EIM Bootcamp: Circuit Cellar Today & Tomorrow


Elektor bootcamp discussion

Want a behind-the-scenes look at the Elektor and Circuit Cellar teams?  You can link to a short, free report on my recent visit to our company headquarters in Limbricht, Netherlands, where EIM staffers from around the globe met up for a corporate “bootcamp.” The purpose of the meeting was to assess the company’s current offerings (magazines, books, kits, etc.), discuss the needs of members, and plan for the future.


3400-F Ultracapacitor

Maxwell Technologies has announced the addition of a 2.85-V, 3400-F cell to its K2 family of ultracapacitors. It is the most powerful cell available in the industry-standard, 60-mm cylindrical form factor. Incorporating Maxwell’s DuraBlue Advanced Shock and Vibration technology, it is a rugged cell that’s suitable for high-energy storage in demanding environments (e.g., in public transit vehicles).maxwell

The electrostatic charge can be cycled over a million times without performance degradation. The cells can also provide extended power and energy for long periods of propulsion in automotive subsystems and give fast response in UPS/Backup Power and grid applications to ensure critical information is not lost during dips, sags, and outages in the main power source. In addition, they can relieve batteries of burst power functions, thereby reducing costs and maximizing space and energy efficiency.

The K2 family of cells work in tandem with batteries for applications that require both a constant power discharge for continual function and a pulse power for peak loads. In these applications, the ultracapacitor relieves batteries of peak power functions resulting in an extension of battery life and a reduction of overall battery size and cost. The cells are available with threaded terminals or with compact, weldable terminals.

[via Elektor]

Microchip PICs with Integrated Crypto Engine

Anticipating the need for secure communications for the next level of device connectivity, Microchip Technology has integrated a complete hardware crypto engine into its PIC24F family of microcontrollers. Computers normally use software routines to carry out data encryption number crunching, but for low-power microcontrollers, this method will generally use up too much of the processor’s resources and be too slow.microchipPIC24FGB2

Microchip has integrated several security features into the PIC24F family of microcontrollers (identified by its “GB2” suffix) to protect embedded data. The fully featured hardware crypto engine supports the AES, DES and 3DES standards to reduce software overhead, lower-power consumption, and enable faster throughput. A Random Number Generator is also implemented that can be used to create random keys for data encryption, decryption, and authentication to provide a high level of security. For additional protection, the one-time-programmable (OTP) key storage prevents the encryption key from being read or overwritten.

These security features increase the integrity of embedded data without sacrificing power consumption. With XLP technology, the “GB2” family achieves 180-µA/MHz run currents and 18-nA sleep currents for long battery life in portable applications.

[via Elektor]

Great Plains Super Launch 2013


Pella, IA — Spectators, visitors and participants alike all erupted into cheerful applause and exclamation after watching the weather balloons launch successfully from the launch site at Vermeer on Saturday. The onlookers observed these hydrogen/helium filled balloons rising into the air until they faded from sight, approaching extremely high altitudes.  The launch was the start of an hour and a half that the balloon spent ascending, all the way into the Earth’s ozone layer.  Another thirty five or forty minutes later the balloon popped and parachutes back to Earth.

The balloons enable us to explore the region of the atmosphere called “near space”, which is above 60,000 ft., but below the accepted altitude of space- 328,000 ft. Cosmic radiation of near space is 100 times greater than it is at sea level. The large balloons are attached to a payload, which contains GPS tracking and various sensors. The payloads contain beacons which emit radio signals. Many of the payloads in this year’s super launch were made by students dedicated to exploring near space.

This sort of active involvement is what PENS strives for. PENS is Pella’s Exploring Near Space program. Mike Morgan, the president of PENS, enjoys and commits to getting kids involved and interested in science and technologies.

“The only thing that goes higher than our balloons are astronauts and satellites. The launch of a radio balloon isn’t something you see or do every day,” Morgan said.
The payload of the balloon also includes a camera so that you can get the view from the edge of space, along with other valuable information that the payload and sensors give. They are used to test things such as barometer, pressure, temperature, UV radiation and humidity. All of these are important factors in the study of aero science.

Bill Brown, founding father of Amateur Radio, participated in the Great Plains Super Launch on Saturday. From Alabama, Brown flew the first high altitude balloon with an amateur radio and video camera in 1987. Brown has flown 400 balloons in 20 states, but each launch presents new information and stimulating challenges. Brown explains that from the edge of space, “You can see the black sky and the curve of the Earth”.

