Latest UP Board Combines Whiskey Lake with AI Core X Modules

By Eric Brown

Aaeon has posted specs for a Linux-ready “UP Xtreme” SBC with a 15 W, 8th Gen Whiskey Lake-U CPU, up to 16 GB DDR4 and 128 GB eMMC, 2x GbE, 6x USB, SATA and optional AI Core X modules via M.2 and mini-PCIe.

Aaeon’s community-backed UP project, which most recently brought us the Intel Apollo Lake based Up Squared and UP Core Plus SBCs, has announced an UP Xtreme hacker board built around Intel’s 8th Gen Whiskey Lake U-series Core processors. This is likely the fastest open-spec, community-backed SBC around, depending on your definition.


 
UP Xtreme and block diagram
(click images to enlarge)
Despite lacking full schematics, the UP boards barely qualify for our catalog of open-spec Linux hacker boards. However, DFRobot’s maker-oriented LattePanda boards, including the Kaby Lake based LattePanda Alpha, do not. In any case the 1.6 GHz/2.6 GHz, dual quad-thread Core m3-7Y30 on the LattePanda Alpha would not match the performance of the quad-core UP Xtreme model. Other boards that come close include Hardkernel’s more fully open-spec, quad-core Gemini Lake based Odroid-H2.

The only SBCs we’ve seen announced with the 14nm fabricated Whiskey Lake are Congatec’s 3.5-inch Conga-JC370 and thin Mini-ITX Conga-IC370. The Whiskey Lake U-series chips are notable for providing quad-core configurations with the same 15W TDPs of Intel’s earlier dual-core U-series chips. The quad-core models offer a performance increase of up to 40 percent compared to previous U-Series processors.

Aaeon appears to support all five Core i7/i5/i3 models, all but one of which are dual-threaded. The models range from the 1.8GHz (4.6GHz Turbo), quad-core Core i7-8565U to the 1.8 GHz (3.9 GHz Turbo), dual-core Core i3-8145U. Congatec clocks the latter’s base speed at up to 2.1 GHz, but Aaeon lists only 1.8 GHz base frequency for all the models.

The Whiskey Lake processors integrate Intel Gen9 UHD Graphics 620 with 24 EUs. They’re also notable for supporting USB 3.1 Gen2 with up to a 10 Gbps transfer rate. Sadly, however, the UP Xtreme does not include a USB 3.1 port, perhaps to reduce costs.

Even still, the board is not likely to make our under-$200 cut-off for the hacker board catalog. As noted in the CNXSoft post that first revealed the SBC, the lowest cost i3-8145 Whiskey Lake model sells for $281, suggesting the lowest Xtreme price might be about $350 to $400.

At 120 x 120mm, this is the largest UP board yet. The SBC supports up to 16GB DDR4 and up to 128GB eMMC. In addition to offering a powered SATA interface, there’s a SATA option on the M.2 “B/M” key slot, and mSATA is available via the similarly multi-purpose mini-PCIe slot, which is accompanied by a SIM slot. An M.2 Key E slot is also onboard.



UP Xtreme detail view
(click image to enlarge)

The stacked HDMI and DisplayPorts will no doubt give you 4K video, and you can probably get triple 4K displays if you use the onboard 3DP header with backlighting. Audio headers are also available.

The UP Xtreme is further equipped with 2x GbE and 4x USB 3.0 ports, plus additional USB and RS232/422/485 headers. There’s also a pair of STM32 I/O headers, which may offer GPIO related to the STM32 MCU. Like other UP boards, further expansion is available via a 40-pin “HAT” GPIO connector, which suggests it can run some Raspberry Pi HATs.

AI Core X support

There’s no explanation for the 100-pin docking connector, which appears to offer four different options for I/O daughtercards (see spec list below). The UP Core Plus offers dual 100-pin connectors for various AI-enhanced add-ons such as the Cyclone 10GX-based AI Plus and the Myriad 2 based Vision Plus. However, the brief marketing copy on the UP Xtreme teaser page suggests that the UP Xtreme’s touted AI capabilities are instead launched via the M.2 and mini-PCIe slots.



