Measuring Jitter (EE Tip #132)

Jitter is one of the parameters you should consider when designing a project, especially when it involves planning a high-speed digital system. Moreover, jitter investigation—performed either manually or with the help of proper measurement tools—can provide you with a thorough analysis of your product.

There are at least two ways to measure jitter: cycle-to-cycle and time interval error (TIE).

WHAT IS JITTER?
The following is the generic definition offered by The International Telecommunication Union (ITU) in its G.810 recommendation. “Jitter (timing): The short-term variations of the significant instants of a timing signal from their ideal positions in time (where short-term implies that these variations are of frequency greater than or equal to 10 Hz).”

First, jitter refers to timing signals (e.g., a clock or a digital control signal that must be time-correlated to a given clock). Then you only consider “significant instants” of these signals (i.e., signal-useful transitions from one logical state to the other). These events are supposed to happen at a specific time. Jitter is the difference between this expected time and the actual time when the event occurs (see Figure 1).

Figure 1—Jitter includes all phenomena that result in an unwanted shift in timing of some digital signal transitions in comparison to a supposedly “perfect” signal.

Figure 1—Jitter includes all phenomena that result in an unwanted shift in timing of some digital signal transitions in comparison to a supposedly “perfect” signal.

Last, jitter concerns only short-term variations, meaning fast variations as compared to the signal frequency (in contrast, very slow variations, lower than 10 Hz, are called “wander”).

Clock jitter, for example, is a big concern for A/D conversions. Read my article on fast ADCs (“Playing with High-Speed ADCs,” Circuit Cellar 259, 2012) and you will discover that jitter could quickly jeopardize your expensive, high-end ADC’s signal-to-noise ratio.

CYCLE-TO-CYCLE JITTER
Assume you have a digital signal with transitions that should stay within preset time limits (which are usually calculated based on the receiver’s signal period and timing diagrams, such as setup duration and so forth). You are wondering if it is suffering from any excessive jitter. How do you measure the jitter? First, think about what you actually want to measure: Do you have a single signal (e.g., a clock) that could have jitter in its timing transitions as compared to absolute time? Or, do you have a digital signal that must be time-correlated to an accessible clock that is supposed to be perfect? The measurement methods will be different. For simplicity, I will assume the first scenario: You have a clock signal with rising edges that are supposed to be perfectly stable, and you want to double check it.

My first suggestion is to connect this clock to your best oscilloscope’s input, trigger the oscilloscope on the clock’s rising edge, adjust the time base to get a full period on the screen, and measure the clock edge’s time dispersion of the transition just following the trigger. This method will provide a measurement of the so-called cycle-to-cycle jitter (see Figure 2).

Figure 2—Cycle-to-cycle is the easiest way to measure jitter. You can simply trigger your oscilloscope on a signal transition and measure the dispersion of the following transition’s time.

Figure 2—Cycle-to-cycle is the easiest way to measure jitter. You can simply trigger your oscilloscope on a signal transition and measure the dispersion of the following transition’s time.

If you have a dual time base or a digital oscilloscope with zoom features, you could enlarge the time zone around the clock edge you are interested in for more accurate measurements. I used an old Philips PM5786B pulse generator from my lab to perform the test. I configured the pulse generator to generate a 6.6-MHz square signal and connected it to my Teledyne LeCroy WaveRunner 610Zi oscilloscope. I admit this is high-end equipment (1-GHz bandwidth, 20-GSPS sampling rate and an impressive 32-M word memory when using only two of its four channels), but it enabled me to demonstrate some other interesting things about jitter. I could have used an analog oscilloscope to perform the same measurement, as long as the oscilloscope provided enough bandwidth and a dual time base (e.g., an old Tektronix 7904 oscilloscope or something similar). Nevertheless, the result is shown in Figure 3.

Figure 3—This is the result of a cycle-to-cycle jitter measurement of the PM5786A pulse generator. The bottom curve is a zoom of the rising front just following the trigger. The cycle-to-cycle jitter is the horizontal span of this transition over time, here measured at about 620 ps.

