Wireless Standards and Solutions for IoT

Protocol Choices Abound

One of the critical enabling technologies making the Internet-of-Things possible is the set of well-established wireless standards that allow movement of data to and from low-power edge devices. These standards are being implemented in a variety of chip- and module-based solutions.

By Jeff Child, Editor-in-Chief

Connecting the various nodes of an IoT implementation can involve a number of wired and wireless network technologies. It’s rare that an IoT system can be completely hardwired end to end. That means most IoT systems of any large scale depend on a variety of wireless technologies including everything from device-level technologies to Wi-Fi to cellular networking.

IoT system developers have a rich set of wireless standards to choose from. And these can be implemented from the gateway and the device side using a variety of wireless IoT solutions in both module and chip form. Some of these are available from the leading microcontroller vendors, but a growing number are IoT-specialist chip and module vendors. Many of today’s solutions combine multiple protocols on the same device, such as Wi-Fi and Bluetooth LE (BLE) for example. We’ll look at each of the major wireless standards appropriate to IoT, along with representative interface solutions for each.

LoRaWAN

Managed by the LoRa Alliance, the LoRaWAN specification is a Low Power, Wide Area (LPWA) networking protocol designed to wirelessly connect battery operated ‘things’ to the internet in regional, national or global networks. It meets key IoT requirements such as bi-directional communication, end-to-end security, mobility and localization services.

The networking architecture of LoRaWAN is deployed in a star-of-stars topology in which gateways relay messages between end devices and a central network server. Gateways are connected to the network server via standard IP connections and act as a transparent bridge, simply converting RF packets to IP packets and vice versa. The wireless communication takes advantage of the Long Range characteristics of the LoRa physical layer, allowing a single-hop link between the end-device and one or many gateways. All modes are capable of bi-directional communication, and support is included for multicast addressing groups to make efficient use of spectrum during tasks such as Firmware Over-The-Air (FOTA) upgrades or other mass distribution messages.

In a recent LoRaWAN product example, Cypress Semiconductor in June announced its teaming up with Semtech on a compact, two-chip LoRaWAN-based module deployed by Onethinx. The highly-integrated Onethinx module is well-suited for smart city applications that integrate multiple sensors and are in harsh radio environments (Figure 1). Using Cypress’ PSoC 6 MCU hardware-based Secure Element functionality and Semtech’s LoRa devices and wireless radio frequency technology (LoRa Technology), the solution enables a multi-layer security architecture that isolates trust anchors for highly protected device-to-cloud connectivity. In addition, the PSoC 6 MCU’s integrated Bluetooth Low Energy (BLE) connectivity provides a simple, low-power, out-of-band control channel. Cypress claims the PSoC 6 device as the industry’s lowest power, most flexible Arm Cortex-M dual-core MCU with a power slope as low as 22-μA/MHz active power for the Cortex-M4 core. The device works well with Semtech’s latest LoRa radio chip family, which offers 50% power savings in receive mode and 20% longer range over previous-generation devices.

Figure 1
Using Cypress’ PSoC 6 MCU hardware-based Secure Element functionality and Semtech’s LoRa devices and wireless radio frequency technology (LoRa Technology), the Onethinx module enables a multi-layer security architecture that isolates trust anchors for highly protected device-to-cloud connectivity.

The Onethinx module uses the integrated Secure Element functionality in the PSoC 6 MCU to give each LoRaWAN-based device a secret identity to securely boot and deliver data to the cloud application. Using its mutual authentication capabilities, the PSoC 6 MCU-based, LoRa-equipped device can also receive authenticated over-the-air firmware updates. Key provisioning and management services are provided by IoT security provider and member of the Bosch group, ESCRYPT, for a complete end-to-end, secure LoRaWAN solution. The module, offered by Cypress partner Onethinx, connects to Bosch Sensortec’s Cross Domain Development Kit (XDK) for Micro-Electromechanical Systems (MEMS) sensors and to the provisioning system from ESCRYPT to securely connect.

Wi-Fi (802.11)

In systems where power is less of a constraint, the ubiquitous standard
Wi-Fi 802.11 is also a good method of IoT connectivity—whether leveraging off of existing Wi-Fi infrastructures or just using Wi-Fi hubs and routers in a purposed-built network implementation. As mentioned earlier, Wi-Fi is often available integrated with other wireless protocols such as Bluetooth. …

Read the full article in the July 336 issue of Circuit Cellar

Don’t miss out on upcoming issues of Circuit Cellar. Subscribe today!