AI Core X models
(click image to enlarge)
Aaeon notes the ability to add AI Core X Neural Compute Engine modules with 1TOPs neural acceleration performance. Equipped with Intel’s new Movidius Myriad X VPU, which also drives Intel’s new Intel Neural Compute Stick 2, the AI Core X modules are available in a variety of M.2 and mini-PCIe models.



AI Core X specs
(click image to enlarge)
The Myriad X VPU based AI Core X modules are also available now for the UP Core Plus. The Myriad X VPU provides a dedicated hardware neural network inference accelerator to deliver up to 10X higher performance than the Myriad 2 “for applications requiring multiple neural networks running simultaneously.”

Specifications listed for the UP Xtreme include:

  • Processor — Intel 8th Gen “Whiskey Lake” U-series — 2x or 4x Whiskey Lake @ 1.8GHz (up to 3.9 GHz or 4.6 GHz Turbo) with Intel Gen9 UHD Graphics 620 (24 EU) at 300 MHz base and 1 GHz max dynamic; Intel 300 series chipset
  • Memory — up to 16 GB of DDR4 via dual sockets
  • Storage:
    • 16GB to 128GB eMMC 5.1
    • SATA with SATA power
    • M.2 Key B/M with support for 2x SATA, and mini-PCIe with support for mSATA (see expansion below)
  • Networking — 2x Gigabit Ethernet ports (Intel i210/i211 and 1219LM)
  • Media I/O:
    • DisplayPort
    • HDMI port
    • eDP with backlight header
    • I2S audio and audio out/mic in with ALC887 codec
  • Other I/O:
    • 4x USB 3.0 host ports
    • 2x USB 2.0 headers
    • 2x RS232/422/485 (10-pin Fintech F81801 connectors)
    • HSUART
    • 2x STM32 I/O headers
  • Expansion:
    • 40-pin “HAT” header — By MAX5: 28x GPIO, 2x SPI, 2x I2C, ADC, I2S, 2x PWM, UART, 3V3, 5V, GND
    • 100-pin docking connector for 1) 12V, GND; 2) 3x PCIe x1; 3) 2x PCIe x1 or USB 3.0; 5) 2x USB 2.0
    • M.2 Key B/M (2242/2280) with 2x PCIe/2x SATA
    • M.2 Key E (2230) with PCIe/USB 2.0)
    • Mini-PCIe slot for mSATA/USB 2.0 with SIM slot
  • Other features — RTC with battery; heatsink; humidity resistance; optional AI Core X modules via M.2 or mini-PCIe
  • Power — Lockable 12-65V DC input; power button
  • Operating temperatures — 0 to 60°C
  • Dimensions — 120 x 120mm
  • Operating system – Linux (Ubuntu, Yocto); Android; Windows 10

Further information

No pricing or availability information was provided for the UP Xtreme. More information may be found at Aaeon’s UP community UP Xtreme product page.

This article originally appeared on LinuxGizmos.com on March 19.

Aaeon UP | up-board.org

Mini PCIe Expansion Card Boasts PCIe/104 OneBank Interface

WinSystems has introduced its PX1-I416 module, which adds Mini PCI Express expansion capability to embedded systems with PCle/104 OneBank expansion. This product is designed to maximize utilization of a host platform while opening up access to myriad COTS I/O modules from a multitude of suppliers. According the company, system designers can add multiple Mini-Card I/O modules to single board computers like WinSystems’ PX1-C415 without the time, costs or risks of developing proprietary designs.

Compatible with PCle/104 OneBank SBCs, the module incorporates dual Mini-PCI Express slots. Up to four PX1-I416 modules can be stacked together, thereby providing support for up to eight separate Mini-Cards. The onboard PCle and USB multiplexer ensures maximum utilization of the host platform’s PCI Express and USB resources on the OneBank expansion interface. Each PX1-I416 expansion module also includes a separate SIM card holder for use with cellular modems.