Figure 3—This is the result of a cycle-to-cycle jitter measurement of the PM5786A pulse generator. The bottom curve is a zoom of the rising front just following the trigger. The cycle-to-cycle jitter is the horizontal span of this transition over time, here measured at about 620 ps.

This signal generator’s cycle-to-cycle jitter is clearly visible. I measured it around 620 ps. That’s not much, but it can’t be ignored as compared to the signal’s period, which is 151 ns (i.e., 1/6.6 MHz). In fact, 620 ps is ±0.2% of the clock period. Caution: When you are performing this type of measurement, double check the oscilloscope’s intrinsic jitter as you are measuring the sum of the jitter of the clock and the jitter of the oscilloscope. Here, the latter is far smaller.

TIME INTERVAL ERROR
Cycle-to-cycle is not the only way to measure jitter. In fact, this method is not the one stated by the definition of jitter I presented earlier. Cycle-to-cycle jitter is a measurement of the timing variation from one signal cycle to the next one, not between the signal and its “ideal” version. The jitter measurement closest to that definition is called time interval error (TIE). As its name suggests, this is a measure of a signal’s transitions actual time, as compared to its expected time (see Figure 4).

Figure 4—Time interval error (TIE) is another way to measure jitter. Here, the actual transitions are compared to a reference clock, which is supposed to be “perfect,” providing the TIE. This reference can be either another physical signal or it can be generated using a PLL. The measured signal’s accumulated plot, triggered by the reference clock, also provides the so-called eye diagram.

Figure 4—Time interval error (TIE) is another way to measure jitter. Here, the actual transitions are compared to a reference clock, which is supposed to be “perfect,” providing the TIE. This reference can be either another physical signal or it can be generated using a PLL. The measured signal’s accumulated plot, triggered by the reference clock, also provides the so-called eye diagram.

It’s difficult to know these expected times. If you are lucky, you could have a reference clock elsewhere on your circuit, which would supposedly be “perfect.” In that case, you could use this reference as a trigger source, connect the signal to be measured on the oscilloscope’s input channel, and measure its variation from trigger event to trigger event. This would give you a TIE measurement.

But how do you proceed if you don’t have anything other than your signal to be measured? With my previous example, I wanted to measure the jitter of a lab signal generator’s output, which isn’t correlated to any accessible reference clock. In that case, you could still measure a TIE, but first you would have to generate a “perfect” clock. How can this be accomplished? Generating an “ideal” clock, synchronized with a signal, is a perfect job for a phase-locked loop (PLL). The technique is explained my article, “Are You Locked? A PLL Primer” (Circuit Cellar 209, 2007.) You could design a PLL to lock on your signal frequency and it could be as stable as you want (provided you are willing to pay the expense).

Moreover, this PLL’s bandwidth (which is the bandwidth of its feedback filter) would give you an easy way to zoom in on your jitter of interest. For example, if the PLL bandwidth is 100 Hz, the PLL loop will capture any phase variation slower than 100 Hz. Therefore, you can measure the jitter components faster than this limit. This PLL (often called a carrier recovery circuit) can be either an actual hardware circuit or a software-based implementation.

So, there are at least two ways to measure jitter: Cycle-to-cycle and TIE. (As you may have anticipated, many other measurements exist, but I will limit myself to these two for simplicity.) Are these measurement methods related? Yes, of course, but the relationship is not immediate. If the TIE is not null but remains constant, the cycle-to-cycle jitter is null.  Similarly, if the cycle-to-cycle jitter is constant but not null, the TIE will increase over time. In fact, the TIE is closely linked to the mathematical integral over time of the cycle-to-cycle jitter, but this is a little more complex, as the jitter’s frequency range must be limited.

Editor’s Note: This is an excerpt from an article written by Robert Lacoste, “Analyzing a Case of the Jitters: Tips for Preventing Digital Design Issues,” Circuit Cellar 273, 2013.

