Eight-Core 64-bit Processor for Mobile Devices

MediaTek has announced the MT6795, which the company is targeting at the high-end Android 4G smartphones and tablet segment. According to the press release, the eight-core processor also supports 2560 × 1600 resolution displays, FDD/TDD LTE technology, 802.11ac WiFi, Bluetooth, GPS, FM Radio, and 2G and 3G wireless networks.mediatek

The chip also supports video recording and playback at Ultra HD (4K2K) resolution using the H.265, H.264 and VP9 formats, supporting high-speed 1080p video recording at up to 480 frames per second allowing slow-motion playback on screens with 120 Hz refresh. An integrated 16-MP camera image signal processor handles video input and MediaTek’s ClearMotion technology eliminates motion jitter to ensure smooth video playback at 60fps.

The MT6795 uses eight ARM Cortex-A53 processors, based on a 28-nm process that clocks at 2.0 GHz and a Mali-T760 GPU to handle display control. MediaTek also supplies its CorePilot technology, which provides multicore processor performance and thermal control of the chip. The MT6795 also supports dual-channel LPDDR3 memory at 933 MHz.

According to MediaTek, we can expect to see 4G smartphones using MT7695 chips before the end of  2014.

[Via Elektor]

 

Q&A: Alenka Zajić, Communications Specialist

From building RF components for cell phones to teaching signal processing and electromagnetics at Georgia Institute of Technology’s School of Electrical and Computer Engineering, Alenka Zajić has always been interested in engineering and communications. Alenka and I discussed her fascination with a variety of communication technologies including mobile-to-mobile, computer system, energy-efficient, and wireless. She also described her current research, which focuses on improving computer communication.

Alenka Zajić

Alenka Zajić

NAN: Give us some background information. Where are you located? Where and what did you study?

ALENKA: I am originally from Belgrade, Serbia, where I got my BS and MS degrees at the School of Electrical Engineering, University of Belgrade.

After graduating with a BS degree, I was offered a design engineer job at Skyworks Solutions in Fremont, CA, where my job was to create passive RF components (e.g., antennas, filters, diplexers, baluns, etc.) for cell phones.

I was very excited to move to California, but was not sure if I would like to pursue an engineering career or a research/academic career. Since it took about six months to get an H1B visa, I decided to take all the required MS courses in Belgrade while waiting for the visa and all I had to do was finish the thesis while working in California. It was a bigger challenge than I expected, but it worked out well in the end.

While I enjoyed working in the industry, I was always more drawn to research than commercialization of products/innovations. I also enjoy “trying something new,” so it became clear to me that I should go back to school to complete my doctoral studies. Hence, I moved to Atlanta, GA, and got my PhD at the School of Electrical and Computer Engineering, Georgia Institute of Technology.

After graduation, I worked as a researcher in the Naval Research Laboratory (Washington, DC) and as a visiting assistant professor in the School of Computer Science, Georgia Tech, until last year, when I became the assistant professor at the School of Electrical and Computer Engineering, Georgia Tech.

NAN: How long have you been teaching at Georgia Tech? What courses do you currently teach and what do you enjoy most about teaching?

ALENKA: This is my second year at the School of Electrical and Computer Engineering. Last year, I taught introduction to signal processing and electromagnetics for undergraduates. This year, I am teaching electromagnetics for graduate students. One of the most rewarding aspects of university teaching is the opportunity to interact with students inside and outside of the classroom.

NAN: As an engineering professor, you have some insight into what interests future engineers. What are some “hot topics” that intrigue your students?

ALENKA: Over the years, I have seen different areas of electrical and computer engineering being “hot topics.” Currently, embedded programming is definitely popular because of the cell phone applications. Optical communications and bioengineering are also very popular.

NAN: You have contributed to several publications and industry journals, written papers for symposiums, and authored a book, Mobile-to-Mobile Wireless Channels. A central theme is mobile-to-mobile applications. Tell us what fascinates you about this topic.

ALENKA: Mobile communications are rapidly becoming the communications in most people’s minds because they provide the ability to connect people anywhere and at any time, even on the move. While present-day mobile communications systems can be classified as “fixed-to-mobile” because they enable mobility only on one end (e.g., the mobile phone) while the other end (e.g., the base station) is immobile, emerging mobile-to-mobile (M-to-M) communications systems enable mobile users or vehicles to directly communicate with each other.

The driving force behind M-to-M communications is consumer demand for better coverage and quality of service (e.g., in rural areas where base stations or access points are sparse or not present or in disaster-struck areas where the fixed infrastructure is absent), as well as increased mobility support, location-based services, and energy-efficient communication (e.g., for cars moving in opposite directions on a highway that exchange information about traffic conditions ahead, or when mobile devices “gang together” to reach a far-away base station without each of them expending a lot of power).

Although M-to-M is still a relatively young technology, it is already finding its way into wireless standards (e.g., IEEE 802.22 for cognitive radio, IEEE 802.11p for intelligent transportation systems, IEEE 802.16 for WiMAX systems, etc.).

Propagation in M-to-M wireless channels is different from traditional fixed-to-mobile channels. The quality of service, energy efficiency, mobility support, and other advantages of M-to-M communication all depend on having good models of the M-to-M propagation channels.

My research is focused on studying propagation and enabling communication in challenging environments (e.g., vehicle-to-vehicle wireless radio communications, underwater vehicle-to-underwater vehicle acoustic communications, and inside a processor chip). In each of these projects, my work aims not only to improve existing functionality, but also to provide highly useful functionality that has not existed before. Examples of such functionality include navigating people in a direction that will restore (or improve) their connection, voice, or even video between submerged vehicles (e.g., for underwater well-service operations), and use of on-chip transmission lines and antennas to achieve broadcast-type communication that is no longer feasible using traditional wires.

