with on-chip IP adds new layers of complexity.

HIGH-INTEGRATION AT THE CHIP-
AND BOARD-LEVEL

Product Focus: Small and Tiny Embedded Boards
An amazing amount of computing functionality can be squeezed on to a small form factor board these days. These company—and even tiny—board-level products meet the needs of applications where extremely low SWaP (size, weight and power) beats all other demands. This Product Focus section updates readers on this technology trend and provides a product album of representative small and tiny embedded boards.

Microcontrollers and Processors
Today’s crop of microcontrollers and embedded processors provide a rich continuum of features, functions and capabilities. It’s hard to tell anymore where the dividing line is, especially when a lot of them use the same CPU cores. Circuit Cellar’s Editor-in-Chief, Jeff Child, delves into the technology and product trends of MCUs and embedded processors.

CAN’T STOP THE SIGNAL

Murphy’s Laws in the DSP World (Part 2)
Many unexpected issues come into play when you move from the real world of analog signals and enter the world of digital signal processing (DSP). Part 2 of this article series by Michael Smith, Mai Tanaka and Ehsan Shahrabi Farahani charges forward introducing “Murphy’s Laws of DSP” #7, #8 and #9 and looks at the spectral analysis of DSP signals.

Signature Analyzer Uses NXP MCU
Doing a signature analysis of a signal used to require an oscilloscope to display your results. In this article, Brian Millier shows how you can build a free-standing tester that uses mostly just the internal peripherals of an NXP ARM microcontroller. He described how the tester operates and how he implemented it using a Teensy 3.5 development module and an intelligent 4.3-inch TFT touch-screen display.

Pitfalls of Filtering Pulsed Signals
Filtering pulsed signals can be a tricky prospect. Using a recent customer implementation as an example, Robert Lacoste highlights various alternative approaches and describes the key concepts involved. Simulation results are provided to help readers understand what’s going on.

PROJECT-BASED STORIES WITH ALL THE DETAILS

Electronic Speed Control (Part 2)
In Part 1, Jeff Bachiochi discussed the mechanical differences between DC brushed and brushless DC (BLDC) motors. This time he dives into basics of an Electronic Speed Controller’s operations and its circuitry. And all this is illustrated via his ESC-based project that uses a Microchip PIC MCU.

Build an Audio Response Light Display
Light shows have been a part of entertainment situations seemingly forever, but the technology has evolved over time. These light shows have their origin in the primitive “light organs” of the 1960s in which each spectral band had its own color that pulsed in intensity with audio amplitudes within its range of frequencies. In this article, Devlin Gualtieri discusses his circuit design that implements a light organ using today’s IC and LED technologies.

AND MORE FROM OUR EXPERT COLUMNISTS

Internet of Things Security (Part 4)
In this next part of his article series on IoT security, Bob Japenga looks at how checklists and the common criteria framework can help us create more secure IoT devices. He covers how to create a list of security assets and to establish threat checklists that identify all the threats to your security assets.

Thermoelectric Cooling (Part 2)
In Part 1 George Novacek described how he built a test chamber using some electronics combined with components salvaged from his thermoelectric water cooler. To confirm his test results, he purchased another thermoelectric cooler and repeated the tests. In Part 2 he covers the results of these tests along with some theoretical performance calculations.

Form vs. Function in Test

Input Voltage

–Jeff Child, Editor-in-Chief

JeffHeadShot

A couple months back I and the Circuit Cellar team attended ESC (Embedded Systems Conference) Boston. Having a booth was new for Circuit Cellar at ESC, so we were very pleased at the positive feedback from people who stopped by our booth—a mix of devoted long-time readers and new faces just learning about us. My thanks to those who became new subscribers on the spot. There are many good reasons for a technology editor like myself to attend tradeshows in our industry. Meeting with technology vendors—the people—face to face is the big one. I don’t care how convenient, realistic or powerful our various forms of electronic communication become. There will never—never ever—be any substitute for meetings done in person and the kind of conversation you can have face to face.

Another good reason to attend a show like ESC is to see the “stuff”—the embedded boards, chips, instruments and so on. I can write all day about the size, weight and power of a COM Express board. But it’s kinda nice to feel the size and weight by holding one in my hand. One type of gear that’s enormously important to see close up is test instrumentation products—oscilloscopes, logic analyzers, signal generators and so forth. Fortunately for me, ESC Boston had a nice cluster this year of test equipment exhibitors. Among these were Pico Technology, Rohde & Schwarz, Siglent Technologies, Tektronix and Teledyne LeCroy.