A Shed Packed with Projects and EMF Test Equipment

David Bellerose, a retired electronic equipment repairman for the New York State Thruway, has had a variety of careers that have honed the DIY skills he employs in his Lady Lake, FL, workspace.

Bellerose has been a US Navy aviation electronics technician and a computer repairman. “I also ran my own computer/electronic and steel/metal welding fabrication businesses, so I have many talents under my belt,” he says.

Bellerose’s Protostation, purchased on eBay, is on top shelf (left). He designed the setup on the right, which includes a voltmeter, a power supply, and transistor-transistor logic (TTL) oscillators. A second protoboard unit is on the middle shelf (left). On the right are various Intersil ICM7216D frequency-counter units and DDS-based signal generator units from eBay. The bottom shelf is used for protoboard storage.

Bellerose’s Protostation, purchased on eBay, is on top shelf (left). He designed the setup on the right, which includes a voltmeter, a power supply, and transistor-transistor logic (TTL) oscillators. A second protoboard unit is on the middle shelf (left). On the right are various Intersil ICM7216D frequency-counter units and DDS-based signal generator units from eBay. The bottom shelf is used for protoboard storage.

Bellerose’s project interests include model rockets, video security, solar panels, and computer systems. “My present project involves Intersil ICM7216D-based frequency counter modules to companion with various frequency generator modules, which I am also designing for a frequency range of 1 Hz to 12 GHz,” he says.

His workspace is an 8′-by-15′ shed lined with shelves and foldable tables. He describes how he tries to make the best use of the space available:

“My main bench is a 4′-by-6’ table with a 2’-by-6’ table to hold my storage drawers. A center rack holds my prototype units—one bought on eBay and two others I designed and built myself. My Tektronix 200-MHz oscilloscope bought on eBay sits on the main rack on the left, along with a video monitor. On the right is my laptop, a Heathkit oscilloscope from eBay, a 2.4-GHz frequency counter and more storage units. All the units are labeled.

“I try to keep all projects on paper and computer with plenty of storage space. My network-attached storage (NAS) totals about 23 terabytes of space.

“I get almost all of my test equipment from eBay along with parts that I can’t get from my distributors, such as the ICM7216D chips, which are obsolete. I try to cover the full EMF spectrum with my test equipment, so I have photometers, EMF testers, lasers, etc.”

The main workbench has a 4′-by-6′ center rack and parts storage units on the left and right. The main bench includes an OWON 25-MHz oscilloscope, storage drawers for lithium-ion (Li-on) batteries (center), voltage converter modules, various project modules on right, a Dremel drill press, and a PC monitor.

The main workbench has a 4′-by-6′ center rack and parts storage units on the left and right. The main bench includes an OWON 25-MHz oscilloscope, storage drawers for lithium-ion (Li-on) batteries (center), voltage converter modules, various project modules on the right, a Dremel drill press, and a PC monitor.

Photo 3: This full-room view shows the main bench (center), storage racks (left), and an auxiliary folding bench to work on large repairs. The area on right includes network-attached storage (NAS) storage and two PCs with a range extender and 24-port network switch.

Photo 3: This full-room view shows the main bench (center), storage racks (left), and an auxiliary folding bench to work on large repairs. The area on right includes network-attached storage (NAS) and two PCs with a range extender and 24-port network switch.

Photo 4: Various versions of Bellerose’s present project are shown. The plug-in units are for eight-digit displays. They are based on the 28-pin Intersil ICM 7216D chip with a 10-MHz time base oscillator, a 74HC132 input buffer, and a 74HC390 prescaler to bring the range to 60 MHz. The units’ eight-digit displays vary from  1″ to 0.56″ and 0.36″.

Various versions of Bellerose’s present project are shown. The plug-in units are for eight-digit displays. They are based on the 28-pin Intersil ICM 7216D chip with a 10-MHz time base oscillator, a 74HC132 input buffer, and a 74HC390 prescaler to bring the range to 60 MHz. The units’ eight-digit displays vary from 1″ to 0.56″ and 0.36″.