NAN: Your research interests include electromagnetics and computer system and wireless communications. How have your interests evolved?

ALENKA: My research was mostly focused on electromagnetics and its impact on wireless communications until I joined the School of Computer Science at Georgia Tech. Talking to my Computer Science colleagues, I have realized that some of the techniques developed for telecommunications can be modified to improve communication among processors, memory, racks in data centers, and so forth. Hence, I started investigating the problem of improving communication among computers.

NAN: What types of projects are you currently working on?

 

Two of Alenka Zajić's currrent projects are energy-efficient underwater acoustic communications and electromagnetic side channels in high-performance processors and systems.

Two of Alenka Zajićs currrent projects are energy-efficient underwater acoustic communications and electromagnetic side channels in high-performance processors and systems.

ALENKA: I have several projects and they all include theoretical and experimental work. Two of my current projects are energy-efficient underwater acoustic communications and electromagnetic side channels in high-performance processors and systems. I will provide a brief explanation of each project.

Energy-efficient underwater acoustic communications: Many scientific, defense, and safety endeavors require communications between untethered submerged devices and/or vehicles.

Examples include sensor networks for seismic monitoring, analysis of resource deposits, oceanographic and environmental studies, tactical surveillance, and so forth, as well as communications between unmanned or autonomous underwater vehicles (UUVs, AUVs) for deep-water construction, repairs, scientific or resource exploration, defense applications, and so forth. Such underwater sensing and vehicular applications will require energy-efficient underwater communications, because underwater sensor networks and AUVs are highly energy-constrained. They are typically powered by batteries that are very difficult to replace or recharge deep underwater. At the same time, existing wireless communication approaches still provide extremely low data rates, work over very limited distances, and have low energy efficiency. Radio signals and wireless optics have a very limited range underwater, so underwater wireless communications mostly rely on acoustic signals that can travel long distances in water.

Some of Alenka’s research focuses on electromagnetic side channels in high-performance processors and systems. This is a measurement setup.

Some of Alenka’s research focuses on electromagnetic side channels in high-performance processors and systems. This is a measurement setup.

Unfortunately, acoustic underwater communications have a narrow available spectrum—propagation delays that are orders-of-magnitude longer than in radio communications—and many sources of signal distortion that further reduce data rates and increase the required transmitted power when using simple modulations and coding. Hence, we are working on characterization of underwater acoustic channels and their implications for underwater-vehicle-to-underwater-vehicle communications and networking.

Electromagnetic side channels in high-performance processors and systems: Security of many computer systems relies on the basic assumption that data theft through unauthorized physical tampering with the system is difficult and easily detected, even when attackers are in physical proximity to systems (e.g., desktops in cubicles, laptops and smartphones used in public spaces, remote data centers used for cloud computing, remotely operated robotic vehicles, aircraft, etc.).

On the other hand, the motivation for attackers keeps expanding. Increasing use of electronic banking provides monetary incentives for successful attacks, while the trend toward computer-controlled everything (e.g., power plants, robotic weapons, etc.) can motivate terrorists and/or rogue states.

Although simple physical attacks (e.g., stealing the system or taking it apart to insert snooping devices) are relatively hard to carry out without significant risk of detection, more sophisticated physical attacks are likely to be explored by attackers as incentives for such attacks grow. Side-channel attacks are especially worrisome, because they circumvent traditional protection measures.

Most side-channel attacks (e.g., power analysis, timing analysis, or cache-based attacks) still require some degree of direct access (i.e., to attach probes, run processes, etc.) that exposes attackers to a significant risk of detection. However, attacks that exploit electromagnetic emanations from the system only require physical proximity. So, increasingly motivated attackers may be able to carry out numerous attacks completely undetected, and several other side channels (e.g., power, timing, memory use, etc.) can “spill over” into the electromagnetic side channel, turning electromagnetic emanations into a very information-rich side channel.

My work in this domain focuses on carrying out a systematic investigation of electromagnetic side channel data leakage, quantifying the extent of the threat, and providing useful insights for computer designers to minimize such leakage.

NAN: Is there a particular electronics engineer or academic who has inspired the type of work you do today?

ALENKA: I have been fortunate to have great mentors (Dr. Antonije Djordjević and Dr. Gordon Stüber) who taught me the importance of critical thinking, asking the right questions in problem-solving, and clearly and concisely stating my ideas and results.

AAR Arduino Autonomous Mobile Robot

The AAR Arduino Robot is a small autonomous mobile robot designed for those new to robotics and for experienced Arduino designers. The robot is well suited for hobbyists and school projects. Designed in the Arduino open-source prototyping platform, the robot is easy to program and run.

The AAR, which is delivered fully assembled, comes with a comprehensive CD that includes all the software needed to write, compile, and upload programs to your robot. It also includes a firmware and hardware self test. For wireless control, the robot features optional Bluetooth technology and a 433-MHz RF.

The AAR robot’s features include an Atmel ATmega328P 8-bit AVR-RISC processor with a 16-MHz clock, Arduino open-source software, two independently controlled 3-VDC motors, an I2C bus, 14 digital I/Os on the processor, eight analog input lines, USB interface programming, an on-board odometer sensor on both wheels, a line tracker sensor, and an ISP connector for bootloader programming.

The AAR’s many example programs help you get your robot up and running. With many expansion kits available, your creativity is unlimited.

Contact Global Specialties for pricing.

Global Specialties
http://globalspecialties.com