Open-Source Hardware for the Efficient Economy

In the open-source hardware development and distribution model, designs are created collaboratively and published openly. This enables anyone to study, modify, improve, and produce the design—for one’s own use or for sale. Open-source hardware gives users full control over the products they use while unleashing innovation—compared to the limits of proprietary research and development.

This practice is transforming passive consumers of “black box” technologies into a new breed of user-producers. For consumers, open-source hardware translates into better products at a lower cost, while providing more relevant, directly applicable solutions compared to a one-size-fits-all approach. For producers, it means lower barriers to entry and a consequent democratization of production. The bottom line is a more efficient economy—one that bypasses the artificial scarcity created by exclusive rights—and instead focuses on better and faster development of appropriate technologies.

Open-source hardware is less than a decade old. It started as an informal practice in the early 2000s with fragmented cells of developers sharing instructions for producing physical objects in the spirit of open-source software. It has now become a movement with a recognized definition, specific licenses, an annual conference, and several organizations to support open practices. The expansion of open-source hardware is also visible in a proliferation of open-source plans for making just about anything, from 3-D printers, microcontrollers, and scientific equipment, to industrial machines, cars, tractors, and solar-power generators.

As the movement takes shape, the next major milestone is the development of standards for efficient development and quality documentation. The aim here is to deliver on the potential of open-source products to meet or exceed industry standards—at a much lower cost—while scaling the impact of collaborative development practices.

The Internet brought about the information revolution, but an accompanying revolution in open-source product development has yet to happen. The major blocks are the absence of uniform standards for design, documentation, and development process; accessible collaborative design platforms (CAD); and a unifying set of interface standards for module-based design—such that electronics, mechanical devices, controllers, power units, and many other types of modules could easily interface with one another.

Can unleashed collaboration catapult open-source hardware from its current multimillion dollar scale to the next trillion dollar economy?

One of the most promising scenarios for the future of open source hardware is a glocal supply chain made up of thousands of interlinked organizations in which collaboration and complementarity are the norm. In this scenario, producers at all levels—from hobbyists to commercial manufacturers—have access to transparent fabrication tools, and digital plans circulate freely, enabling them to build on each other quickly and efficiently.

The true game changers are the fabrication machines that transform designs into objects. While equipment such as laser cutters, CNC machine tools, and 3-D printers has been around for decades, the breakthrough comes from the drastically reduced cost and increased access to these tools. For example, online factories enable anyone to upload a design and receive the material object in the mail a few days later. A proliferation of open-source digital fabrication tools, hackerspaces, membership-based shops, fab labs, micro factories, and other collaborative production facilities are drastically increasing access and reducing the cost of production. It has become commonplace for a novice to gain ready access to state-of-art productive power.

On the design side, it’s now possible for 70 engineers to work in parallel with a collaborative CAD package to design the airplane wing for a Boeing 767 in 1 hour. This is a real-world proof of concept of taking development to warp speed—though achieved with proprietary tools and highly paid engineers. With a widely available, open-source collaborative CAD package and digital libraries of design for customization, it would be possible for even a novice to create advanced machines—and for a large group of novices to create advanced machines at warp speed. Complex devices, such as cars, can be modeled with an inviting set of Lego-like building blocks in a module-based CAD package. Thereafter, CNC equipment can be used to produce these designs from off-the-shelf parts and locally available materials. Efficient industrial production could soon be at anyone’s fingertips.

Sharing instructions for making things is not a novel idea. However, the formal establishment of an open-source approach to the development and production of critical technologies is a disruptive force. The potential lies in the emergence of many significant and scalable enterprises built on top of this model. If such entities collaborate openly, it becomes possible to unleash the efficiency of global development based on free information flows. This implies a shift from “business as usual” to an efficient economy in which environmental and social justice are part of the equation.

 

Catarina Mota is a New York City-based Portuguese maker and open-source advocate who cofounded the openMaterials (openMaterials.org) research project, which is focused on open-source and DIY experimentation with smart materials. She is both a PhD candidate at FCSHUNL and a visiting scholar at NYU, and she has taught workshops on topics such as hi-tech materials and simple circuitry. Catarina is a fellow of the National Science and Technology Foundation of Portugal, co-chair of the Open Hardware Summit, a TEDGlobal 2012 fellow, and member of NYC Resistor.

Marcin Jakubowski graduated from Princeton and earned a PhD Fusion Physics from the University of Wisconsin. In 2003 Marcin founded the Open Source Ecology (OpenSourceEcology.org) network of engineers, farmers, and supporters. The group is working on the Global Village Construction Set (GVCS), which is an open-source, DIY toolset of 50 different industrial machines intended for the construction of a modern civilization (http://vimeo.com/16106427).

This essay appears in Circuit Cellar 271, February 2013.

CC270: Forward Progress

As you might have noticed, parts of this issue look a bit different than the publication you’re used to reading. You can see a slightly updated layout, some different colors, and a few new sections. We’ve made these changes to reflect where we are today and where we’re taking this magazine in the months to come. It’s all about forward progress. Here are the broad strokes:

FRESHENED UP LAYOUT

We’re planning an exciting layout redesign for 2013. The layout will be modern, clean, and engaging, but its fonts and colors won’t distract you from what you’re reading—professional engineering content. Since the new layout is still an issue or two away, we’re presenting you with this freshened up issue to mark the transition to 2013. We hope you like the changes.

CLIENT PROFILES

On page 20 you’ll find a new section that will appear frequently in the coming months. The purpose of our client profiles is to shine a light on one company per month and bring you an exclusive offer for useful products or services.