The PX1-I416 enables product developers to readily include such functionality as additional USB ports, CAN, and other data acquisition modules, saving time and money. Equally important, these modules are built for enduring, consistent performance at operating temperatures of -40ºC to +85ºC.

WinSystems | www.winsystems.com

Mini PCIe Expansion Module Delivers Dual Gbit Ethernet

Versalogic has extended its line of industrial temperature, rugged Mini PCIe expansion products with the “E5”. This new Dual Gbit Ethernet expansion board provides an easy and economical way to add additional Ethernet ports to high-stress embedded computer systems. Unlike similar Mini PCIe boards, the E5 is completely self-contained with on-board magnetic isolation. There is no need for off-board magnetics or special cabling.

The E5’s extremely small form factor format allows it to be added to systems with very little impact to the overall size of the solution. It’s well suited for size and weight optimized applications.

Many applications required extreme temperature operation. Fully tested thermal management assures reliable operation over the full industrial temperature range (-40° to +85°C). Latching connectors and Mil Standard 202 shock and vibration testing ensure performance in demanding environments. The E5E is engineered and validated to excel in unforgiving environments. Bundle it with a rugged embedded computer board from VersaLogic for a one-stop solution to your industrial application needs.

The E5 is customizable, even in low OEM quantities. Customization options include conformal coating, revision locks, custom labeling, customized testing and screening and so on. The E5 is compatible with a variety of popular operating systems such as Linux and Windows.

The E5, part number VL-MPEe-E5E, is in stock at both Versalogic and Digi-Key. OEM quantity pricing starts at $137.

Versalogic | www.versalogic.com

Cavium Octeon-Based SBCs Provide Networking Solution

Gateworks has announced the release of the Newport GW6400 SBC, featuring the Cavium Octeon TX Dual/Quad Core ARM processor running up to 1.5 GHz. The GW6400 is the latest Newport family member with an extensive list of features, including five Gigabit Ethernet ports and two SFP fiber ports. The GW6400 comes in two standard stocking models, the Dual Core GW6400 and the fully loaded Quad Core GW6404 (shown)..

The GW6400 and GW6404 are members of the Gateworks 6th generation Newport family of single board computers targeted for a wide range of indoor and outdoor networking applications. The SBCs feature the Cavium OcteonTX ARMv8 SoC processor, up to five Gigabit Ethernet ports, and four Mini-PCIe expansion sockets for supporting 802.11abgn/ac wireless radios, LTE/4G/3G CDMA/GSM cellular modems, mSATA drives and other PCI Express peripherals. A wide-range DC input power supply provides up to 15 W to the Mini-PCIe sockets for supporting the latest high-power radios and up to 10 W to the USB 2.0/3.0 jacks for powering external devices. Power is applied through a barrel jack or an Ethernet jack with either 802.3at or Passive Power over Ethernet. The GW6400 does not have SFP Ports loaded.

Gateworks | www.gateworks.com

Movidius AI Acceleration Technology Comes to a Mini-PCIe Card

By Eric Brown

UP AI Core (front)

As promised by Intel when it announced an Intel AI: In Production program for its USB stick form factor Movidius Neural Compute Stick, Aaeon has launched a mini-PCIe version of the device called the UP AI Core. It similarly integrates Intel’s AI-infused Myriad 2 Vision Processing Unit (VPU). The mini-PCIe connection should provide faster response times for neural networking and machine vision compared to connecting to a cloud-based service.

UP AI Core (back)

The module, which is available for pre-order at $69 for delivery in April, is designed to “enhance industrial IoT edge devices with hardware accelerated deep learning and enhanced machine vision functionality,” says Aaeon. It can also enable “object recognition in products such as drones, high-end virtual reality headsets, robotics, smart home devices, smart cameras and video surveillance solutions.”