For Nick Stich, the balloon that he launched was his 188th balloon. Balloons from all over the country were launched last Saturday, including radio balloons from Nebraska Stratospheric Amateur Radio, Edge of Space Sciences, DePauw University, and Iowa High Altitude Balloon. PENS, coordinated by Jim Emmert, hosted the conference for near space explorers and enthusiasts.

By Renee Van Roekel
The Chronicle

For more information on the super launch or radio ballooning, visit www.superlaunch.org .

This article was originally published by The Pella Chronicle on June 22, 2013, and is posted here with the permission of its publisher.

New Products: June 2013

C-Programmable Autonomous Mobile Robot System

The RP6v2 is a C-programmable autonomous mobile robot system designed for hobbyists and educators at universities, trade schools, and high schools. The system includes a CD with software, an extensive manual, plenty of example programs, and a large C function library. All library and example programs are open-source GNU general public license (GPL).

The autonomous mobile robot system has a large payload capacity and expansion boards, which may be stacked as needed. It receives infrared (IR) codes in RC5 format and includes integrated light, collision, speed, and IR-obstacle sensors. Its powerful tank drive train can drive up steep ramps and over obstacles.

The RP6v2’s features include an Atmel ATmega32 8-bit RISC microcontroller, AVR-GCC and RobotLoader open-source software for use with Windows and Linux, six PCB expansion areas, two 7.2-VDC motors, an I2C bus expansion system, and a USB interface for easy programming and communication.
The fully assembled RP6v2 robotic system costs $199.

Global Specialties

Smart Panels with Powerful CPU and Multiple OS Support

The SP-7W61 and the SP-1061 smart panels are based on the Texas Instruments 1-GHz Sitara AM3715 Cortex-A8 processor and an Imagination Technologies integrated PowerVR SGX graphics accelerator. The products support multiple OSes—including Linux 2.6.37, Android 2.3.4, and Windows Compact 7—making them well suited for communications, medical and industrial control, human-machine interface (HMI), and transportation applications.

The SP-7W61 (7” and 16:9) and the SP-1061 (10” and 4:3) have a low-power, slim, fanless mechanical design and a high-value cost/performance (C/P) panel PC module that uses powerful and efficient components. Compared with other x86 HMI or open-frame products, the SP-7W61 and the SP-1061 successfully keep power consumption to less than 5.9 W, which is half the typical rate. The smart panels feature multiple display sizes and low power consumption options. They can be implemented into slim and thin chassis types (e.g., for HMI, control panels, or wall-mount controllers).

ADLINK provides full support on software customization based on different platforms. A virtual machine or software development kit (SDK) is provided with related documentation for different platforms, so users can easily set up the software environment.
Contact ADLINK for pricing.

ADLINK Technology, Inc.

Fast-Switching 0.65-TO-20-GHz Synthesizer

The APSYN420B is a 0.65-to-20-GHz frequency synthesizer with a 0.001-Hz resolution and 0.1° phase resolution. The synthesizer provides a nominal output power of 13 dBm into 50 ?. The module features a high-stability internal reference that can be phase-locked to a user-configurable external reference or used in a master-slave configuration for high phase coherence.

The APSYN420B’s key features include low phase noise, fast switching (settling time is typically 20 µs with a 20-µs frequency update), and an internal OCXO reference that can be configured for high phase coherence between multiple sources. The synthesizer offers USB and LAN interfaces and consumes less than 10 W when powered from an external 6-VDC supply.

The APSYN420B’s modulation capabilities include angle, pulse, pulse trains, and pulsed chirps. Linear, logarithmic, or random-frequency sweeps can be performed with combined modulation running. Frequency chirps (linear ramp, up/down) can also be accomplished. The device can accept external reference signals from 1 to 250 MHz.

Applications for the APSYN420B include automatic test equipment, satellite, and other telecommunications needs. The APSYN420B is designed for a 0°C-to-45°C operating temperature range and weighs less than 2 lb in a compact 2.4” × 4.2” × 8.3” enclosure.
Contact Saelig for pricing.

Saelig Co., Inc.

