One Professor and Two Orderly Labs

Professor Wolfgang Matthes has taught microcontroller design, computer architecture, and electronics (both digital and analog) at the University of Applied Sciences in Dortmund, Germany, since 1992. He has developed peripheral subsystems for mainframe computers and conducted research related to special-purpose and universal computer architectures for the past 25 years.

When asked to share a description and images of his workspace with Circuit Cellar, he stressed that there are two labs to consider: the one at the University of Applied Sciences and Arts and the other in his home basement.

Here is what he had to say about the two labs and their equipment:

In both labs, rather conventional equipment is used. My regular duties are essentially concerned  with basic student education and hands-on training. Obviously, one does not need top-notch equipment for such comparatively humble purposes.

Student workplaces in the Dortmund lab are equipped for basic training in analog electronics.

Student workplaces in the Dortmund lab are equipped for basic training in analog electronics.

In adjacent rooms at the Dortmund lab, students pursue their own projects, working with soldering irons, screwdrivers, drills,  and other tools. Hence, these rooms are  occasionally called the blacksmith’s shop. Here two such workplaces are shown.

In adjacent rooms at the Dortmund lab, students pursue their own projects, working with soldering irons, screwdrivers, drills, and other tools. Hence, these rooms are occasionally called “the blacksmith’s shop.” Two such workstations are shown.

Oscilloscopes, function generators, multimeters, and power supplies are of an intermediate price range. I am fond of analog scopes, because they don’t lie. I wonder why neither well-established suppliers nor entrepreneurs see a business opportunity in offering quality analog scopes, something that could be likened to Rolex watches or Leica analog cameras.

The orderly lab at home is shown here.

The orderly lab in Matthes’s home is shown here.

Matthes prefers to build his  projects so that they are mechanically sturdy. So his lab is equipped appropriately.

Matthes prefers to build mechanically sturdy projects. So his lab is appropriately equipped.

Matthes, whose research interests include advanced computer architecture and embedded systems design, pursues a variety of projects in his workspace. He describes some of what goes on in his lab:

The projects comprise microcontroller hardware and software, analog and digital circuitry, and personal computers.

Personal computer projects are concerned with embedded systems, hardware add-ons, interfaces, and equipment for troubleshooting. For writing software, I prefer PowerBASIC. Those compilers generate executables, which run efficiently and show a small footprint. Besides, they allow for directly accessing the Windows API and switching to Assembler coding, if necessary.

Microcontroller software is done in Assembler and, if required, in C or BASIC (BASCOM). As the programming language of the toughest of the tough, Assembler comes second after wire [i.e., the soldering iron].

My research interests are directed at computer architecture, instruction sets, hardware, and interfaces between hardware and software. To pursue appropriate projects, programming at the machine level is mandatory. In student education, introductory courses begin with the basics of computer architecture and machine-level programming. However, Assembler programming is only taught at a level that is deemed necessary to understand the inner workings of the machine and to write small time-critical routines. The more sophisticated application programming is usually done in C.

Real work is shown here at the digital analog computer—bring-up and debugging of the master controller board. Each of the six microcontrollers is connected to a general-purpose human-interface module.

A digital analog computer in Matthes’s home lab works on master controller board bring-up and debugging. Each of the six microcontrollers is connected to a general-purpose human-interface module.

Additional photos of Matthes’s workspace and his embedded electronics and micrcontroller projects are available at his new website.

 

 

 

I/O Raspberry Pi Expansion Card

The RIO is an I/O expansion card intended for use with the Raspberry Pi SBC. The card stacks on top of a Raspberry Pi to create a powerful embedded control and navigation computer in a small 20-mm × 65-mm × 85-mm footprint. The RIO is well suited for applications requiring real-world interfacing, such as robotics, industrial and home automation, and data acquisition and control.

RoboteqThe RIO adds 13 inputs that can be configured as digital inputs, 0-to-5-V analog inputs with 12-bit resolution, or pulse inputs capable of pulse width, duty cycle, or frequency capture. Eight digital outputs are provided to drive loads up to 1 A each at up to 24 V.
The RIO includes a 32-bit ARM Cortex M4 microcontroller that processes and buffers the I/O and creates a seamless communication with the Raspberry Pi. The RIO processor can be user-programmed with a simple BASIC-like programming language, enabling it to perform logic, conditioning, and other I/O processing in real time. On the Linux side, RIO comes with drivers and a function library to quickly configure and access the I/O and to exchange data with the Raspberry Pi.

