Rugged Computers Run Linux on Jetson TX2 and Xavier

By Eric Brown

Aitech, which has been producing embedded Linux-driven systems for military/aerospace and rugged industrial applications since at least 2004, announced that Concurrent Real-Time’s hardened RedHawk Linux RTOS will be available on two Linux-ready embedded systems based on the Nvidia Jetson TX2 module. With Redhawk Linux standing in for the default Nvidia Linux4Tegra stack, the military-grade A176 Cyclone and recently released, industrial-focused A177 Twister systems can “enhance real-time computing for mission-critical applications,” says Aitech.


MIL/AERO focused A176 Cyclone (left) and new A177 Twister
(click image to enlarge)
Here, we’ll take a closer look at the A177 Twister, which was announced in October as a video capture focused variant of the similar, MIL/AERO targeted A176 Cyclone. Both of these “SWaP-optimized (size, weight and power) supercomputers” are members of Aitech’s family of GPGPU RediBuilt computers, which also include PowerPC and Intel Core based systems.

We’ll also briefly examine an “EV178 Development System” for an Nvidia Xavier based A178 Thunder system that was revealed at Embedded World. The A178 Thunder targets MIL/AERO, as well as autonomous vehicles and other applications (see farther below).

Both the A177 Twister and A176 Cyclone systems deploy the Arm-based Jetson TX2module in a rugged, small form factor (SFF) design. The TX2 module features 2x high-end “Denver 2” cores and 4x Cortex-A57 cores. There’s also a 256-core Pascal GPU with CUDA libraries for running AI and machine learning algorithms.


 
A177 Twister (left) and Jetson TX2
(click images to enlarge)
The TX2 module is further equipped with 8GB LPDDR4 and 32GB eMMC 5.1. Other rugged TX2-based systems include Axiomtek’s eBOX800-900-FL.

The RedHawk Linux RTOS distribution, which was announced in 2005, is based on Red Hat Linux and the security-focused SELinux. RedHawk offers a hardened real-time Linux kernel with ultra-low latency and high determinism. Other features include support for multi-core architectures and x86 and ARM64 target platforms.

The RedHawk BSP also includes “NightStar” GUI debugging and analysis tools, which were announced with the initial RedHawk distro. NightStar supports hot patching “and provides a complete graphical view of multithreaded applications and their interaction with the Linux kernel,” says Concurrent Real-Time.

A177 Twister

The A177 Twister leverages the Jetson TX2 and its “CUDA and deep learning acceleration capabilities to easily handle the complex computational requirements needed in embedded systems that are managing multiple data and video streams,” says Aitech. The system is optimized for video capture, processing, and overlays.


A177 Twister
(click image to enlarge)
The A177 Twister supports applications including robotics, automation and optical inspection systems in industrial facilities, as well as for autonomous aircraft and ground environments,” says Aitech. Other applications include security and surveillance, mining and excavating computers, complex marine and boating applications, and agricultural machinery.

The 148 x 148 x 63mm A177 Twister is protected against ingress per IP67. The fanless system weighs 2.2 lbs. (just under 1Kg) and supports -20 to 65°C temperatures.

The Jetson TX2 module supplies 8GB LPDDR4 and 32GB eMMC 5.1. The A177 Twister adds a microSD slot with optional preconfigured card, as well as an optional “Mini-SATA SSD with Quick Erase and Secure Erase support.”

The system shares many features with the A176 Cyclone, with the major difference being that it adds optional WiFi-ac and Bluetooth 4.1, as well as support for simultaneous capture of up to 8x RS-170A (NTSC/PAL) composite video channels at full frame rates. It also has lower ruggedization levels and a smaller 6-24V input range compared to 11-36V, among other differences.


 
A177 Twister block diagram (left) and I/O specs
(click images to enlarge)
As shown in the spec-sheet above, you can purchase the Twister with and without 8x composite inputs and/or 1x SDI input with up to 1080/60 H.264 encoding. There’s also a choice of composite or SDI frame grabbers, both, or none at all. The one SKU that offers all of the above sacrifices the single USB 3.0 port.

Standard features include USB 2.0, HDMI, Composite input, GbE. 2x RS-232 (one for debug/console), 2x CAN, and 4x single-end discrete I/O. Most of these interfaces are bundled up into rugged military-style composite I/O ports.