SoC for Next-Generation Multimedia and Navigation Systems

The R-Car H2 is the latest member of Renesas’s R-Car series of automotive system-on-a-chip (SoC) offerings. The SoC delivers more than 25,000 Dhrystone million instructions per second (DMIPS) and provides high-performance and state-of-the-art 3-D graphics capabilities for high-end multimedia and automotive navigation systems.
The R-Car H2 is powered by the ARM Cortex A-15 quad-core configuration running an additional ARM Cortex A-7 quad core. The SoC also features Imagination Technologies’s PowerVR Series6 G6400 graphics processing unit (GPU). The GPU supports open technologies (e.g., OpenGL ES 2.0) and the OpenGL ES 3.0 and OpenCL standards.
The R-Car H2’s bus architecture includes dedicated CPU and IP caches, which reduce the double data rate type three (DDR3) memory bandwidth consumption. To ensure adequate memory bandwidth, the R-Car H2 is equipped with two independent DDR3-1600 32-bit interfaces.

The R-Car H2 integrates advanced automotive interfaces including Ethernet audio video bridging (AVB), MOST150, and CAN and mass storage interfaces such as serial advanced technology attachment (SATA), USB 3.0/2.0, secure digital (SD) card, and PCI Express for system expansion. As a device option, the GPS baseband engine handles all modern navigation standards. The R-Car H2’s additional features include 24-bit digital signal processing (DSP) for codec, high-quality audio processing with hardware sample rate converters, and audio mixing. Its multi-core architecture enables you to implement real-time features (e.g., quick-boot, backup camera support, and media processing) parallel to the execution of advanced OSes, such as QNX Neutrino RTOS, Windows Embedded Automotive, or Linux.

The SoC’s media hardware accelerators enable features such as 4× HD 1080p video encoding/decoding including Blu-ray support at 60 frames per second, image/voice recognition, and high-resolution 3-D graphics with almost no CPU load. These implemented hardware modules also execute the display content improvements needed for HMI/navigation data similar to movie/DVD handling.
Contact Renesas for pricing.

Renesas Electronics Corp.

KNX Device Control

The KNX Gateway enables HAI by Leviton’s Omni and Lumina Ethernet-based controllers to communicate with and control KNX devices through KNX’s standardized network communications bus protocol. You can use an HAI by Leviton interface or automated controller programming to control KNX devices (e.g., lighting devices, temperature and energy management, motors for window coverings, shades, and shutters) in homes and businesses.

The KNX Gateway maps specific data points of each KNX device to a unit or thermostat number on the HAI by Leviton controller. The interface between the KNX Gateway and the HAI by Leviton controller utilizes a RS-485 serial connection.

Compatible controllers include HAI’s OmniPro II home-control system, Omni IIe, Omni LTe, Lumina Pro, and Lumina. The KNX Gateway is powered by either a power over Ethernet (PoE) connection or a 12-to-24-V AC/DC converter.
Contact Leviton for pricing.

Leviton Manufacturing Co., Inc.

DC/DC Controller Uses Only a Single Inductor

The LTC3863 is a high-voltage inverting DC/DC controller that uses a single inductor to produce a negative voltage from a positive-input voltage. All of the controller’s interface signals are positive ground referenced. None of the LTC3863’s pins are connected to a negative voltage, enabling the output voltage to be limited by only the external components selection.

Operating over a 3.5-to-60-V input supply range, the LTC3863 protects against high-voltage transients, operates continuously during automotive cold crank, and covers a broad range of input sources and battery chemistries. The controller helps increase the runtime in battery-powered applications.

It has a low 70-µA quiescent current in Standby mode with the output enabled in Burst Mode operation. The LTC3863’s output voltage can be set from –0.4 to 150 V or lower at up to 3 A typical, making it well suited for 12-or-24-V automotive, heavy equipment, industrial control, telecommunications, and robotic applications.

The LTC3863 drives an external P-channel MOSFET, operates with a selectable fixed frequency between 50 and 850 kHz, and is synchronizable to an external clock from 75 to 750 kHz. Its current-mode architecture provides easy loop compensation, fast transient response, cycle-by-cycle overcurrent protection, and excellent line regulation. Output current sensing is accomplished by measuring the voltage drop across a sense resistor.
The LTC3863’s additional features include programmable soft start or tracking, overvoltage protection, short-circuit protection, and failure mode and effects analysis (FMEA) verification for adjacent pin opens and shorts.

The LTC3863 is offered in 12-pin thermally enhanced MSOP and 3-mm × 4-mm QFN packages. The controllers cost $2.06 in 1,000-unit quantities.

Linear Technology Corp.

Enhanced Web-Based Monitoring Software

HOBOlink is a web-enabled software platform that provides 24/7 data access and remote management for Onset Computer’s web-based HOBO U30 data logging systems. The software’s enhanced version enables users to schedule automatic delivery of exported data files in CSV or XLSX format, via e-mail or FTP.