The RIO features several communication interfaces, including an RS-232 serial port to connect to standard serial devices, a TTL serial port to connect to Arduino and other microcontrollers that aren’t equipped with a RS-232 transceiver, and a CAN bus interface.
The RIO is available in two versions. The RIO-BASIC costs $85 and the RIO-AHRS costs $175.

Roboteq, Inc.
www.roboteq.com

High-Tech Halloween

Still contemplating Halloween ideas? Do you have a costume yet? Is your house trick-or-treat ready? Perhaps some of these high-tech costumes and decorations will help get you in the spirit.

Recent Circuit Cellar interviewee Jeremy Blum designed a creative and high-tech costume that includes 12 individually addressable LEDs, an Adafruit microcontroller, and 3-D printing.

Skull_Side_Full_IMG_0067

Custom animatronic skull

RavenSide2Armature_IMG_0015

Animatronic talking raven

Looking for Halloween decoration inspiration? Peter Montgomery designed some programmable servo animation controllers built around a Freescale Semiconductor 68HC11 microcontroller and a Parallax SX28 configurable controller.

Peter’s Windows-based plastic skull is animated with RC servos controlled via a custom system. It moves at 24 or 30 frames per second over a custom RS-485 network.
This animatronic talking raven features a machined aluminum armature and moves via RC servos. The servos are controlled by a custom system using Windows and embedded controllers.

Peter’s Halloween projects were originally featured in “Servo Animation Controller” (Circuit Cellar 188, 2006). He displays the Halloween projects every year.

Feeling inspired? Share your tech-based Halloween projects with us.

Arduino-Based Hand-Held Gaming System

gameduino2-WEBJames Bowman, creator of the Gameduino game adapter for microcontrollers, recently made an upgrade to the system adding a Future Technology Devices International (FTDI) FT800 chip to drive the graphics. Associate Editor Nan Price interviewed James about the system and its capabilities.

NAN: Give us some background. Where do you live? Where did you go to school? What did you study?

Bowman-WEB

James Bowman

 JAMES: I live on the California coast in a small farming village between Santa Cruz and San Francisco. I moved here from London 17 years ago. I studied computing at Imperial College London.

NAN: What types of projects did you work on when you were employed by Silicon Graphics, 3dfx Interactive, and NVIDIA?

JAMES: Always software and hardware for GPUs. I began in software, which led me to microcode, which led to hardware. Before you know it you’ve learned Verilog. I was usually working near the boundary of software and hardware, optimizing something for cost, speed, or both.

NAN: How did you come up with the idea for the Gameduino game console?

JAMES: I paid for my college tuition by working as a games programmer for Nintendo and Sega consoles, so I was quite familiar with that world. It seemed a natural fit to try to give the Arduino some eye-catching color graphics. Some quick experiments with a breadboard and an FPGA confirmed that the idea was feasible.

NAN: The Gameduino 2 turns your Arduino into a hand-held modern gaming system. Explain the difference from the first version of Gameduino—what upgrades/additions have been made?

Gameduinofinal-WEB

The Gameduino2 uses a Future Technology Devices International chip to drive its graphics

JAMES: The original Gameduino had to use an FPGA to generate graphics, because in 2011 there was no such thing as an embedded GPU. It needs an external monitor and you had to supply your own inputs (e.g., buttons, joysticks, etc.). The Gameduino 2 uses the new Future Technology Devices International (FTDI) FT800 chip, which drives all the graphics. It has a built-in color resistive touchscreen and a three-axis accelerometer. So it is a complete game system—you just add the CPU.

NAN: How does the Arduino factor into the design?

GameduinoPCB-WEB

An Arduino, Ethernet adapter, and a Gameduino

 JAMES: Arduino is an interesting platform. It is 5 V, believe it or not, so the design needs a level shifter. Also, the Arduino is based on an 8-bit microcontroller, so the software stack needs to be carefully built to provide acceptable performance. The huge advantage of the Arduino is that the programming environment—the IDE, compiler, and downloader—is used and understood by hundreds of thousands of people.