 

 

UP Squared

The UP AI Core is optimized for Aaeon’s Ubuntu-supported UP Squared hacker board, which runs on Intel’s Apollo Lake SoCs. However, it should work with any 64-bit x86 computer or SBC equipped with a mini-PCIe slot that runs Ubuntu 16.04. Host systems also require 1GB RAM and 4GB free storage. That presents plenty of options for PCs and embedded computers, although the UP Squared is currently the only x86-based community backed SBC equipped with a Mini-PCIe slot.

Myriad 2 architecture

Aaeon had few technical details about the module, except to say it ships with 512MB of DDR RAM, and offers ultra-low power consumption. The UP AI Core’s mini-PCIe interface likely provides a faster response time than the USB link used by Intel’s $79 Movidius Neural Compute Stick. Aaeon makes no claims to that effect, however, perhaps to avoid

Intel’s Movidius
Neural Compute Stick

disparaging Intel’s Neural Compute Stick or other USB-based products that might emerge from the Intel AI: In Production program.

It’s also possible the performance difference between the two products is negligible, especially compared with the difference between either local processing solutions vs. an Internet connection. Cloud-based connections for accessing neural networking services suffer from reduced latency, network bandwidth, reliability, and security, says Aaeon. The company recommends using the Linux-based SDK to “create and train your neural network in the cloud and then run it locally on AI Core.”

Performance issues aside, because a mini-PCIe module is usually embedded within computers, it provides more security than a USB stck. On the other hand, that same trait hinders ease of mobility. Unlike the UP AI Core, the Neural Compute Stick can run on an ARM-based Raspberry Pi, but only with the help of the Stretch desktop or an Ubuntu 16.04 VirtualBox instance.

In 2016, before it was acquired by Intel, Movidius launched its first local-processing version of the Myriad 2 VPU technology, called the Fathom. This Ubuntu-driven USB stick, which miniaturized the technology in the earlier Myriad 2 reference board, is essentially the same technology that re-emerged as Intel’s Movidius Neural Compute Stick.

UP AI Core, front and back

Neural network processors can significantly outperform traditional computing approaches in tasks like language comprehension, image recognition, and pattern detection. The vast majority of such processors — which are often repurposed GPUs — are designed to run on cloud servers.

AIY Vision Kit

The Myriad 2 technology can translate deep learning frameworks like Caffe and TensorFlow into its own format for rapid prototyping. This is one reason why Google adopted the Myriad 2 technology for its recent AIY Vision Kit for the Raspberry Pi Zero W. The kit’s VisionBonnet pHAT board uses the same Movidius MA2450 chip that powers the UP AI Core. On the VisionBonnet, the processor runs Google’s open source TensorFlow machine intelligence library for neural networking, enabling visual perception processing at up to 30 frames per second.

Intel and Google aren’t alone in their desire to bring AI acceleration to the edge. Huawei released a Kirin 970 SoC for its Mate 10 Pro phone that provides a neural processing coprocessor, and Qualcomm followed up with a Snapdragon 845 SoC with its own neural accelerator. The Snapdragon 845 will soon appear on the Samsung Galaxy S9, among other phones, and will also be heading for some high-end embedded devices.

Last month, Arm unveiled two new Project Trillium AI chip designs intended for use as mobile and embedded coprocessors. Available now is Arm’s second-gen Object Detection (OD) Processor for optimizing visual processing and people/object detection. Due this summer is a Machine Learning (ML) Processor, which will accelerate AI applications including machine translation and face recognition.

Further information

The UP AI Core is available for pre-order at $69 for delivery in late April. More information may be found at Aaeon’s UP AI Core announcement and its UP Community UP AI Edge page for the UP AI Core.

Aaeon | www.aaeon.com

This article originally appeared on LinuxGizmos.com on March 6.

