Innovative Tech at Embedded World 2016

Attendance at the recent Embedded World 2016 conference in Nuremberg, Germany, increased 17% (30,063 trade visitors) over 2015. Wisse Hettinga was in attendance and took notes on some of the more interesting technologies on display. He writes:

Controllino: Open-Source PLC

Say “ino” and most engineers and electronics enthusiasts will think, “Arduino.” That also goes for “Controllino,” which is a programmable logic controller (PLC) based on Arduino hardware and software. Marco Riedesser started developing this new product after he repaired a coffee machine with parts he designed. His Controllino is intended for the new generation of automation experts who grew up with the Arduino platform. The Controllino is 100% compatible with the Arduino platform and makes use of the SDK. And, perhaps most importantly, it is an open development system. For more information, visit


NXP Semiconductors knows that innovative new technologies don’t appearing out of the blue, which is why it created the Hexiwear wearable development platform. Along with MikroElektronika, NXP is promoting this new piece of hardware to the design community via a Kickstarter campaign. hexiwear

Due to its compact design, you can use the Hexiwear as a watch or, if you need more functionality, you can click it onto the developer’s main board. The open-source Hexiwear’s features and specs include:

  • NXP Kinetis K64 MCU (ARM Cortex-M4, 120 MHz, 1M Flash, 256K SRAM)
  • BLE NXP Kinetis KW40Z multimode radio SoC (ARM Cortex-M0+, Bluetooth Low Energy & 802.15.4 Wireless MCU)
  • NXP FXOS8700CQ 3-D accelerometer and 3-D magnetometer
  • NXP FXAS21002 three-axis digital gyroscope
  • NXP MPL3115A2R1 absolute digital pressure sensor
  • NXP MC34671 600-mA, single-cell li-ion/li-polymer battery charger
  • TAOS TSL2561 light-to-digital converter
  • MEAS HTU21D digital humidity and temperature sensor
  • Maxim MAX3010x heart-rate sensor
  • Haptic feedback engine
  • 190-mAh 2C li-po battery
  • Capacitive touch interface
  • 1.1″ full color OLED display
  • 8 MB of additional flash memory

Intel Edison, What Did You Make?

When the Edison board was launched in 2014, it drew quite some attention from the community of makers. The board was heavy specified, wearable, and IoT ready. It allowed quick prototyping and the close connections with the Arduino world promised a smooth introduction into the world of designers and entrepreneurs with great ideas for the future. The module also came with seriously high price tag.edison

In the first months after the launch, there was a lot of interest. Some projects made it to the headlines, but things eventually quieted down around the platform. Was it the price, or was it the fact that the world of the x86 is different from the world of AVR or ARM? Or perhaps you need Linux knowledge to dig deeper into the system?

Embedded World 2016 in Nuremberg was a good opportunity to learn about the board’s status. According to Intel’s Ken Caviasca (VP in the IoT Group and GM of platform engineering and development), it is clear that Intel is still serious about addressing the makers community with the Edison module. A new board was announced on the Intel Developers Conference and the initiative is alive and well. Intel’s main objective for the Edison board is to get designers involved and to pick up new interest in the x86. Caviasca  confirmed that the Edison project is on target and many makers are using the platform for their designs. With a confident Intel about the future of  Edison, a big question remains: What will you make with it?

µTrace Supports New LPC54100 Series Microcontrollers

Lauterbach has announced its support for the new NXP Semiconductors LPC54100 Series of microcontrollers. NXP recently introduced its LPC54100 series, which achieves industry leading power efficiency and is ideally suited for “always-on” sensor-based products.utrace nxp lpc54100 series microcontrollers

Lauterbach has supported the LPC54100 Series of microcontrollers since the beginning with µTrace, a proven and popular debug and trace tool for Cortex-M-based processors. The tool uses USB 3.0 for connection to the host and connects to the LPC54100 via Serial Wire Debug (SWD) interface. The developer can control the operation of the program and analyze the data in C and C++ by the use of simple and complex breakpoints. An analog probe can be connected to µTrace to read the current and voltage measurements for energy profiling, which enables developers to fine-tune their software for minimal power usage.

The LPC54100 Series features an asymmetric dual-core architecture to enable scalable active power and performance by using a Cortex-M0+ and a Cortex-M4F for different sensor-processing tasks to optimize power efficiency. µTrace fully supports this type of asymmetric multicore processing (AMP) debugging by starting an individual TRACE32 instance for each core.

Source: Lauterbach

NXP LPC800 Microcontroller Challenge

Attention microcontroller users around the world! Ready to enter NXP Semiconductor’s LPC800 Challenge? Getting started is straightforward.