Power consumption is typically 8-10W with a maximum of 17W. The system also provides reverse polarity and EMC protections, hardware accelerated AES encryption/decryption, temperature sensors, elapsed time recorder, and dynamic voltage and frequency scaling.

EV178 Development System for A178 Thunder

Aitech revealed an A178 Thunder< at computer at Embedded World. The company recently followed up with a formal announcement and product page for an EV178 Development System that helps unlock the computer for early customers.


 
EV178 Development System for A178 Thunder (left) and Jetson AGX Xavier
Built around Nvidia’s high-end Jetson AGX Xavier module, the compact, Linux-driven A178 Thunder “is the most advanced solution for video and signal processing, deep-learning accelerated, for the next generation of autonomous vehicles, surveillance and targeting systems, EW systems, and many other applications,” says Aitech. The EV178 Development System for A178 Thunder processes at up to 11 TFLOPS (Terra floating point operations per second) and 22 TOPS (Terra operations per second), says Aitech.

The Jetson AGX Xavier has greater than 10x the energy efficiency and more than 20x the performance of the Jetson TX2, claims Nvidia. The 105 x 87 x 16mm Xavier module features 8x ARMv8.2 cores and a high-end, 512-core Nvidia Volta GPU with 64 tensor cores with 2x Nvidia Deep Learning Accelerator (DLA) — also called NVDLA — engines. The module is also equipped with a 7-way VLIW vision chip, as well as 16GB 256-bit LPDDR4 RAM and 32GB eMMC 5.1.
EV178 Development System for A178 Thunder
(click image to enlarge)

Preliminary specs for the EV178 Development System for A178 Thunder include:

  • Nvidia Jetson AGX Xavier module
  • 4x simultaneous SDI (SD/HD) video capture channels
  • 8x simultaneous Composite (RS-170A [NTSC]/PAL) video capture channels
  • Gigabit Ethernet
  • HDMI output
  • USB 3.0
  • UART Serial
  • Discretes
  • Pre-installed Linux OS, drivers, and test applications
  • Cables and external power supply

Further information

Concurrent’s RedHawk Linux RTOS appears to be available now as an optional build for the A177 Twister and earlier A176 Cyclone, both of which appear to be available with undisclosed pricing. No ship date was announced for the EV178 Development System for A178 Thunder. More information may be found in Aitech’s RedHawk Linux announcement, as well as the A177 Twister product page. More on the A178 Thunder may be found in the EV178 Development System for A178 Thunder announcementand product page.

This article originally appeared on LinuxGizmos.com on March 18.

Aitech | www.rugged.com

Building a Generator Control System

Three-Phase Power

Three-phase electrical power is a critical technology for heavy machinery. Learn how these two US Coast Guard Academy students built a physical generator set model capable of producing three-phase electricity. The article steps through the power sensors, master controller and DC-DC conversion design choices they faced with this project.
(Caption for lead image: From left to right: Aaron Dahlen, Caleb Stewart, Kent Altobelli and Christopher Gosvener.).

By Kent Altobelli and Caleb Stewart

Three-phase electrical power is typically used by heavy machinery due to its constant power transfer, and is used on board US Coast Guard cutters to power shipboard systems while at sea. In most applications, electrical power is generated by using a prime mover such as a diesel engine, steam turbine or water turbine to drive the shaft of a synchronous generator mechanically. The generator converts mechanical power to electrical power by using a field coil (electromagnet) on its spinning rotor to induce a changing current in its stationary stator coils. The flow of electrons in the stator coils is then distributed by conductors to energize various systems, such as lights, computers or pumps. If more electrical power is required by the facility, more mechanical power is needed to drive the generator, so more fuel, steam or water is fed to the prime mover. Together, the prime mover and the generator are referred to as a generator set “genset”.

Because the load expects a specific voltage and frequency for normal operation, the genset must regulate its output using a combination of its throttle setting and rotor field strength. When a real load, such as a light bulb, is switched on, it consumes more real power from the electrical distribution bus, and the load physically slows down the genset, reducing the output frequency and voltage. The shaft rotational speed determines the number of times per second the rotor’s magnetic field sweeps past the stator coils, and determines the frequency of the sinusoidal output. Increasing the throttle returns the frequency and voltage to their setpoints.