Skylake-Based SBC Runs on 15 Watts

VersaLogic has released the Condor—a high-performance embedded computer that measures only 95 mm x 95 mm x 37 mm and is built around Intel’s 6th generation “Skylake” Core processor. The Condor provides up to six times the processing power of Intel’s Bay Trail processors, while keeping power consumption as low as 15 Watts.The Condor’s on-board TPM security chip can lock out unauthorized hardware and software access. It provides a secure “Root of Trust.” Additional security is provided through built-in AES (Advanced Encryption Standard) instructions.

PR_EPU-4460_HICondor is the latest addition to VersaLogic’s line of EPU (Embedded Processing Unit) format computers. EPUs are designed around COM Express form factors, but are complete board-level computers. They provide all the future flexibility of separate CPU and I/O modules, and are delivered as complete fully assembled and tested units (including heat plate), ready to bolt into a system.

On-board I/O includes two Gbit Ethernet ports with network boot capability, two USB 3.0 ports, four USB 2.0 host ports and two serial ports. One SATA III interface supports high-capacity rotating or solid-state drives. Eight digital I/O lines, I2C and SPI are also available. Two Mini PCIe sockets (one with mSATA capabilities) provide flexible solid-state drive (SSD) options. Systems can be easily enhanced by leveraging the Mini PCIe sockets with plug-in Wi-Fi modems, GPS receivers, MIL-STD-1553, Ethernet, Firewire and other mini cards.

The Condor is designed and tested for industrial temperature (-40° to +85°C) operation and meets MIL-STD-202G specifications to withstand high impact and vibration. For additional reliability, the Condor includes on-board power conditioning which accepts an input of 8 to 30 volts to greatly simplify system power supply design. For additional protection, the conditioner includes Reverse Voltage Protection (RVP) and Over Voltage Protection (OVP) functions.

The Condor, part number VL-EPU-4460, is in stock now. OEM quantity pricing for starts at $1,304 for the Core i3 model with 8 GB RAM.

Versalogic | www.versalogic.com

Mini PCIe Card Serves Up Precision GPS

Versalogic has released an industrial temperature GPS module that provides access to multiple satellite systems. It offers higher accuracy than previous models, for both location and timing data. Its multi-channel capability also allows better accuracy and coverage in difficult environments such as cityscape / building canyons.

PR_MPEu-G3_HIThis advanced GPS receiver provides two simultaneous receiver paths with 72-channel operation for stable satellite tracking, as well as aided startup for fast initial signal acquisition. Increased coverage is provided by support for the GPS (United States), GLONASS (Russian), Galileo (European Union), and BeiDou (China) systems. In addition to positioning and navigation applications, GPS/GNSS signals are widely used as precision time or frequency references for remote or distributed wireless communication, industrial, financial, and power-distribution equipment.

The G3’s extremely small Mini PCIe format allows it to be added to a system with very little impact to the overall size of the system. The G3 is compatible with a variety of popular x86 operating systems including Windows, Windows Embedded, and Linux using standard software drivers.

The G3 is designed and tested for industrial temperature (-40° to +85°C) operation and meets MIL-STD-202G specifications to withstand high impact and vibration. It is RoHS compliant, and includes VersaLogic’s 5+ year production life guarantee. The G3 is customizable, even in low OEM quantities. Customization options include conformal coating, revision locks, custom labeling, customized testing and screening and so on. The VL-MPEu-G3E is available from stock. Pricing is $190 in OEM quantities.

Versalogic | www.versalogic.com

3.5″ SBC Serves up Skylake Processors

COMMELL has announced its LS-37K 3.5-inch embedded mini-board based on Intel 6th/7th generation FCLGA1151 Skylake / Kaby Lake Core processor family and Xeon E3-1200 v5 processor. The Skylake PC is claimed to deliver 30 percent better performance than a PC base on Ivy Bridge architecture, 20 percent better performance than a PC based on Haswell, and 10 percent better performance than a Broadwell PC.