Elektor and Circuit Cellar have partnered with NXP Semiconductors to promote the Challenge. Once you have your LPC800 mini-board and code, you simply register and start working. The rules and complete details are listed on the LPC800 Challenge webpage.

The entry deadline is August 30, 2013. Once all the entries are received, NXP will select the most unique, interesting and funny submissions to receive a LPC800 LPCXpresso development kit.

The LPC800 is an ARM Cortex-M0+-based, 32-bit microcontroller operating at CPU frequencies of up to 30 MHz. The LPC800 supports up to 16 KB of flash memory and 4 KB of SRAM. The peripheral complement of the LPC800 includes a CRC engine, one I2C-bus interface, three USARTs, two SPI interfaces, one multi-purpose, state-configurable timer, one comparator, function-configurable I/O ports through a switch matrix, and up to 18 general purpose I/O pins.

Need design ideas? Check out these microcontroller projects with NXP parts.

Build a CNC Panel Cutter Controller

Want a CNC panel cutter and controller for your lab, hackspace, or workspace? James Koehler of Canada built an NXP Semiconductors mbed-based system to control a three-axis milling machine, which he uses to cut panels for electronic equipment. You can customize one yourself.

Panel Cutter Controller (Source: James Koehler)

According to Koehler:

Modern electronic equipment often requires front panels with large cut-outs for LCD’s, for meters and, in general, openings more complicated than can be made with a drill. It is tedious to do this by hand and difficult to achieve a nice finished appearance. This controller allows it to be done simply, quickly and to be replicated exactly.

Koehler’s design is an interesting alternative to a PC program. The self-contained controller enables him to run a milling machine either manually or automatically (following a script) without having to clutter his workspace with a PC. It’s both effective and space-saving!

The Controller Setup (Source: James Koehler)

How does it work? The design controls three stepping motors.

The Complete System (Source: James Koehler)

Inside the controller are a power supply and a PCB, which carries the NXP mbed module plus the necessary interface circuitry and a socket for an SD card.

The Controller (Source: James Koehler)

Koehler explains:

In use, a piece of material for the panel is clamped onto the milling machine table and the cutting tool is moved to a starting position using the rotary encoders. Then the controller is switched to its ‘automatic’ mode and a script on the SD card is then followed to cut the panel. A very simple ‘language’ is used for the script; to go to any particular (x, y) position, to lift the cutting tool, to lower the cutting tool, to cut a rectangle of any dimension and to cut a circle of any dimension, etc. More complex instructions sequences such as those needed to cut the rectangular opening plus four mounting holes for a LCD are just combinations, called macros, of those simple instructions; every new device (meter mounting holes, LCD mounts, etc.) will have its own macro. The complete script for a particular panel can be any combination of simple commands plus macros. The milling machine, a Taig ‘micro mill’, with stepping motors is shown in Figure 2. In its ‘manual’ mode, the system can be used as a conventional three axis mill controlled via the rotary encoders. The absolute position of the cutting tool is displayed in units of either inches, mm or thousandths of an inch.

Click here to read Koehler’s project abstract. Click here to read his complete documentation PDF, which includes block diagrams, schematics, and more.

This project won Third Place in the 2010 NXP mbed Design Challenge and is posted as per the terms of the Challenge.



Radiant Floor Heating Zone Controller Project

Even if you aren’t interested in designing a radiant floor zoned heating system, you can study this innovative project and apply what you learn to any number of building control and automation applications. Dalibor Zaric’s Radiant Floor Heating Zone Controller is built around an NXP Semiconductors LPC2134 ARM processor that’s connected to an Echelon Pyxos chip. The project won Second Place in Echelon’s 2007 “Control Without Limits” design competition.

The heat zone controller system (Source: Echelon & Dalibor Zaric)

Zaric provides the following details in his project documentation:

“• Power supply to unit is 24VAC and controller has switching power supply to provide 24VDC for Pyxos network as well 5V for logic, there is 3.3V linear regulator as well.

• There are four relay with 24VAC output to power up thermoelectric zone valve on radiant floor heating manifold. These outputs are protected with 1.85A self resetting fuse to prevent overloading. This block has as well 24VAC/DC dry contact to provide a call for heat to boiler or optional zones pump.

• Pyxos power supply filter and Pyxos chip provides Pyxos network connection for future sensors and thermostats. Pyxos thermostat will be more cost effective than regular LONWorks sensors/thermostats.

• RS-485 driver will provide future Modbus connection for local touch screens or smart home systems with Modbus connections. There is end of line resistors enabled with the dip switches beside connector.

• 3150 Neuron board with 64K flash provides LONWorks connection to the controller.”


The heat zone controller diagram (Source: Echelon & Dalibor Zaric)

For more information about Pyxos technology, visit

This winning project, as well as others, was promoted by Circuit Cellar based on a 2007 agreement with Echelon.