When a partially reactive load—for example, an induction motor—is switched on, it consumes real power, but also adds a complex component called “reactive power.” This causes a voltage change due to the way a generator produces the demanded phase offset between supplied voltage and current. An inductive load, common in industrial settings, causes the voltage output to sag, whereas a capacitive load causes the voltage to rise. Voltage induced in the stator is controlled by changing the strength of the rotor’s electromagnetic field that sweeps past the stator coils in accordance with Faraday’s Law of inductance. Increasing the voltage supply to the rotor’s electromagnet increases the magnetic field and brings the voltage back up to its setpoint.

The objective of our project was to build a physical generator set model capable of producing three-phase electricity, and maintain each “Y”-connected phase at an output voltage of 120 ±5 V RMS (AC) and frequency of 60 ±0.5 Hz. When the load on the system changes, provided the system is not pushed beyond its operating limits, the control system should be capable of returning the output to the acceptable voltage and frequency ranges within 3 seconds. When controlling multiple gensets paralleled in island operation, the distributed system should be able to meet the same voltage and frequency requirements, while simultaneously balancing the real and reactive power from all online gensets.

Two Configurations

Gensets supply power in two conceptually different configurations: “island” operation with stand-alone or paralleled (electrically connected) gensets, or gensets paralleled to an “infinite” bus.” In island operation, the entire electrical bus is relatively small—either one genset or a small number of total gensets—so any changes made by one genset directly affects the voltage and frequency of the electrical bus. When paralleled to an infinite bus such as the power grid, the bus is too powerful for a single genset to change the voltage or frequency. Coast Guard cutters use gensets in island operation, so that is the focus of this article.

When in island operation, deciding how much to compensate for a voltage or frequency change is accomplished using either droop or isochronous (iso) control. Droop control uses a proportional response to reduce error between the genset output and the desired setpoint. For example, if the frequency of the output drops, then the throttle of the prime mover is opened correspondingly to generate more power and raise the frequency back up. Since a proportional response cannot ever achieve the setpoint when loaded (a certain amount of constant error is required to keep the throttle open), the output frequency tends to decrease linearly with an increase in power output. A no-load to full-load droop of 2.4 Hz is typical for a generator in the United States, but this can usually be adjusted by the user.

Frequency control typically uses a mechanical governor to provide the proportional throttle response to meet real power demand. Voltage control typically uses an automatic voltage regulator (AVR) to manipulate the field coil strength to meet reactive power demand. Isochronous mode is more challenging, because it always works to return the genset output to the setpoint. Maintaining zero error on the output usually requires some combination of a proportional response to compensate for load fluctuation quickly, and also a long-term fine-tuning compensation to ensure the steady-state output achieves the setpoint.

If two or more gensets are paralleled, the combined load is supplied by the combined power output of the gensets. As before, maintaining the expected operating voltage and frequency is the first priority, but with multiple gensets, careful changes to the throttle and field can also redistribute the real and reactive power to meet real and reactive power demand efficiently.

If the average throttle or field setting is increased, then the overall bus frequency or voltage, respectively, also increases. If the average throttle or field setting stays the same while two gensets adjust their settings in opposite directions, the frequency or voltage stay the same, but the genset that increased their throttle or field provides a greater portion of the real or reactive power. Redistribution is important because it allows gensets to produce real power at peak efficiency and share reactive power evenly, because excessive reactive power generation derates the generator. Reactive currents flowing through the windings cause heat without producing real, useful power.

Four Conditions

Before the breaker can be closed to parallel generators, four conditions need to be met between the oncoming generators and the bus to ensure smooth load transfer:

1) The oncoming generator should have the same or a slightly higher voltage than the bus.
2) The oncoming generator should have the same or a slightly higher frequency than the bus.
3) The phase angles need to match. For example, the oncoming generator “A” phase needs to be at 0 degrees when the bus “A” phase is at 0 degrees.
4) The phase sequences need to be the same. For example, A-B-C for the oncoming generator needs to match the A-B-C phase sequence of the bus.

Meeting these conditions can be visualized using Figure 1, which shows a time vs. voltage representation of an arbitrary, balanced three-phase signal. The bus and the generator each have their own corresponding plots resembling Figure 1, and the two should only be electrically connected if both plots line up and therefore satisfy the four conditions listed above.

Figure 1
Arbitrary three phase sinusoid

If done properly, closing the breaker will be anticlimactic, and the gensets will happily find a new equilibrium. The gensets should be adjusted immediately to ensure the load is split evenly between gensets. If there is an electrical mismatch, the generator will instantly attempt to align its electrical phase with the bus, bringing the prime mover along for a wild ride and potentially causing physical damage—in addition to making a loud BANG! Idaho National Laboratories demonstrated the physical damage caused by electrical mismatch in its 2007 Aurora Generator Test.