HOBOlink can configure exported data export in a customized manner. For example, a user with four HOBO U30 systems measuring multiple parameters may configure HOBOlink to automatically export temperature data only. The time range may also be specified.

HOBOlink also enables users to easily access current and historical data, set alarm notifications and relay activations, and manage and control HOBO U30 systems without going into the field. An application programming interface (API) is available to organizations that want to integrate energy and environmental data from HOBOlink web servers with custom software applications.
Contact Onset for pricing.

Onset Computer Corp.

Digitally Tunable Capacitors for LTE Smartphones

Peregrine Semiconductor expanded its DuNE digitally tunable capacitor (DTC) product line with six second-generation devices for antenna tuning in 4G long-term evolution (LTE) smartphones. The PE623060, PE623070, PE623080, and PE623090 (PE6230x0) DTCs have a 0.6-to-7.7-pF capacitance range and support main antenna power handling of up to 34 dBm. The PE621010 and the PE621020 (PE6210x0) DTCs have a 1.38-to-14-pF capacitance range and are optimized for power handling up to 26 dBm, making them well suited for diversity antennas. The highly versatile devices support a variety of tuning circuit topologies, particularly impedance-matching and aperture-tuning applications.
The PE6230x0 DTCs are optimized for key cellular frequency bands from 700 to 2,700 MHz, featuring direct battery voltage operation with consistent performance enabled by on-chip voltage regulation.

The 5-bit, 32-state PE623060/70/80 DTCs have a 0.9-to-4.6-pF capacitance range. The 4-bit, 16-state PE623090 DTC has a 0.6-to-2.35-pF capacitance range. The PE623090 DTC’s lower minimum capacitance solves a critical problem in high-frequency tuning. The 5-bit, 32-state PE6210x0 DTCs support the 100-to-3,000-MHz frequency range. These DTCs extend the range of diversity antennas and improve data rates by optimizing the antenna performance at the operating frequency. The PE621010 DTC has a 1.38-to-5.90-pF capacitance range.

The PE6230x0 and PE6210x0 product families enable designers to develop smaller, higher-performing antennas. The product’s antenna-tuning functions—including bias generation, integrated radio frequency (RF) filtering and bypassing, control interface, and electrostatic discharge (ESD) protection of 2-kV human body model (HBM)—are incorporated into a slim, 0.55-mm × 2-mm × 2-mm package. All decoding and biasing are integrated on-chip, and no external bypassing or filtering components are required.
Contact Peregrine for pricing.

Peregrine Semiconductor Corp.

RS Components + Elektor = DesignSpark Magazine

RS Components has announced the launch of its new online publication, DesignSpark Magazine. The new magazine will be published in collaboration with Elektor International Media, the global electronics design and publishing house that publishes Elektor, Circuit Cellar, audioXpress, and more.

DesignSpark Magazine will replace RS Components’s popular eTech Magazine, which was first released as a digital edition in July 2010. According to a statement released by RS Components, “The new title is available as a fully digital publication in iPad, iPhone, Android tablet and page-turner formats. The publishing partnership with Elektor will produce not only a fresh-look magazine, but in addition will draw on Elektor’s long experience in the electronics publishing field to deliver the highest quality of technical content as a source of inspiration for design engineers worldwide.”

DesignSpark Magazine, which derives its name from designspark.com, the RS online community for electronics design engineers, will address three key topic areas:

  • Technologies – This will feature the best boards and board-level components for engineers and give readers a snapshot of the newest hot products in the market.
  • Software and tools – Keeping readers in touch with the latest resources to save time and money, this area will focus on free tools to support engineers.
  • Projects – Inspired by positive feedback on project-style articles in eTech, this expanded section in the new magazine will feature more design-tips articles contributed by Elektor, as well as make-and-build projects from the DesignSpark community. Readers will have access to the information located in this section to develop their own projects.

The new publication is designed to appeal to readers across the globe, with the concurrent launch of eight different language versions: English; Dutch; French; German; Italian; Japanese; Simplified Chinese and Spanish.

Mark Cundle, Head of Technical Marketing at RS, commented, “The RS online DesignSpark community has become a respected and well-used source of information and tools for electronics engineers over the past few years, so it is a natural progression to align the name of our proprietary online publication with the DesignSpark brand. The magazine is an integral part of our efforts to provide customers with a trusted, reliable source of technical information to help reduce design times and costs.”