 NAN: Is it easy or possible to customize the Gameduino 2?

 JAMES: I would have to say no. The PCB itself is entirely surface mount technology (SMT) and all the ICs are QFNs—they have no accessible pins! This is a long way from the DIP packages of yesterday, where you could change the circuit by cutting tracks and soldering onto the pins.

I needed a microscope and a hot air station to make the Gameduino2 prototype. That is a long way from the “kitchen table” tradition of the Arduino. Fortunately the Arduino’s physical design is very customization-friendly. Other devices can be stacked up, adding networking, hi-fi sound, or other sensor inputs.

 NAN: The Gameduino 2 project is on Kickstarter through November 7, 2013. Why did you decide to use Kickstarter crowdfunding for this project?

 JAMES: Kickstarter is great for small-scale inventors. The audience it reaches also tends to be interested in novel, clever things. So it’s a wonderful way to launch a small new product.

NAN: What’s next for Gameduino 2? Will the future see a Gameduino 3?

 JAMES: Product cycles in the Arduino ecosystem are quite long, fortunately, so a Gameduino 3 is distant. For the Gameduino 2, I’m writing a book, shipping the product, and supporting the developer community, which will hopefully make use of it.

 

Designing Wireless Data Gloves

Kevin Marinelli, IT manager for the Mathematics Department at the University of Connecticut, recently answered CC.Post’s newsletter invitation to readers to tell us about their wearable electronics projects. Kevin exhibited his project,  “Wireless Data Gloves,” at the World Maker Faire New York in September. He spoke with Circuit Cellar Managing Editor Mary Wilson about the gloves, which are based on an Adafruit ATmega32U4 breakout board, use XBee modules for wireless communication, and enable wearers to visually manipulate data and 3-D graphics.

MARY: Tell us a little bit about yourself and your educational and professional background.

KEVIN: I am originally from Sydney, Nova Scotia, in Canada. From an early age I have

Kevin Marinelli

Kevin Marinelli

always been interested in taking things apart and creating new things. My degrees are a Bachelor’s in Computer Science from Dalhousie University in Halifax, Nova Scotia, and a Master’s in Computer Science from the University of New Brunswick in Fredericton, New Brunswick. I am currently working on my PhD in Computer Science at the University of Connecticut (UConn).

My first full-time employment was with ITS (the computer center) at Dalhousie University. After eight years, I moved on to an IT management position the Ocean Mapping Group at the University of New Brunswick. I am currently the IT manager for the Mathematics Department at  UConn.

I am also an active member of MakeHartford, which is a local group of makers in Hartford, Connecticut.

MARY: Describe the wireless data gloves you recently exhibited at the World Maker Faire in New York. What inspired the idea?

KEVIN: The idea was initially inspired 20 years ago when using a Polhemus 6 Degree-of-Freedom sensor for manipulating computer graphics when I was at the University of New Brunswick. The device used magnetic fields to locate a sensor in three-dimensional space and detect its orientation. The combined location and orientation data provides data with six degrees of freedom. I have been interested in creating six degrees of freedom input devices ever since. With the Arduino and current sensor technologies, that is now possible.

Wireless data gloves on display at World Maker Faire New York. (Photo: Rohit Mehta)

Wireless data gloves on display at World Maker Faire New York. (Photo: Rohit Mehta)

MARY: What do the gloves do? What applications are there? Can you provide an example of who might use them and for what purpose?

KEVIN: The data gloves allow me to use my hands to wirelessly transmit telemetry data to a base station computer, which collects the data and provides it to any application programs that need it.

There are a number of potential applications, such as manipulating 3-D computer graphics, measurement of data for medical applications, remote control of vehicles, remote control of animatronics and puppetry.

MARY: Can you tell me about the data gloves’s design and the components used?