Like many of you, as an Electrical Engineering major in college I had a lot of EE labs. And I have to make a confession: Operating test equipment was never my strong suit. I remember my lab partners would seldom let me touch the oscilloscope once they caught on to my poor skills. I vividly remember a pair of them saying “Let’s have Jeff write the lab report. That’s at least something he’s good at.” Fast forward to my early years as a New Products Editor, and I sat through many press tour meetings. In those days, test equipment companies would make great efforts to lug their gear across country just to set it up and show me every last new feature of their new logic analyzer or scope.

At this year’s ESC Boston, it was fun seeing the state of the art test equipment on display. And I was able to glean a few insights. At today’s state of electronics technology, it’s quite feasible to have an all-in-one test system. But according to the vendors I talked to, there’s still a desire have a stand-alone box one can call an oscilloscope, for example. Also, even though touch-screen and push-button digital interfaces are mature technologies, many test customers still like feel of turning knobs when it comes to operating test gear.

Exemplifying what can be done with today’s technology, Pico Technology’s approach to test gear is to create compact, easily portable box-level systems. Instead of having a screen and arrays of controls, Pico Technology’s test systems instead interface with your laptop, so that laptop provides all the display and control needs for the equipment. Its latest example along those lines is its PicoScope 9300 Series of sampling oscilloscopes designed for measuring high-speed signals. The 9300 Series scopes provide 2 channels, 15 GHz bandwidth and 15 Terasample/s (64 fs) sequential sampling.

Rohde & Schwarz in contrast makes more traditional test gear, focusing on the high-performance end of the market. Its latest offering is its enhanced power-of-ten oscilloscope family with 10-bit resolution and large memory depth. According to the company, the power-of-ten oscilloscope families R&S RTB2000, R&S RTM3000 and R&S RTA4000 provide 10 times as much memory as comparable instruments and large 10.1” touchscreen displays.

Among the new products on display at Teledyne LeCroy’s booth at ESC Boston was what it claims as the industry’s first HDMI 2.1 Fixed Rate Link (FRL) Video Generator. FRL is the transport mode for HDMI 2.1 which enables transmission of uncompressed 8K video formats to reach link rates of up to 48 Gb/s.

All in all, my two days at ESC Boston were well spent. Aside from those test equipment vendors, there were a great mix of embedded hardware and embedded software tool vendors I met with at the show. I also sat in on a few presentations, including a great one called “ARM Trace: Kills Bugs Fast!” by IAR Systems’ Shawn Prestridge

This appears in the June (335) issue of Circuit Cellar magazine

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

Denhac (Denver, CO, USA)

Denhac is a hackerspace on a mission to create and sustain a local, community driven, shared space, that enables education, experimentation, and collaboration, by applying the spirit of DIY to science, technology, engineering, and art.

Location 975 E 58th Ave, Unit N Denver, CO 80216
Members 45
Website Denhac.org

Alpha One Labs

What’s your meeting space like? 

It’s about 2,500 sq. ft. of commercial/warehouse/workshop space. We have an open shop floor area, bay doors, a classroom, an air-conditioned server room, and floorspace for several workstations specializing in various DIY areas.

What tools do you have in your space? 

  • Small OpenStack driven data center (four 72″ racks)
  • Cisco Networking workstation (for learning network engineering and infosec activities)
  • Textile workstation (sewing machines and USB driven embroidery machine) used for costuming, cosplay creation, etc.
  • 3D Printer workstation with Lulzbot printer
  • SeeMeCNC large format printer
  • Electronics workstation with oscilloscopes, breadboards, components, testing equipment, etc.
  • Soldering station
  • Small tools workstation (grinders, dremels, etc.),
  • Large format printer workstation,
  • Lasercutter (100watt),
  • Internet radio station (www.denhacradio.org) with a group going for a Low Power FM license (for running a community radio station)
  • Lots of racks for servers
  • 100 MB Internet

Are there any tools your group really wants or needs?

A metal forge, welding gear, carpentry gear, and CNC Tools.

Does your group work with embedded tech like Arduino, Raspberry Pi, embedded security, or MCU-based designs?

Yes, we teach classes on all of these (and more).