Wisse Hettinga, International Director for Elektor International Media, said, “This exciting collaboration with RS Components will be good news for everyone who is an enthusiast and active in electronics design. It will mean more designs, more inspiration, more ‘how to’ and ‘where to get’ information to speed up the design process and create new, interesting electronic products.”

[Via Electrocomponents.com]

CircuitCellar.com is an Elektor International Media website.

Elektor Is Changing: More Content, More Projects, More Online!

Elektor is kicking off 2013 with a variety of new-and-improved offerings for its members: exciting electronics projects, new websites, a fresh e-newsletter, and more. Watch the following video to learn about the intriguing options and take a look inside the castle! Elektor is more than a paper magazine!

CircuitCellar.com is an Elektor International Media website.

PCB Service for Prototypes

Elektor recently inked a deal with Eurocircuits for the production and sale of PCBs. The decision is an important step toward delivering valuable services to Elektor members.

All of Elektor’s PCB orders will be handled by Eurocircuits. If you have a nice design yourself, you can try the Elektor PCB Service for prototypes or small production runs. Visit ElektorPCBService.com for more information.

Elektor.TV visited the Eurocircuits booth at the Electronics Show in Munich. In the video Dirk Stans (a Eurocircuits owner) comments on some of the company’s services and deliverables.

CircuitCellar.com is an Elektor International Media site.

CC 25th Anniversary Issue: The Past, Present, and Future of Embedded Design

In celebration of Circuit Cellar’s 25th year of publishing electrical engineering articles, we’ll release a special edition magazine around the start of 2013. The issue’s theme will be the past, present, and future of embedded electronics. World-renowned engineers, innovators, academics, and corporate leaders will provide essays, interviews, and projects on embedded design-related topics such as mixed-signal designs, the future of 8-bit chips, rapid prototyping, FPGAs, graphical user interfaces, embedded security, and much more.

Here are some of the essay topics that will appear in the issue:

  • The history of Circuit Cellar — Steve Ciarcia (Founder, Circuit Cellar, Engineer)
  • Do small-RAM devices have a future? — by John Regehr (Professor, University of Utah)
  • A review of embedded security risks — by Patrick Schaumont (Professor, Virginia Tech)
  • The DIY electronics revolution — by Limor Fried (Founder, Adafruit Industries)
  • The future of rapid prototyping — by Simon Ford (ARM mbed, Engineer)
  • Robust design — by George Novacek (Engineer, Retired Aerospace Executive)
  • Twenty-five essential embedded system design principles — by Bob Japenga (Embedded Systems Engineer, Co-Founder, Microtools Inc.)
  • Mixed-signal designs: the 25 errors you’ll make at least once — by Robert Lacoste (Founder, Alciom; Engineer)
  • User interface tips for embedded designers — by Curt Twillinger (Engineer)
  • Thinking in terms of hardware platforms, not chips — by Clemens Valens (Engineer, Elektor)
  • The future of FPGAs — by Colin O’Flynn (Engineer)
  • The future of e-learning for engineers and programmers — by Marty Hauff (e-Learning Specialist, Altium)
  • And more!


We’ll feature interviews with embedded industry leaders and forward-thinking embedded design engineers and programmers such as:

More Content

In addition to the essays and interviews listed above, the issue will also include:

  • PROJECTS will be available via QR codes
  • INFOGRAPHICS depicting tech-related likes, dislikes, and ideas of hundreds of engineers.
  • And a few surprises!

Who Gets It?

All Circuit Cellar subscribers will receive the 25th Anniversary issue. Additionally, the magazine will be available online and promoted by Circuit Cellar’s parent company, Elektor International Media.

Get Involved

Want to get involved? Sponsorship and advertising opportunities are still available. Find out more by contacting Peter Wostrel at Strategic Media Marketing at 978-281-7708 (ext. 100) or peter@smmarketing.us. Inquire about editorial opportunities by contacting the editorial department.

About Circuit Cellar

Steve Ciarcia launched Circuit Cellar magazine in 1988. From its beginning as “Ciarcia’s Circuit Cellar,” a popular, long-running column in BYTE magazine, Ciarcia leveraged his engineering knowledge and passion for writing about it by launching his own publication. Since then, tens of thousands of readers around the world have come to regard Circuit Cellar as the #1 source for need-to-know information about embedded electronics, design, and programming.

2012 ESC Boston: Tech from Microchip, Fujitsu, & More

The 2012 Embedded Systems Conference in Boston started September 17 and ends today. Here’s a wrap-up of the most interesting news and products.


