Qseven & SMARC Cards Boast i.MX8 CPUs

Congatec has announced support of the new 64-bit NXP i.MX8 processors for the Qseven and SMARC module standards. As a member of NXP’s Early Access Program, the new congatec modules will be available in time with the production launch of the new ARM Cortex A53 / A72 based processor family. This enables OEM customers to implement their first-to-market strategies efficiently, since they can start designing the carrier board for their applications now and will be able to leverage application-ready i.MX8 based Congatec modules from day one of the launch date.

conga-QMX8_pressThe new Qseven and SMARC modules with NXP i.MX8 real-time processors are well suited for a wide range of industrial, stationary and in-vehicle applications, as the processors integrate up to four cores and high-performance graphics for up to four independent displays with low energy consumption. Since the modules are designed for the extended ambient temperature range from -40°C to +85°C, they can also be used in fleet systems for commercial vehicles or in infotainment applications in cabs, buses and trains as well as all the new electric and autonomous vehicles. The acceptance of these new platforms is accelerated by the widespread use of ARM technologies in the consumer electronics market, which further reinforces the dominance of ARM technology, especially in the (ultra-) low-power segment of embedded computer technologies.

Congatec offers numerous important services around its modules, allowing design engineers to fully concentrate on the new features: The offer ranges from starter kits to EDM services and encompasses everything the developer’s heart desires. With congatec’s personal design-in support, OEMs also benefit from expert premium service from requirement engineering through to serial production. The first congatec modules and matching starter kits will be presented at Embedded World 2018 in Nuremberg. Customers can order starter kits with Qseven modules based on NXP i.MX6 processors today to enable them to switch to the new 64-bit platform the moment the new modules are launched. The first batches will be limited; interested OEM customers should register now for the exclusive congatec i.MX8 Early Access Program.

Congatec | www.congatec.com

Ultra-Low-Power RFID Chip for Retail Data

NXP Semiconductors recently launched a new global UCODE 8 RAIN RFID chip platform that’s intended for omnichannel retailer applications. A universal RAIN RFID chip, the UCODE 8 is provides “high inventory accuracy on all retail product categories through best-in-class read sensitivity.”  It includes a new auto-adjust feature ensures a consistently high performance read-rate across different product materials and global deployments. Furthermore, it features a unique brand identifier feature validates product authentication and helps identify fakes.

Source: NXP Semiconductors

Transform IoT Audio, Voice, and Video Interactions

NXP Semiconductors (now part of Qualcomm) recently introduced the new i.MX 8M family of applications processors specifically designed to meet increasing audio and video system requirements for smart home and smart mobility applications such as over-the-top (OTT) set-top boxes, digital media adapters, surround sound, sound bars, A/V receivers, voice control, voice assistance, digital signage, and general-purpose human machine interface (HMI) solutions.NXP-iMX8M-FS

The concept of the smart home is expanding rapidly, heightening consumers’ expectations for audio and video entertainment and transforming the requirements for consumer electronics devices. NXP’s i.MX 8M family addresses the major inflection points currently underway in streaming media: voice recognition and networked speakers in audio, and the move to 4K High Dynamic Range (HDR) and the growth of smaller, more compact form factors in video.

NXP’s i.MX 8M family of processors has up to four 1.5-GHz ARM Cortex-A53 and Cortex-M4 cores, flexible memory options and high-speed connectivity interfaces. The processors also feature full 4K UltraHD resolution and HDR (Dolby Vision, HDR10 and HLG) video quality, the highest levels of pro audio fidelity, up to 20 audio channels and DSD512 audio. The i.MX 8M family is tailored to streaming video devices, streaming audio devices and voice control applications.

Capable of driving dual displays, the new devices include:

  • The i.MX 8M Dual/i.MX 8M Quad, which integrates two or four ARM Cortex-A53 cores, one Cortex- M4F core, a GC7000Lite GPU and 4kp60, h.265 and VP9 video capability.
  • The i.MX 8M QuadLite, which integrates four ARM Cortex-A53 cores, one Cortex- M4F core and a GC7000Lite GPU.
  • The i.MX 8M Solo, which integrates one ARM Cortex-A53 core, one Cortex-M4F core and a GC7000nanoULTRA GPU.