Note: We’ve made the October 2017 issue of Circuit Cellar available as a free sample issue. In it, you’ll find a rich variety of the kinds of articles and information that exemplify a typical issue of the current magazine.

Ultra-Compact Bluetooth 4.2 + NFC Module

Rigado’s new BMD-350 Bluetooth 4.2 + NFC module is intended for use in Internet of Things (IoT) applications. With  8.6 × 6.4 × 1.5 mm footprint and based on the Nordic Semiconductors nRF52 series SoC, the BMD-350 gives IoT innovators a “plug-and-play” connectivity solution perfectly suited for high-performance, low-power wearables and portable devices. The Nordic Semiconductors nRF52 series brings on-chip NFC capability for new modes in IoT pairing. Both the BMD-350 and the BMD-350 evaluation kit are now available.

Source: Rigado

Contactless Security Chip Powers First NFC Payment Ring

NFCRing’s new EMVCo-compliant, wearable payment ring features a Infineon Technologies contactless security chip. Operating like a contactless payment card, the ring enables users to pay for products via an EMVCo contactless-enabled payment terminal. The EMVCo’s member organizations include American Express, Discover, JCB, MasterCard, UnionPay, and Visa.NFC Payment Ring

The Infineon SLE 77CLFX2407P contactless security cryptocontroller chip enabled the ring’s designers to develop a  wearable that doesn’t have a battery. The chip acquires the energy it needs from the electromagnetic field.

The chip’s features and specs:

  • Powerful 16-bit core
  • 90-nm Technology
  • SOLID FLASH
  • Common criteria EAL 5+(high)
  • EMVCo certified

 

 

The ring is available for $52.

Sourece: NFCRing, Inc.

Embedded Couplers for New Close Proximity Wireless Transfer Technology

Antenova M2M is now shipping its first orders for the TransferJet coupler, Zoma (SR4T014). In addition, it is working with Icoteq to build TransferJet designs for customers worldwide.Antenova SR4T014

 

Intended to transfer multimedia data (e.g., photos to a TV screen), TransferJet is a close-proximity wireless transfer technology that radiates very low-power radio waves. It combines the speed of ultra-wide band networking with near-field communications (NFC) and operates over short ranges. TransferJet uses a coupler as opposed to an antenna.

Antenova is working with Icoteq, which developed a sensor board for high-speed data upload using TransferJet. The 50 mm × 40 mm board feature an Atmel SAMS70/SAMV70 microprocessor and Antenova’s TransferJet coupler.

Source: Antenova

Compact NFC Security Module for Smart Wearables

Infineon Technologies is collaborating with Beijing-based Mobile Payment Solutions Co. Ltd. (MPS) on a new plug-and-play NFC security module. The smallest module in the series measures only 4 mm × 4 mm, making it a good fit for wearable electronics.Infineon_NFC

The MPS Boosted NFC security module series is well suited for wearable applications. At the core of the module is Infineon’s Boosted NFC Secure Element, which eliminates the need for the separate NFC controller that’s typically required with conventional solutions to utilize card emulation functionality in a device. The NFC antenna and antenna-matching components are included in the package, which reduces the PCB footprint by more than 75% percent (when you are using the smallest module of the series).

Running on a standard Java security card operating system, the Boosted NFC security module allows for the flexible loading of multiple Java-based applications (applets) on smart devices. While the Boosted NFC security module is an excellent option for new product designs, you could easily integrate it into existing designs to extend functionality to include secure payment.

The NFC security module’s main component is Infineon’s SLE78 security chip, which combines highest security performance with a storage capacity of more than 1 MB. This provides sufficient memory to securely store user credentials and run multiple applications, enabling a single device to replace a variety of cards (e.g., payment cards and public transportation tickets).

Source: Infineon Technologies

Embedded Chip = Subdermal Chip?

Forget stashing your cash under your mattress. Now you can stash it under your skin. Sort of.

The Telegraph reported Tuesday that Martijn Wismeijer, a Dutch innovator, recently implanted a 12-mm xNTi NFC chip in his body to store Bitcoin. The small glass chip stores 888 bytes and comes with a syringe for installation.

According the Dangerous Things site, the kit includes:

  • Glass chip preloaded in EO gas sterilized injector
  • A skin antiseptic
  • Gauze pads, a bandage, and non-latex surgical gloves

 

Source: Telegraph