Photo 5: This is a smaller version of Bellerose’s project with a 0.36″ display mounted over an ICM chip with 74hc132 and 74hc390 chips and 5-V regulators. Bellerose is still working on the final PCB layout. “With regulators, I can use a 9-V adapter,” he says.  “Otherwise, I use 5 V for increased sensitivity. I use monolithic microwave (MMIC) amplifiers (MSA-0486) for input.”

This is a smaller version of Bellerose’s project with a 0.36″ display mounted over an ICM chip with 74HC132 and 74HC390 chips and 5-V regulators. Bellerose is still working on the final PCB layout. “With regulators, I can use a 9-V adapter,” he says. “Otherwise, I use 5 V for increased sensitivity. I use monolithic microwave (MMIC) amplifiers (MSA-0486) for input.”

 

 

A Workspace for “Engineering Magic”

Brandsma_workspace2

Photo 1—Brandsma describes his workspace as his “little corner where the engineering magic happens.”

Sjoerd Brandsma, an R&D manager at CycloMedia, enjoys designing with cameras, GPS receivers, and transceivers. His creates his projects in a small workspace in Kerkwijk, The Netherlands (see Photo 1). He also designs in his garage, where he uses a mill and a lathe for some small and medium metal work (see Photo 2).

Brandsma_lathe_mill

Photo 2—Brandsma uses this Weiler lathe for metal work.

The Weiler lathe has served me and the previous owners for many years, but is still healthy and precise. The black and red mill does an acceptable job and is still on my list to be converted to a computer numerical control (CNC) machine.

Brandsma described some of his projects.

Brandsma_cool_projects

Photo 3—Some of Brandsma’s projects include an mbed-based camera project (left), a camera with an 8-bit parallel databus interface (center), and an MP3 player that uses a decoder chip that is connected to an mbed module (right).

I built a COMedia C328 UART camera with a 100° lens placed on a 360° servomotor (see Photo 3, left).  Both are connected to an mbed module. When the system starts, the camera takes a full-circle picture every 90°. The four images are stored on an SD card and can be stitched into a panoramic image. I built this project for the NXP mbed design challenge 2010 but never finished the project because the initial idea involved doing some stitching on the mbed module itself. This seemed to be a bit too complicated due to memory limitations.

I built this project built around a 16-MB framebuffer for the Aptina MT9D131 camera (see Photo 3, center). This camera has an 8-bit parallel databus interface that operates on 6 to 80 MHz. This is way too fast for most microcontrollers (e.g., Arduino, Atmel AVR, Microchip Technology PIC, etc.). With this framebuffer, it’s possible to capture still images and store/process the image data at a later point.

This project involves an MP3 player that uses a VLSI VS1053 decoder chip that is connected to an mbed module (see Photo 3, right). The great thing about the mbed platform is that there’s plenty of library code available. This is also the case for the VS1053. With that, it’s a piece of cake to build your own MP3 player. The green button is a Skip button. But beware! If you press that button it will play a song you don’t like and you cannot skip that song.

He continued by describing his test equipment.

Brandma_test_equipment

Photo 4—Brandsma’s test equipment collection includes a Tektronix TDS220 oscilloscope (top), a Total Phase Beagle protocol analyzer (second from top), a Seeed Technology Open Workbench Logic Sniffer (second from bottom), and a Cypress Semiconductor CY7C68013A USB microcontroller (bottom).

Most of the time, I’ll use my good old Tektronix TDS220 oscilloscope. It still works fine for the basic stuff I’m doing (see Photo 4, top). The Total Phase Beagle I2C/SPI protocol analyzer Beagle/SPI is a great tool to monitor and analyze I2C/SPI traffic (see Photo 4, second from top).

The red PCB is a Seeed Technology 16-channel Open Workbench Logic Sniffer (see Photo 4, second from bottom). This is actually a really cool low-budget open-source USB logic analyzer that’s quite handy once in a while when I need to analyze some data bus issues.