The i.MX 8 applications processor is highly scalable with a pin- and power-compatible package and comprehensive software support. The i.MX 8 multi-sensory enablement kit (MEK) is now available to prototype i.MX 8M systems. Limited sampling of i.MX 8M will begin in the second quarter of 2017, and general availability is expected in the fourth quarter of 2017.

Source: NXP Semiconductors

Multi-Protocol Sub-GHz Wireless Transceiver Platform

NXP Semiconductors recently added the OL2385 family sub-GHz wireless transceivers to its low-power microcontroller and 2.4 GHz portfolio for Internet of Things (IoT) applications. Based on a PIN-to-PIN compatible, sub-GHz transceiver hardware platform, the OL2385 supports multiple wireless protocols  (e.g., Sigfox, W-MBus powered by Xemex, and ZigBee IEEE 802.15.4).

With a two-way RF channel and common modulation schemes for networking applicatios, the OL2385 transceivers cover a wide range of frequency bands from 160 to 960 MHz. In addition, extended range radio operation is enabled with high sensitivity up to –128 dBm. Operation in congested environments is enhanced with 60 dB at 1 MHz of blocking performance and 60 dB of image rejection.

Platform features include: 14-dBm Tx output power compliant with ETSI limits; typical 29-mA transmit power consumption at full output power; less than 11 mA receive power consumption; excellent phase noise of –127 dBc at 1 MHz in the 868- and 915-MHz band for flexibility with external power amplifiers; and Japanese ARIB T108 standard compliant.

The OL2385 platform samples and development boards with SIGFOX are currently available. Mass production of preprogrammed parts are scheduled for the end of Q4 2017.

Source: NXP Semiconductors

IAR Embedded Workbench Integrates the NXP S32 Design Studio

IAR Systems recently announced that IAR Embedded Workbench for ARM is now integrated with the NXP Semiconductors S32 Design Studio, which is an integrated development environment (IDE) for NXP’s automotive and ultra-reliable microcontrollers. In addition to functionality such as pin configurator, bootloader and motor control toolbox, it provides AUTOSAR Microcontroller Abstraction Layer (MCAL) support and AUTOSAR OS for the S32K product line tailored for automotive applications.

By letting S32 Design Studio generate a project connection with IAR Embedded Workbench, the IAR C/C++ Compiler and the extensive C-SPY Debugger can be used to develop the application. Adding a project connection will automatically include the generated code to the IAR Embedded Workbench project. If the files are changed from S32 Design Studio, they are updated automatically in IAR Embedded Workbench. Due to an integration of the build chain of IAR Embedded Workbench into the Eclipse-based S32 Design Studio, you can also opt to continue development within the S32 Design Studio while utilizing the IAR C/C++ Compiler.

The C/C++ compiler and debugger toolchain IAR Embedded Workbench for ARM features comprehensive debugging possibilities and smart integrated profiling tools. It is available with build chain certification according to the automotive functional safety standard ISO 26262. In addition, IAR Systems offers fully integrated static and runtime analysis tools for complete code control.

Source: IAR Systems

NXP Announces Single-Chip, 77-GHz Radar Transceiver

NXP Semiconductors recently announced the availability of small single-chip, 77-GHz radar transceiver (7.5 × 7.5 mm) with high resolution performance. Working prototypes of the RFCMOS IC are in the hands of NXP’s lead customers. In addition, Google engineers are field testing the ICs with the self-driving cars project.NXP Short Range Radar

The chip’s key characteristics, uses, and specs:

  • About the size of a postage stamp
  • You can integrate the chip “invisibly” practically anywhere in a car.
  • Power consumption is 40% lower than traditional radar ICs.
  • Intended for safety applications (e.g., emergency braking and automated parking)

 

Source: NXP Semiconductors www.nxp.com

NXP’s New Automotive Ethernet Product Portfolio

NXP Semiconductors has launched product portfolio for automotive Ethernet that builds on BroadR-ReachT, which is an automotive standard defined by theOPEN Alliance industry group. NXP’s automotive portfolio features two product families: Ethernet transceivers (TJA1100) and Ethernet switches (SJA1105).