Three primary setups for parallel genset operation are discussed here: droop-droop, isochronous-droop, and isochronous-isochronous. The simplest mode of parallel operation between two or more gensets is a droop-droop mode, where both gensets are in droop mode and collectively find a new equilibrium frequency and voltage according to the real and reactive power demands of the load.

Isochronous-droop (iso-droop) mode is slightly more complex, where one genset is in droop mode and the other is in iso mode. The iso genset always provides the power required to maintain a specific voltage and frequency, and the droop genset produces a constant real power corresponding to that one point on its droop curve. Because the iso genset works more or less depending on the load, it is also termed the “swing” generator.

Finally, isochronous-isochronous (iso-iso) is the most complex. In iso-iso mode, both gensets attempt to maintain the specified output voltage and frequency. While this sounds ideal, this mode has the potential for instability during transient loading, because individual genset control systems may not be able to differentiate between a change in load and a change in the other genset’s power output. Iso-iso mode usually requires direct communication or a higher level controller to monitor both gensets, so they respond to load changes without fighting each other. With no external communication, one genset could end up supplying the majority of the power to the load while the second genset is idling, seeing no need to contribute because the bus voltage and frequency are spot on! At some point one genset could even resist the other genset, consuming real power and causing the generator to “motor” the prime mover. Unchecked, this condition will damage prime movers, so a reverse power relay is usually in place to trip the genset offline, leaving only one genset to supply the entire load.

System Design

Each genset simulated on the Hampden Training Bench had a custom sensor monitoring the generator voltage, current, and frequency output, a small computer running control calculations and a pair of DC-to-DC converters to close the control loop on the generator’s rotational velocity and field strength. The genset was simulated by coupling a 330 W brushed DC motor acting as the prime mover to a four-pole 330 W synchronous generator (Figure 2).

Figure 2
Simulated genset on the Hampden Training Bench

Our power sensor was a custom-designed circuit board with an 8-bit microcontroller (MCU) employed to sample the genset output continuously and provide RMS voltage, RMS current, real power, reactive power, and frequency upon request. The control system ran on a Linux computer with custom software designed to poll the sensor for data, calculate the appropriate control response to return the system to the set point and generate corresponding pulse width modulated (PWM) outputs. Finally, the PWM outputs controlled the DC-to-DC converter to step down the DC supply voltage to drive the prime mover and energize the generator field coil. The component relationships are shown in Figure 3, where the diesel engine in a typical genset was replaced by our DC motor.

Figure 3
Genset component layout

Since this project was a continuation of a previous year of work by Elise Sako and Jasper Campbell, several lessons were learned that required the system be redesigned from the ground up. One of the largest design constraint from the previous year was the decision to use a variable frequency drive (VFD) to drive an induction motor as the prime mover. While this solution is acceptable, it introduces inherent delay in the control loop, because the VFD is designed to execute commands as smoothly but not necessarily as quickly as possible.

Another design constraint was the decision to power the generator field coil using DC regulated by an off-the-shelf silicon controller rectifier (SCR) chopper. Again, while this is an acceptable solution, the system output suffered from the SCR’s slow response time (refresh rate is limited to the AC supply frequency), and voltage output regulation was non-ideal (capacitor voltage refresh again limited by the frequency of the AC supply).

To solve these performance constraints, we selected the responsive and easily controllable DC motor as the prime mover so the DC output from our Hampden Training Bench could be used as the power supply for both the DC motor and the generator field coil. By greatly simplifying the electrical control of the genset, we reduced implementation cost and improved control system response time. …

Read the full article in the February 343 issue of Circuit Cellar
(Full article word count: 6116 words; Figure count: 14 Figures.)

Don’t miss out on upcoming issues of Circuit Cellar. Subscribe today!

Note: We’ve made the October 2017 issue of Circuit Cellar available as a free sample issue. In it, you’ll find a rich variety of the kinds of articles and information that exemplify a typical issue of the current magazine.

PCB Technology Leadership Awards

Mentor has announced its 27th annual PCB Technology Leadership Awards. Started in 1988, this program is the longest running competition of its kind in the electronic design automation (EDA) industry. It recognizes engineers and designers who use innovative methods and design tools to address today’s complex PCB systems design challenges and produce industry-leading products.