The board on the bottom is a Cypress CY7C68013A USB microcontroller high-speed USB peripheral controller that can be used as an eight-channel logic analyzer or as any other high-speed data-capture device (see Photo 4, bottom). It’s still on my “to-do” list to connect it to the Aptina MT9D131 camera and do some video streaming.

Brandsma believes that “books tell a lot about a person.” Photo 5 shows some books he uses when designing and or programming his projects.

Brandsma_books

Photo 5—A few of Brandsma’s “go-to” books are shown.

The technical difficulty of the books differs a lot. Electronica echt niet moeilijk (Electronics Made Easy) is an entry-level book that helped me understand the basics of electronics. On the other hand, the books about operating systems and the C++ programming language are certainly of a different level.

An article about Brandsma’s Sun Chaser GPS Reference Station is scheduled to appear in Circuit Cellar’s June issue.

Traveling With a “Portable Workspace”

As a freelance engineer, Raul Alvarez spends a lot of time on the go. He says the last four or five years he has been traveling due to work and family reasons, therefore he never stays in one place long enough to set up a proper workspace. “Whenever I need to move again, I just pack whatever I can: boards, modules, components, cables, and so forth, and then I’m good to go,” he explains.

Raul_Alvarez_Workspace _Photo_1

Alvarez sits at his “current” workstation.

He continued by saying:

In my case, there’s not much of a workspace to show because my workspace is whichever desk I have at hand in a given location. My tools are all the tools that I can fit into my traveling backpack, along with my software tools that are installed in my laptop.

Because in my personal projects I mostly work with microcontroller boards, modular components, and firmware, until now I think it didn’t bother me not having more fancy (and useful) tools such as a bench oscilloscope, a logic analyzer, or a spectrum analyzer. I just try to work with whatever I have at hand because, well, I don’t have much choice.

Given my circumstances, probably the most useful tools I have for debugging embedded hardware and firmware are a good-old UART port, a multimeter, and a bunch of LEDs. For the UART interface I use a Future Technology Devices International FT232-based UART-to-USB interface board and Tera Term serial terminal software.

Currently, I’m working mostly with Microchip Technology PIC and ARM microcontrollers. So for my PIC projects my tiny Microchip Technology PICkit 3 Programmer/Debugger usually saves the day.

Regarding ARM, I generally use some of the new low-cost ARM development boards that include programming/debugging interfaces. I carry an LPC1769 LPCXpresso board, an mbed board, three STMicroelectronics Discovery boards (Cortex-M0, Cortex-M3, and Cortex-M4), my STMicroelectronics STM32 Primer2, three Texas Instruments LaunchPads (the MSP430, the Piccolo, and the Stellaris), and the following Linux boards: two BeagleBoard.org BeagleBones (the gray one and a BeagleBone Black), a Cubieboard, an Odroid-X2, and a Raspberry Pi Model B.

Additionally, I always carry an Arduino UNO, a Digilent chipKIT Max 32 Arduino-compatible board (which I mostly use with MPLAB X IDE and “regular” C language), and a self-made Parallax Propeller microcontroller board. I also have a Wi-Fi 3G TP-LINK TL-WR703N mini router flashed   with OpenWRT that enables me to experiment with Wi-Fi and Ethernet and to tinker with their embedded Linux environment. It also provides me Internet access with the use of a 3G modem.

Raul_Alvarez_Workspace _Photo_2

Not a bad set up for someone on the go. Alvarez’s “portable workstation” includes ICs, resistors, and capacitors, among other things. He says his most useful tools are a UART port, a multimeter, and some LEDs.

In three or four small boxes I carry a lot of sensors, modules, ICs, resistors, capacitors, crystals, jumper cables, breadboard strips, and some DC-DC converter/regulator boards for supplying power to my circuits. I also carry a small video camera for shooting my video tutorials, which I publish from time to time at my website (www.raulalvarez.net). I have installed in my laptop TechSmith’s Camtasia for screen capture and Sony Vegas for editing the final video and audio.