Microchip Technology announced Monday morning the addition of 15 new USB PIC microcontrollers to its line of full-speed USB 2.0 Device PIC MCUs. In a short presentation, Microchip product marketing manager Wayne Freeman introduced the three new 8-bit, crystal-free USB PIC families.

The PIC16F145x family (three devices) features the Microchip’s lowest-cost MCUs. The devices are available in 14- and 20-pin packages, support full-speed USB communication, don’t require external crystals, include PWM with complement generation, and more. They’re suitable for applications requiring USB connectivity and cap sense capabilities.

Microchip’s three PIC18F2x/4xK50 devices (available in 28- and 40/44-pins) enable “easy migration” from legacy PIC18 USB devices. In addition to 1.8- to 5-V operation, they feature a Charge Time Measurement Unit (CTMU) for cap-touch sensing, which makes them handy for data logging systems for tasks such as temperature and humidity measurement.

The nine devices in the PIC18F97J94 family are available in 64-, 80-, and 100-pin packages. Each device includes a 60 × 8 LCD controller and also integrates a real-time clock/calendar (RTCC) with battery back-up. Systems such as hand-held scanners and home automation panels are excellent candidates for these devices.

Several interesting designs were on display at the Microchip booth.

  • The M2M PICtail module was used in an SMS texting system.

This SMS text messaging system was featured at Microchip’s Machine-to-Machine (M2M) station. The M2M PICtail module (located on the bottom left) costs around $200.

  • Microchip featured its PIC MCU iPod Accessory Kit in glucose meter design. It was one of several healthcare-related systems that exhibitors displayed at the conference.

The interface can be an iPhone, iPad, or iPod Touch.

Visit www.microchip.com for more information.


As most of you know, the entry period for the Renesas RL78 Green Energy Challenge ended on August 31 and the judges are now reviewing the entries. Two particular demos on display at the Renesas booth caught my attention.

  • A lemon powering an RL78 L12 MCU:

Lemon power and the RL78

  • An R8C capacitive touch system:

Cap touch technology is on the minds of countless electrical engineers.

Go to www.am.renesas.com.


I was pleased to see a reprint of Mark Pedley’s recent Circuit Cellar article, “eCompass” (August 2012), on display at Freescale’s booth. The article covers the topics of building and calibrating a tilt‐compensating electronic compass.

A Circuit Cellar reprint for attendees

Two of the more interesting projects were:

  • An Xtrinsic sensor demo:

Xtrinsic and e-compass

  • A Tower-based medical suitcase, which included a variety of boards: MED-BPM (a dev board for blood pressure monitor applications), MED-EKG (an aux board for EKG and heart rate monitoring applications), and more.

Tower System-based medical suitcase


I stopped by the STMicro booth for a look at the STM32F3DISCOVERY kit, but I quickly became interested in the Dual Interface EEPROM station. It was the smartphone that caught my attention (again). Like other exhibitors, STMicro had a smartphone-related application on hand.

  • The Dual EEPROMs enable you to access memory via either  wired or RF interfaces. Energy harvesting is the new function STMicro is promoting. According to the documentation, “It also features an energy harvesting and RF status function.”

The Dual Interface EEPROM family has an RF and I2C interface

  • According to STMicro’s website, the DATALOG-M24LR-A PCB (the green board, top left) “features an M24LR64-R Dual Interface EEPROM IC connected to an STM8L101K3 8-bit microcontroller through an I2C bus on one side, and to a 20 mm x 40 mm 13.56 MHz etched RF antenna on the other one side. The STM8L101K3 is also interfaced with an STTS75 temperature sensor and a CR2330 coin cell battery.”


I’m glad I spend a few moments at the Fujitsu booth. We rarely see Circuit Cellar authors using Fujitsu parts, so I wanted to see if there was something you’d find intriguing. Perhaps the following images will pique your interest in Fujitsu technologies.

The FM3 family, which features the ARM Cortext-M3 core, is worth checking out. FM3 connectivity demonstration

Connectivity demo

Check out Fujitsu’s System Memory site and document ion to see if its memory products and solutions suit your needs. Access speed comparison: FRAM vs. SRAM vs. EEPROM

Access speed comparison

The ESC conference site has details about the other exhibitors that had booths in the exhibition hall.







Renesas RL78-Based Design Project Opportunities

Did you miss the 1:00 PM EST deadline for the Renesas RL78 Green Energy Challenge? Do you have an unfinished project? No worries! You can still make something of your RL78-related project and the work you’ve put into it! Circuit Cellar and Elektor have several exciting non-contest-related opportunities you’ll find interesting and advantageous!