Prominent experts in the PCB industry judged entries from around the world in categories that represent a wide variety of industries:

  • Computers, blade and servers, memory systems
  • Industrial control, instrumentation, security and medical
  • Military and aerospace
  • Telecom, network controllers, line cards
  • Transportation and automotive

The PCB Technology Leadership Awards contest was open to any designs created with Mentor PCB solutions. Judging is based on design complexity and overcoming associated challenges, such as small form factor, high-speed protocols, multi-discipline team collaboration, advanced PCB fabrication technologies, and design-cycle time reduction.

The expert judges included Michael R. Creeden, San Diego PCB CEO and founder; Gary Ferrari, FTG Circuits technical support director; Rick Hartley, RHartley Enterprises principal engineer; Steve Herbstman, SHLC founder and lead designer; Happy Holden, Gentex Corporation (retired); Andy Kowalewski, Metamelko LP senior interconnect designer; Pete Waddell, president of UP Media and publisher of Printed Circuit Design & Fab/Circuits Assembly Magazine; and Susy Webb, Fairfield Nodal senior PCB designer.

2017 Technology Leadership Award Winners
Category: Best Overall Design

  • Company: Fujitsu Augsburg
  • Design team: Simon Czermak, Michael Schreittmiller, Sergej Beljaev, Andreas Titz, Mario Lanteri, Markus Wicher, Werner Hasubick, Peter Bräu, Nikola Skordev, Dieter Feiger
  • Using: Xpedition Enterprise
The best overall winner of the 2017 Mentor PCB Technology Leadership Awards is the team from Fujitsu Augsburg for their design of a high-performance computing mainboard. (PRNewsfoto/Mentor, a Siemens business)

The best overall winner of the 2017 Mentor PCB Technology Leadership Awards is the team from Fujitsu Augsburg for their design of a high-performance computing mainboard. (PRNewsfoto/Mentor, a Siemens business)

Category:  Computers, Blade & Servers, Memory Systems

  • 1st place: Adcom
  • Design team: Moshe Frid, Alon Kukuliansky, Nitzan Habler, Eli Moshe, Haim Anava, Doron K’Eliyahu, Lior Elgazar
  • Using: Xpedition Enterprise
  • 2nd place: ASELSAN
  • Design team: Ahmet Erol, Fulya Ağirnas, Fatih Say, Emine Özer Türkay, Mustafa Algan
  • Using: Xpedition Enterprise

Category: Industrial Control, Instrumentation, Security & Medical

  • 1st place: Shenzhen Mindray
  • Design team: Hupeng, Ouyangyilong, Zhaoguolong, Yiyong, Suchaoxun
  • Using: Xpedition Enterprise
  • 2nd place: Murrelektronik GmbH
  • Design team: Matthias Haak, Simon De Serra
  • Using: PADS

Category: Military & Aerospace

  • 1st place: Curtiss-Wright
  • Design team: Ashleye Soanes, Pascal Sauvé, Luc Bouchard, Stephen Reich
  • Using: Xpedition Enterprise
  • 2nd place: Thales Alenia Space Italy
  • Design team: Enrico Checchi, Gabriele Rocco, Giovanni Saldi
  • Using: Xpedition Enterprise/li>

Category: Telecom, Network Controllers, Line Cards

  • 1st place: Altice Labs
  • Design team: Alfonso Figueiredo, Carlos Monica, Victor Soares, Luis Tavares
  • Using: Xpedition Enterprise
  • 2nd place: Coriant Oy
  • Design team: Sauli Kunnas, Peter Kokko, Hannu Saarikoski, Paavo Perälä, Sami Jokinen, Juha Sarapelto, Jyrki Vuorinen, Jycke Sulka-aho, Matti Pulkkinen, Jyrki Nyyssönen, Päivi Vallin, Juha Ahvenainen
  • Using: Xpedition Enterprise

Category: Transportation & Automotive

  • 1st place: Yanfeng Visteon Electronics Technology (Shanghai) Co., Ltd
  • Design team: Yuan Li, Yan Xue, Tao Wang, Qin Li
  • Using: Xpedition Enterprise
  • 2nd place: Sienna Ecad Technologies Pvt Ltd
  • Designer: Krishna Murthy BS, Raghava Charyulu V, Savita R Ganjigatti
  • Using: PADS

Mentor |  www.mentor.com