What are some of the projects your group has been working on?

Many and few, lots of individual projects. The group focuses more on collecting great tools for it’s members, and teaching classes on a broad range of topics (from making costumes, to hacking Arduino’s, to synthetic biology DNA hacking with bioblocks).

What’s the craziest project your group or group members have completed?

9′ Tesla coil. Also, a Steampunk flamethrower.

You mentioned a Low Power FM group earlier, can you tell us more about it? Are there other events or initiatives you’d like to talk about?

Yes, we’re just starting up a Low Power FM (LPFM) group that will be applying for a license to set up and run an FM community radio station at Denhac. We started a weekly Kids Coding Dojo class that teaches kids from ages six to fifteen how to code. (Accompanied by their parents.) We have a software defined radio hacking group (Radio Heads) that uses programs like GNUradio with SDR-capable radio kits and dongles to ‘listen in’ on the world. A BIG antenna is needed for that! We have a LockSport group that meets monthly and has some expert lock pickers. We have a 3D and LaserCutter printer group that meets as needed to teach members and the public how to use the equipment and to trade ideas on what to make next.

What would you like to say to fellow hackers out there?

Come and visit! We love visitors.

Want to know more about Denhac? Make sure to check out their website!

Show us your hackerspace! Tell us about your group! Where does your group design, hack, create, program, debug, and innovate? Do you work in a 20′ × 20′ space in an old warehouse? Do you share a small space in a university lab? Do you meet a local coffee shop or bar? What sort of electronics projects do you work on? Submit your hackerspace and we might feature you on our website!

Makelab Charleston (Charleston, SC, USA)

Makelab Charleston is a hackerspace for hobbyist and professionals who share common interests in technology, computers, science, or digital/electronics art. It provides an environment for people to create anything they can imagine: from electronics, 3D printing, and construction, to networking, and programming.

Location 3955 Christopher St, North Charleston, SC 29405
Members 24

Treasurer David Vandermolen will tell us something more about Makelab Charleston.

MakeLabCharleston

Tell us about your meeting space!

We started in a 500 sq. ft. garage, but took a step up and are currently renting a 900+ sq. ft. home that’s been renovated.  We now have the space for a electronic/soldering room that also has our 3-D printer. One other room is dedicated to power-type tools and our CNC machine that is still being built by our members.  The other spaces in the house are used for classes and member activities such as LAN parties.

What tools do you have in your space? (Soldering stations? Oscilloscopes? 3-D printers?)

Soldering stations, oscilloscopes, 3-D printer, power tools, large table-top CNC machine (in progress), and a rack server for the IT minded to play with.

Are there any tools your group really wants or needs?

A laser CNC, nice tables, and chairs .

Does your group work with embedded tech (Arduino, Raspberry Pi, embedded security, MCU-based designs, etc.)?

We have members that dabble in multiple areas so we try to provide classes on the technology people want to learn about and explore.

Can you tell us about some of your group’s recent tech projects?

Our most recent tech project has been a overhaul of our server system. Other projects include the CNC currently in progress. That’s been an ongoing project for about a year.

What’s the craziest project your group or group members have completed?

Probably the wackiest project we completed was actually, something not tech related at all, building a bed for Charleston Bed Races. We put together a Lego bed (not real Legos) complete with Lego man and all.

Do you have any events or initiatives you’d like to tell us about? Where can we learn more about it?

We list any events or classes we are doing or plan on doing on our Website. Just click on classes and events on the main page or go to the calendar tab.

What would you like to say to fellow hackers out there?

Makelab Charleston is about opening the world to information and sharing that information with the people in our community. The best way to do that is through teaching.

Show us your hackerspace! Tell us about your group! Where does your group design, hack, create, program, debug, and innovate? Do you work in a 20′ × 20′ space in an old warehouse? Do you share a small space in a university lab? Do you meet a local coffee shop or bar? What sort of electronics projects do you work on? Submit your hackerspace and we might feature you on our website!

A Workspace for Microwave Imaging, Small Radar Systems, and More

Gregory L. Charvat stays very busy as an author, a visiting research scientist at the Massachusetts Institute of Technology (MIT) Media Lab, and the hardware team leader at the Butterfly Network, which brings together experts in computer science, physics, and electrical engineering to create new approaches to medical diagnostic imaging and treatment.