The Ethernet PHY TJA1100 supports automotive low power modes. The systems sleep when the engine is off. However, the Ethernet PHY stays partially powered and wakes up the system only when there is network activity.NXP_AutomotiveEthernet

Transceivers (TJA1100):

  • Compliant with the OPEN Alliance BroadR-Reach (OABR) standard (IEEE: 100BASE-T1)
  • Designed via an automotive development flow
  • 6 × 6 mm² HVQFN package with minimal external component count
  • Supports low-power modes to save battery life
  • Automotive grade ESD and EMC

NXP’s SJA1105 Automotive Ethernet Switch uses Deterministic Ethernet technology to guarantee message latency in applications such as autonomous driving, where deterministic communication is vital for reasons of operational efficiency or functional safety. Deterministic Ethernet supports the trend toward increasing bandwidth requirements of up to one gigabit, while ensuring high reliability in networked control systems and high availability in fail-operational applications. It comprises several standards, including Ethernet (IEEE 802.3), Time-Triggered Ethernet (SAE AS6802) as well as Audio Video Bridging (AVB), and Time-Sensitive Networking (TSN).

Digital Switch (SJA1105):

  • Five-port automotive Ethernet Switch supporting up to 1-Gb network speed
  • Layer 2 Store and Forward Switch
  • MII/RMII/RGMII Interface
  • Port Mirroring and VLAN support (IEEE 802.1Q and IEEE 802.1P)
  • AVB and TSN support
  • Enables Deterministic Ethernet solutions

TJA1100 Ethernet transceivers are available in prototype samples. They will enter mass production in late 2015. SJA1105  Ethernet Switches are available upon request.

Source: NXP Semiconductors

5-V Qi Low-Power Wireless Charging Transmitter Reference Design

NXP Semiconductors has announced the availability of a new reference design for 5-V low-power Qi wireless charging transmitters, compliant with the Wireless Power Consortium (WPC) 1.1 Qi specification. The design is based on NXPs single-chip 5-V wireless power transmitter IC—the NXQ1TXA5 that was launched in 2014. It is the latest addition to NXP’s portfolio of Greenchip power solutions.NXP NXQ1TXA5

Building on NXP’s success as the market leader in Greenchip power ICs, the NXQ1TXA5 reference design has an unrivalled standby power consumption of less than 10 mW. It is the only solution on the market today that meets five-star mobile phone charger standby power ratings by consuming less than 30 mW in standby mode, which includes the standby power of the wall-charger. NXP recommends combining its NXQ1TXA5 ultra low standby power wireless power transmitter solution with another Greenchip device, its high efficiency TEA1720 SMPS IC with a standby power of less than 20 mW.

The NXQ1TXA5 device combines:

  • NXPs patented high efficiency Class D amplifier technology for outstanding EMI performance.
  • NXP’s ultra low power CoolFluxTM DSP technology for superior communication with smartphones placed on the charger.
  • Dedicated low power mixed signal circuitry to check for smartphone presence three times per second, enabling fast startup of charging, while keeping the standby power very low if there is no smartphone on the charger.

Due to the NXQ1TXA5’s  low-power consumption, the reference design also has a high efficiency for low transmitted powers, making it suitable for applications ranging from smartphone charging to deliver 5 W to the smartphone battery when used with a Qi compliant wireless charging receiver, to chargers for wearables that need less than 2-W charging power.

The NXQ1TXA5 reference design needs only 15 to 20 low-cost passive components and uses a standard two-layer PCB, with the components mounted on a single side. Depending on customer requirements, the complete application can be designed on a board space as small as 3 × 3 or 4 × 4 cm.

The new NXQ1TXA5 wireless charging transmitter reference design will be available in Q2.

Source: NXP Semiconductors