The Circuit Cellar/Elektor staff wants to know about your work. Even if your project is unfinished, let the staff know what you’re working on and the project’s status. Upload your project or email us your information.

If the staff is interested in your work, an editor will consider approaching you about one or all of the following non-contest-related opportunities:

  • Distinctive Excellence: If the editorial team thinks your project has merit, you might be eligible for “Distinctive Excellence” designation. After past design challenges, Distinctive Excellence recipients added the honor to their resumes, wrote articles about their projects, and gained notoriety in the design community.
  • Print Magazine Opportunities: The editorial team might think your project is worthy of being published in Circuit Cellar or Elektor magazine. Design Challenges and the print magazine are completely separate. If you are offered an opportunity to write an article and it is published, you will paid a standard author honorarium.
  • CircuitCellar.com Opportunities: The Circuit Cellar editorial team will review your submission and consider posting it on CircuitCellar.com to show the world the effort and progress you’ve made. You can post your project info on the site in the spirit of sharing and the furtherance of engineering innovation! Who knows? Readers might provide you with valuable feedback about your unfinished project. Or perhaps you’ll inspire another person to build something of their own! Perhaps your project will catch the eye company looking to learn more about you work!
  • Interview Possibilities: The editorial team might find your approach to design interesting and consider interviewing you for an upcoming issue.
  • Future Design Collaboration: The Elektor Lab builds and tests innovative electronics projects. If your project—whether finished or in progress—interests an Elektor Lab engineer or editor, someone might contact you to discuss development, testing, or even production opportunities.

As you can see, you have some excellent reasons to contact the Circuit Cellar/Elektor staff.

To submit a finished project, an abstract, or simply info about our work, you can still use the Challenge Entry Form. Or, you can simply ZIP your files and email them to the Circuit Cellar Editorial Department. (Write “RL78 Project” and your project’s name or registration number in the email’s subject line.)

RL78 Green Energy Design Challenge Deadline Approaches

Attention engineers, programmers, and electronics enthusiasts! The entry deadline of August 31 for the Renesas RL78 Green Energy Challenge is fast approaching. Here are some tips to keep you on schedule.


The challenge is to design an innovative, energy-efficient application that features the Renesas RL78 MCU, RL78/G13 Renesas Demonstration Kit (RDK), and IAR Toolchain. For information, visit the Eligible Parts page on the design challenge site.

Renesas RDK RL78 board


Once you’re done designing your RL78-based project, you need to gather and order your entry materials: project abstract, complete documentation, and code.

Make sure you register for the challenge to obtain a registration number. Label all of your files and documents with your registration number. Don’t put your name on the files and documents.

Consider organizing all of your entry in a ZIP (or RAR) file. Compressing all of your files into one ZIP will keep your entry organized and easier to submit.


Before you submit your entry, go through the following checklist one last time to ensure you have everything:

• Abstract (a short project description)
• Complete documentation (a detailed project description)
• Block diagram(s)
• Schematic(s)
• Project photograph(s)
• Source code
• Files are properly labeled (your name doesn’t appear in the entry files)

More details are posted on the challenge’s FAQ webpage.


Ready to submit your entry? The preferred submission method is to upload your project files via the RL78 Design Challenge Dropbox.

Or send project files to:

RL78 Green Energy Challenge, Circuit Cellar, 4 Park Street, Vernon, CT 06066, USA

Good luck!

Great Plains Super Launch

Contributed by Mark Conner

The Great Plains Super Launch (GPSL) is an annual gathering of Amateur Radio high-altitude ballooning enthusiasts from the United States and Canada. The 2012 event was held in Omaha, Nebraska from June 7th to the 9th and was sponsored by Circuit Cellar and Elektor. Around 40 people from nine states and the Canadian province of Saskatchewan attended Friday’s conference and around 60 attended the balloon launches on Saturday.

Amateur Radio high-altitude ballooning (ARHAB) involves the launching, tracking, and recovery of balloon-borne scientific and electronic equipment. The Amateur Radio portion of ARHAB is used for transmitting and receiving location and other data from the balloon to chase teams on the ground. The balloon is usually a large latex weather balloon, though other types such as polyethylene can also be used. A GPS unit in the balloon payload calculates the location, course, speed, and altitude in real time, while other electronics, usually custom-built, handle conversion of the digital data into radio signals. These signals are then converted back to data by the chase teams’ receivers and computers. The balloon rises at about 1000 feet per minute until the balloon pops (if it’s latex) or a device releases the lifting gas (if it’s PE). Maximum altitudes are around 100,000 feet and the flight typically takes two to three hours.