LS-37K-3D8The LS-37K desktop 3.5-inch mini-board platform supports DDR4 memory DIMM 1866/2133 MHz up to 16 GB. The platform is based on Intel HD530 (Skylake) HD630, (Kaby Lake) and HD P530 (Xeon E3-1200v5). For graphics, the Skylake GPU offers 24 execution units (EUs) clocked at up to 1150Mhz (depending on the CPU model). The revised video engine now decodes H.265/HEVC completely in hardware and thereby much more efficiently than before, and HD Graphics 630 GPU is largely identical to the 530 found in Skylake, The only real upgrade here is the HEVC and VP9 support. LS-37K Displays can be connected via 1 VGA, 1 LVDS, 1 DVI, 1 HDMI and one DP port, up to three displays can be controlled simultaneously.

LS-37K offers lots of features including high-speed data transfer interfaces such as 4 x USB3.0 and 2 x SATAIII, equipped with dual Gigabit Ethernet (One of the dual LAN with iAMT 11.0 supported), and comes with PS/2 port, 5 x RS232 and 1 x RS232/422/485, 4 x USB2.0, Intel® High Definition Audio, and 1 Mini PCIe socket (supporting mSATA) and 9 to 30 VDC input.

COMMELL | www.commell.com

Mini PCIe Card Does Ethernet Over Fiber

Versalogic has announced the E4, a new Ethernet over fiber Mini PCIe expansion module for embedded computer systems. Ethernet over fiber offers an extremely dependable, highly secure Ethernet connection that operates over a much longer distance than copper. Where security matters, a fiber optic connection excels. Fiber optic cables have no electromagnetic signature, making them very difficult to tap compared to wired connections.

Veraslogic PR_MPEe-E4_HIVersalogic’s Ethernet over fiber card allows cable runs 5 times longer than Ethernet over copper. It protects against external electromagnetic interference and electrical surges. It also enables extreme security by removing the electro-magnetic signature from the connecting cables. The card supports full industrial temperature rating (-40° to +85°C) provides 1 Gbit/s speed with full duplex support.

The rugged E4 module provides a standardized way to add a bi-directional gigabit channel of Ethernet over fiber to an embedded computing solution. Using latching multi-mode LC type connectors, the E4 can transmit and receive data up to 550 m. The E4’s extremely small Mini PCIe format allows it to be added to an embedded computer board with very little impact to the overall size of the system. Compatible with a variety of popular x86 operating systems including Windows, Windows Embedded, and Linux, the E4 uses standard Ethernet software drivers.

Designed and tested for extended temperatures (-40° to +85°C), the E4 also meets MIL-STD-202G specifications to withstand high impact and vibration. The latching LC fiber optic connector provides additional protection within harsh environments. This new product is RoHS compliant, and includes VersaLogic’s 5+ year production life guarantee. The E4 is customizable, even in low OEM quantities. Customization options include conformal coating, revision locks, custom labeling, customized testing and screening. The VL-MPEe-E4E is available from stock at both Versalogic. and Digi-Key. Pricing is $275 in OEM quantities.

Versalogic | www.versalogic.com

Category 11 LTE Supported on Full Mini PCIe Card

Telit has announced the LM940, a global Full PCI Express Mini Card (mPCIe) module for supporting LTE Advanced Category 11 (Cat 11) with speeds of up to 600 Mbps, available with various mobile network operator approvals in the fourth quarter of 2017. According to Telit it is the only enabling technology in an mPCIe form factor to support Cat 11 with the Snapdragon X12 LTE modem. The card gives system designers additional bandwidth and near instant network response times to serve applications like high definition video streaming for digital signage. The Snapdragon X12 LTE modem with LTE Advanced Telit urltechnologies provides peak download speeds of 600 Mbps.

The LM940 iallows OEMs to immediately leverage the 3x carrier aggregation and the higher order modulation of the 256 QAM capabilities currently available amongst most mobile operator networks. Combined with an exceptional power efficiency platform, the card is well suited to enable commercial and enterprise applications in the router industry, such as branch office connectivity, LTE failover, digital signage, kiosks, pop-up stores, vehicle routers, construction sites and more.

Telit | www.telit.com