Some IDEs that I have currently installed in my laptop are: LPCXpresso, Texas Instruments’s Code Composer Studio, IAR EW for Renesas RL78 and 8051, Ride7, Keil uVision for ARM, MPLAB X, and the Arduino IDE, among others. For PC coding I have installed Eclipse, MS Visual Studio, GNAT Programming Studio (I like to tinker with Ada from time to time), QT Creator, Python IDLE, MATLAB, and Octave. For schematics and PCB design I mostly use CadSoft’s EAGLE, ExpressPCB, DesignSpark PCB, and sometimes KiCad.

Traveling with my portable rig isn’t particularly pleasant for me. I always get delayed at security and customs checkpoints in airports. I get questioned a lot especially about my circuit boards and prototypes and I almost always have to buy a new set of screwdrivers after arriving at my destination. Luckily for me, my nomad lifestyle is about to come to an end soon and finally I will be able to settle down in my hometown in Cochabamba, Bolivia. The first two things I’m planning to do are to buy a really big workbench and a decent digital oscilloscope.

Alvarez’s article “The Home Energy Gateway: Remotely Control and Monitor Household Devices” appeared in Circuit Cellar’s February issue. For more information about Alvarez, visit his website or follow him on Twitter @RaulAlvarezT.

Evaluating Oscilloscopes (Part 4)

In this final installment of my four-part mini-series about selecting an oscilloscope, I’ll look at triggering, waveform generators, and clock synchronization, and I’ll wrap up with a series summary.

My previous posts have included Part 1, which discusses probes and physical characteristics of stand-alone vs. PC-based oscilloscopes; Part 2, which examines core specifications such as bandwidth, sample rate, and ADC resolution; and Part 3, which focuses on software. My posts are more a “collection of notes” based on my own research rather than a completely thorough guide. But I hope they are useful and cover some points you might not have otherwise considered before choosing an oscilloscope.

This is a screenshot from Colin O'Flynn's YouTube video "Using PicoScope AWG for Testing Serial Data Limits."

This is a screenshot from Colin O’Flynn’s YouTube video “Using PicoScope AWG for Testing Serial Data Limits.”

Topic 1: Triggering Methods
Triggering your oscilloscope properly can make a huge difference in being able to capture useful waveforms. The most basic triggering method is just a “rising” or “falling” edge, which almost everyone is (or should be) familiar with.

Whether you need a more advanced trigger method will depend greatly on your usage scenario and a bit on other details of your oscilloscope. If you have a very long buffer length or ability to rapid-fire record a number of waveforms, you might be able to live with a simple trigger since you can easily throw away data that isn’t what you are looking for. If your oscilloscope has a more limited buffer length, you’ll need to trigger on the exact moment of interest.

Before I detail some of the other methods, I want to mention that you can sometimes use external instruments for triggering. For example, you might have a logic analyzer with an extremely advanced triggering mechanism.  If that logic analyzer has a “trigger out,” you can trigger the oscilloscope from your logic analyzer.

On to the trigger methods! There are a number of them related to finding “odd” pulses: for example, finding glitches shorter or wider than some length or finding a pulse that is lower than the regular height (called a “runt pulse”). By knowing your scope triggers and having a bit of creativity, you can perform some more advanced troubleshooting. For example, when troubleshooting an embedded microcontroller, you can have it toggle an I/O pin when a task runs. Using a trigger to detect a “pulse dropout,” you can trigger your oscilloscope when the system crashes—thus trying to see if the problem is a power supply glitch, for example.

If you are dealing with digital systems, be on the lookout for triggers that can function on serial protocols. For example, the Rigol Technologies stand-alone units have this ability, although you’ll also need an add-on to decode the protocols! In fact, most of the serious stand-alone oscilloscopes seem to have this ability (e.g., those from Agilent, Tektronix, and Teledyne LeCroy); you may just need to pay extra to enable it.