Prepping for the launch – Photo courtesy of Mark Conner

On Thursday the 7th, the GPSL attendees visited the Strategic Air and Space Museum near Ashland, about 20 minutes southwest of Omaha. The museum features a large number of Cold War aircraft housed in two huge hangars, along with artifacts, interactive exhibits, and special events. The premiere aircraft exhibit is the Lockheed SR-71 Blackbird suspended from the ceiling in the museum’s atrium. A guided tour was provided by one of the museum’s volunteers and greatly enjoyed by all.

Friday featured the conference portion of the Super Launch. Presentations were given on stabilization techniques for in-flight video recordings, use of ballooning projects in education research, lightweight transmitters for tracking the balloon’s flight, and compressed gas safety. Bill Brown showed highlights from his years of involvement in ARHAB dating back to his first flights in 1987. The Edge of Space Sciences team presented on a May launch from Coors Field in Denver for “Weather and Science Day” prior to an afternoon Colorado Rockies game. Several thousand students witnessed the launch, which required meticulous planning and preparation.

EOSS ready for launch – Photo courtesy of Mark Conner

Saturday featured the launch of five balloons from a nearby high school early that morning. While the winds became gusty for the last two launches, all of the flights were successfully released into a brilliant sunny June sky. All five of the flights were recovered without damage in the corn and soybean fields of western Iowa between 10 and 25 miles from launch. The SABRE team from Saskatoon, Saskatchewan took the high flight award, reaching over 111,000 ft during their three-hour flight.

The view from one of the balloons. Image credit: “Project Traveler / Zack Clobes”.

The 2013 GPSL will be held in Pella, Iowa, on June 13-15. Watch the website superlaunch.org for additional information as the date approaches.

CircuitCellar.com Featured on EEWeb

CircuitCellar.com is the featured website today on EEWeb.com. Check it out, and be sure to take advantage of the special offer!

Circuit Cellar celebrates 25 years!

Visit CircuitCellar.com each day for embedded design and programming projects, news, tutorials, and more!

Also, to celebrate the Circuit Cellar’s 25th anniversary, the company has a special archive thumb drive promotion. Check it out. Get 25 years of articles and projects on a 32-GB thumb drive! Click here for details.

DesignSpark chipKIT Challenge 2012 Winners Named

The results for the DesignSpark chipKIT Challenge are now final. Dean Boman won First Prize for his chipKIT-based Energy Monitoring System, which provides users real-time home electrical usage data. A web server provides usage tracking on a circuit-by-circuit basis. It interfaces with a home automation system for long-term monitoring and data logging.

Dean Boman's Energy Monitoring System (Source: D. Boman)

Second prize went to Raul Alvarez for his Home Energy Gateway consumption monitor, which features an embedded gateway/web server that communicates with “smart” devices.

Raul Alvarezs Home Energy Gateway (Source: R. Alvarez)

Graig Pearen won Third Prize for his PV Array Tracker (Sun Seeker) project, which tracks, monitors, and adjusts PV arrays based on weather conditions.

Graig Pearen's PV Array Tracker (Source: G. Pearen)

Click HERE for a list of all the winners. You can review their project abstracts, documentation, schematics, diagrams, code, and more.

Participants in the competition were challenged develop innovative, energy-efficient designs with eco-friendly footprints. Entries were required to include an extension card developed using the DesignSpark PCB software tool and the Microchip Max32 chipKIT development board.

According to the documentation on the design challenge site:

The chipKIT™ Max32™ development platform is a 32-bit Arduino solution that enables hobbyists and academics to easily and inexpensively integrate electronics into their projects, even if they do not have an electronic-engineering background.

The platform consists of two PIC32-based development boards and open-source software that is compatible with the Arduino programming language and development environment. The chipKIT™ hardware is compatible with existing 3.3V Arduino shields and applications, and can be developed using a modified version of the Arduino IDE and existing Arduino resources, such as code examples, libraries, references and tutorials.

The chipKIT™ Basic I/O Shield (part # TDGL005) is compatible with the chipKIT™ Max32™ board, and offers users simple push buttons, switches, LEDs, I2C™ EEPROM, I2C temperature sensor, and a 128 x 32 pixel organic LED graphic display.


Click HERE for a list of all the winners. You can review their project abstracts, documentation, schematics, diagrams, code, and more.

Circuit Cellar/Elektor Inc. is the Contest Administrator.