TECH THE FUTURE

Last month we ran Steve Ciarcia’s final “Priority Interrupt” editorial. This month we’re introducing a new section, “Tech the Future.” The EE/ECE community is on the verge of major breakthroughs in the fields of microcomputing, wireless communication, robotics, and programming. Each month, we’ll use page 80 to present some of the fresh ideas, thought-provoking research projects, and new embedded design-related endeavors from innovators who are working on the groundbreaking technologies of tomorrow.

CC25

You’ll soon have Circuit Cellar’s 25th (“CC25”) anniversary issue in your hands or on your PCs or mobile devices. Here are just a few of the exciting topics in the issue: Circuit Cellar in 1988, design/programming tips, engineers’ thoughts on the future of embedded tech, and much more. It’s going to be a classic.

Well, there’s certainly a lot of publishing-related innovation going on at our headquarters. And I know you’re equally busy at your workbenches. Just be sure to schedule some quiet time this month to read the articles in this issue. Perhaps one of our authors will inspire you to take on your first project of the new year. We feature articles on topics ranging from an MCU-based  helicopter controller to open-source hardware to embedded authentication to ’Net-based tools for energy efficiency. Enjoy!

Issue 262: Full-Featured SBCs at Your Fingertips

Fact 1: Easy-to-use, full-featured SBCs are popping up everywhere. Fact 2: Open-source software is becoming more commonplace each day. (Even Microsoft Corp. has begun taking open source seriously.) Conclusion: It’s an opportune time to be an electronics innovator.

In Circuit Cellar May 2012, Steve Ciarcia surveys some of the more affordable, 32-bit hardware options at your disposal. In “Power to the People” he writes:

While last month I may have implied that 8 bits is enough to control the world, there are significant things happening in high-end, 32-bit embedded processors that might really produce that inevitability. There are quite a few new system-on-chip-based, low-cost, single-board computers (SBCs) specifically designed to compete with or augment the smartphone and pad computer market. These and other full-feature budget SBCs are something you should definitely keep on your radar.

These devices typically have a high-end, 32-bit processor, such as ARM Cortex-A8, running 400 MHz to 1,000 MHz, coupled with a GPU core (and sometimes a separate DSP core) along with 128 MB to 512 MB of DDR SDRAM. These boards typically boot a full-up desktop operating system (OS)—such as Linux or Android (and soon Windows 8)—and often contain enough graphics horsepower for full-frame rate HD video and gaming.

Texas Instruments made a significant splash a few years ago with the introduction of the BeagleBoard SBC (beagleboard.org, $149 at the time) with their OMAP3530 chip along with 256-MB of flash memory and 128 MB of SDRAM running Angstrom Linux on a high-resolution HDMI monitor. That board has since been superseded by the BeagleBoard-xM (1,000 MHz and 512 MB) at the same price and supplemented by the BeagleBone board. Selling for just $89, BeagleBone includes a 600-MHz AM3517 processor, 256-MB SDRAM, a 2-GB microSD card, and Ethernet (something the original BeagleBoard lacked).

All of the software for these boards is open source, and a significant community of developers has grown up around them. In particular, a lot of effort has been put into software infrastructure, with a number of OSes now ported to many of these boards, along with languages (both compiled and interpreted) and application frameworks, such as XBMC for multimedia and home-theater applications.

Another SBC that has been generating a lot of buzz lately is the Raspberry Pi board (raspberrypi.org), mainly because the “B” version is priced at just $35. Raspberry Pi is based on a Broadcom chip, which is unexpected. Broadcom traditionally only gave hardware documentation and software drivers to major customers, like set-top box manufacturers, not to an open-source marketplace. Apparently, the only proprietary piece of software for the Raspberry Pi board will be the driver/firmware for the GPU core. Unfortunately, as I write this, there are a few lingering manufacturing issues, and Raspberry Pi still awaits shipping.

Both the concept and size of an “SBC” are evolving as well. In addition to the bare development boards, a number of interesting second-level products based on these chips has begun to appear. Take a look at designsomething.org. A couple of projects in particular are Pandora’s Pandora Handheld and Always Innovating’s HDMI Dongle. The former is a pocket-sized computer that flips open to reveal an 800 × 480 touchscreen and an alphanumeric keypad with gaming controls. Besides the obvious applications as a video viewer, gaming platform, and “super PDA,” I see huge opportunities for this box as a user interface for things like USB-based test instruments.

The Always Innovating HDMI Dongle is amazing for how much functionality they’ve crammed into a small package: it’s no bigger than a USB thumb drive (it also needs a USB socket for power), but it can turn any TV with an HDMI input jack and USB socket into a fully functional, Android-based computer with 1080p HD video playback, games, and Wi-Fi-based Internet access. These dongles might easily become distributed home theater nodes, delivering high-quality video and audio to multiple rooms from a common file server; or, one of the other low-cost SBCs might become the brain of a robot that can see and understand the world around it using open-source computer vision (OpenCV).

While it makes an old hardware guy like me feel less useful, it’s clear that the hardware—or, more specifically, the necessity to always design unique hardware—is no longer the bottleneck when it comes to powerful embedded applications. In a turnaround from decades ago, the ball is now clearly in the court of the software developers.

The applications for these boards and “thumb-thingies” are endless. Basically, they have the hardware muscle to handle anything that a smartphone or pad computer can do for much less. A lot of work has already been done on the OS and middleware layers. We just need to dive in and create the applications! Then it basically becomes a simple matter of programming. Of course, you know how much I personally look forward to that.

Circuit Cellar 262 (May 2012) is on newsstands now. Click here for a free preview of the issue.