If that wasn’t enough, he also works as a start-up business consultant and pursues personal projects out of the basement-garage workspace of his Westbrook, CT, home (see Photo 1). Recently, he sent Circuit Cellar photos and a description of his lab layout and projects.

Photo 1

Photo 1: Charvat, seated at his workbench, keeps his equipment atop sturdy World War II-era surplus lab tables.

Charvat’s home setup not only provides his ideal working conditions, but also considers  frequent moves required by his work.

Key is lots of table space using WW II surplus lab tables (they built things better back then), lots of lighting, and good power distribution.

I’m involved in start-ups, so my wife and I move a lot. So, we rent houses. When renting, you cannot install the outlets and things needed for a lab like this. For this reason, I built my own line voltage distribution panel; it’s the big thing with red lights in the middle upper left of the photos of the lab space (see Photo 2).  It has 16 outlets, each with its own breaker, pilot lamp (not LED).  The entire thing has a volt and amp meter to monitor power consumption and all power is fed through a large EMI filter.

Photo 2: This is another view of the lab, where strong lighting and two oscilloscopes are the minimum requirements.

Photo 2: This is another view of the lab, where strong lighting and two oscilloscopes are the minimum requirements.

Projects in the basement-area workplace reflect Charvat’s passion for everything from microwave imaging systems and small radar sensor technology to working with vacuum tubes and restoring antique electronics.

My primary focus is the development of microwave imaging systems, including near-field phased array, quasi-optical, and synthetic-aperture radar (SAR). Additionally, I develop small radar sensors as part of these systems or in addition to. Furthermore, I build amateur radio transceivers from scratch. I developed the only all-tube home theater system (published in the May-June 2012 issues of audioXpress magazine) and like to restore antique radio gear, watches, and clocks.

Charvat says he finds efficient, albeit aging, gear for his “fully equipped microwave, analog, and digital lab—just two generations too late.”

We’re fortunate to have access to excellent test gear that is old. I procure all of this gear at ham fests, and maintain and repair it myself. I prefer analog oscilloscopes, analog everything. These instruments work extremely well in the modern era. The key is you have to think before you measure.

Adequate storage is also important in a lab housing many pieces for Charvat’s many interests.

I have over 700 small drawers full of new inventory.  All standard analog parts, transistors, resistors, capacitors of all types, logic, IF cans, various radio parts, RF power transistors, etc., etc.

And it is critical to keep an orderly workbench, so he can move quickly from one project to the next.

No, it cannot be a mess. It must be clean and organized. It can become a mess during a project, but between projects it must be cleaned up and reset. This is the way to go fast.  When you work full time and like to dabble in your “free time” you must have it together, you must be organized, efficient, and fast.

Photos 3–7 below show many of the radar and imaging systems Charvat says he is testing in his lab, including linear rail SAR imaging systems (X and X-band), a near-field S-band phased-array radar, a UWB impulse X-band imaging system, and his “quasi-optical imaging system (with the big parabolic dish).”

Photo 3: This shows impulse rail synthetic aperture radar (SAR) in action, one of many SAR imaging systems developed in Charvat’s basement-garage lab.

Photo 3: This photo shows the impulse rail synthetic aperture radar (SAR) in action, one of many SAR imaging systems developed in Charvat’s basement-garage lab.

Photo 4: Charvat built this S-band, range-gated frequency-modulated continuous-wave (FMCW) rail SAR imaging system

Photo 4: Charvat built this S-band, range-gated frequency-modulated continuous-wave (FMCW) rail SAR imaging system.

Photo 5: Charvat designed an S-band near-field phased-array imaging system that enables through-wall imaging.

Photo 5: Charvat designed an S-band near-field phased-array imaging system that enables through-wall imaging.

Photo 5: Charvat's X-band, range-gated UWB FMCW rail SAR system is shown imaging his bike.

Photo 6: Charvat’s X-band, range-gated UWB FMCW rail SAR system is shown imaging his bike.

Photo 7: Charvat’s quasi-optical imaging system includes a parabolic dish.

Photo 7: Charvat’s quasi-optical imaging system includes a parabolic dish.

To learn more about Charvat and his projects, read this interview published in audioXpress (October 2013). Also, Circuit Cellar recently featured Charvat’s essay examining the promising future of small radar technology. You can also visit Charvat’s project website or follow him on Twitter @MrVacuumTube.