Topic 2: External Trigger Input
Most oscilloscopes also have an “external trigger input.”  This external input doesn’t display on the screen but can be used for triggering. Specifically, this means your trigger channel doesn’t count against your “ADC channels.” So if you need the full sample rate on one channel but want to trigger on another, you can use the “ext in” as the trigger.
Oscilloscopes that include this feature on the front panel make it slightly easier to use; otherwise, you’re reaching around behind the instrument to find the trigger input.

Topic 3: Arbitrary Waveform Generator
This isn’t strictly an oscilloscope-related function, but since enough oscilloscopes include some sort of function generator it’s worth mentioning. This may be a standard “signal generator,” which can generate waveforms such as sine, square, triangle, etc. A more advanced feature, called an arbitrary waveform generator (AWG), enables you to generate any waveform you want.

I previously had a (now very old) TiePie engineering HS801 that included an AWG function. The control software made it easy to generate sine, square, triangle, and a few other waveforms. But the only method of generating an arbitrary waveform was to load a file you created in another application, which meant I almost never used the “arbitrary” portion of the AWG. The lesson here is that if you are going to invest in an AWG, make sure the software is reasonable to use.

The AWG may have a few different specifications; look for the maximum analog bandwidth along with the sample rate. Be careful of outlandish claims: a 200 MS/s digital to analog converter (DAC) could hypothetically have a 100-MHz analog bandwidth, but the signal would be almost useless. You could only generate some sort of sine wave at that frequency, which would probably be full of harmonics. Even if you generated a lower-frequency sine wave (e.g., 10 MHz), it would likely contain a fair amount of harmonics since the DAC’s output filter has a roll-off at such a high frequency.

Better systems will have a low-pass analog filter to reduce harmonics, with the DAC’s sample rate being several times higher than the output filter roll-off. The Pico Technology PicoScope 6403D oscilloscope I’m using can generate a 20-MHz signal but has a 200 MS/s sample rate on the DAC. Similarly, the TiePie engineering HS5-530 has a 30-MHz signal bandwidth, and similarly uses a 240 MS/s sample rate. A sample rate of around five to 10 times the analog bandwidth seems about standard.

Having the AWG integrated into the oscilloscope opens up a few useful features. When implementing a serial protocol decoder, you may want to know what happens if the baud rate is slightly off from the expected rate. You can quickly perform this test by recording a serial data packet on the oscilloscope, copying it to the AWG, and adjusting the AWG sample rate to slightly raise or lower the baud rate. I illustrate this in the following video.


Topic 4: Clock Synchronization

One final issue of interest: In certain applications, you may need to synchronize the sample rate to an external device. Oscilloscopes will often have two features for doing this. One will output a clock from the oscilloscope, the other will allow you to feed an external clock into the oscilloscope.

The obvious application is synchronizing a capture between multiple oscilloscopes. You can, however, use this for any application where you wish to use a synchronous capture methodology. For example, if you wish to use the oscilloscope as part of a software-defined radio (SDR), you may want to ensure the sampling happens synchronous to a recovered clock.

The input frequency of this clock is typically 10 MHz, although some devices enable you to select between several allowed frequencies. If the source of this clock is anything besides another instrument, you may have to do some clock conditioning to convert it into one of the valid clock source ranges.

Summary and Closing Comments
That’s it! Over the past four weeks I’ve tried to raise a number of issues to consider when selecting an oscilloscope. As previously mentioned, the examples were often PicoScope-heavy simply because it is the oscilloscope I own. But all the topics have been relevant to any other oscilloscope you may have.

You can check out my YouTube playlist dealing with oscilloscope selection and review.  Some topics might suggest further questions to ask.

I’ve probably overlooked a few issues, but I can’t cover every possible oscilloscope and option. When selecting a device, my final piece of advice is to download the user manual and study it carefully, especially for features you find most important. Although the datasheet may gloss over some details, the user manual will typically address the limitations you’ll run into, such as FFT length or the memory depths you can configure.

Author’s note: Every reasonable effort has been made to ensure example specifications are accurate. There may, however, be errors or omissions in this article. Please confirm all referenced specifications with the device vendor.