KEVIN: The basic design guidelines were to make the gloves self-contained, lightweight, easy to program, wireless, and rechargeable. The main electronic components are an Adafruit ATmega32U4 breakout board  (Arduino Leonardo software compatible), a SparkFun 9d0f sensor board, an XBee Pro packet radio, a LiPo battery charger circuit, and a LiPo battery. These are all open hardware projects or, in the case of the battery, are ordinary consumer products.

The choice of the ATMega32U4 for the processor was made to provide a USB port without any external components such as an FTDI chip to convert between serial and USB communications. This frees up the serial port on the processor for communicating with the XBee radio.

For the sensors, the SparkFun 9dof board was perfect because of its miniscule size and

Top of glove

Top of glove

because it only requires four connections: two connections for power and two connections for I2C. The board has components with readily available data sheets, and there is access to working example code for the sensor board. This reduced the design work greatly by using an off-the-shelf product instead of designing one myself.

The choice of an 800-mAh LiPo battery provides an excellent lightweight rechargeable power supply in a small form factor. The relatively small battery powers the project for more than 24 h of continuous use.

Palm of glove

Palm of glove

A simple white cotton glove acts as the structure to mount the electronics. For user-controlled input, the glove has conductive fabric fingertips and palm. Touching a finger to the thumb, or the pad on the palm, closes an electrical pathway, which allows the microcontroller to detect the input.

For user-selectable input, each fingertip and the palm of the hand has a conductive fabric pad connected to the Adafruit microcontroller. The thumb and palm act as a voltage source, while the fingertips act as inputs to the microcontroller. This way, the microcontroller can detect which fingers are touching the thumb and the palm pads. Insulated wires of 30 gauge phosphor bronze are sewn into the glove to connect the pads to the microcontroller.

MARY: Are the gloves finished? What were some of the design challenges? Do you plan any changes to the design?

KEVIN: The initial glove design and second version of the prototype have been completed. The major design challenges were finding a microcontroller board with sufficient capabilities to fit on the back of a hand, and configuring the XBee radios. The data glove design will continue to evolve over the next year as newer and more compact components become available.

Initially I was designing and building my own microcontroller circuit based on the ATmega32U4, but Adafruit came out with a nice, usable, designed board for my needs. So I changed the design to use their board.

SparkFun has a well-designed micro USB-based LiPo battery charger circuit. This would have been ideal for my project except that it does not have an On/Off switch and only has some through-hole solder points for powering an external project. I used their CadSoft EAGLE files to redesign the circuit to make it slightly more compact, added in a power switch and a JST connector for the power output for projects.

The XBee radios were an interesting challenge on their own. My initial design used the standard XBee, but that caused communication complications when using multiple data gloves simultaneously. In reading Robert Faludi’s book Building Wireless Sensor Networks: With ZigBee, XBee, Arduino, and Processing, I learned that the XBee Pro was more suited to my needs because it could be configured on a private area network (PAN) with end-nodes for the data gloves and a coordinator for the base station.

One planned future change is to switch to the surface-mount version of the XBee Pro. This will reduce both the size and weight of the electronics for the project.

The current significant design challenge I am working on is how to prevent metal fatigue in the phosphor bronze wires as they bend when the hand and fingers flex. The fatigue problem occurs because I use a small diamond file to remove the Kapton insulation on the wires. This process introduces small nicks or makes the wires too thin, which then promotes the metal fatigue.

A third version is in the design stage. The new design will replace the SparkFun 9dof board with a smaller single-chip sensor, which I hope can be mounted directly on the Adafruit ATmega32U4 board.

MARY: What new skills or technologies did you learn from the project, if any?

KEVIN: Along the way to creating the gloves, I learned a great deal about modern electronics. My previous skills in electronics were learned in the ’70s with single-sided circuits with through-hole components and pre-made circuit boards. I can now design and create double-sided circuit boards with primarily surface-mounted components. For initial prototype designs, I use double-sided photosensitized circuit boards and etch them at home.

Learning to program Arduino boards and Arduino clones has been incredible. The fact that the boards can be programmed using C in a nice IDE with lots of support libraries for common programming tasks makes the platform an incredibly efficient tool. Having an enormous following makes it very easy to find technical support for solving problems with Arduino products and making Arduino clones.

Wireless networking is a key component for the success of the project. I was lucky to have a course in wireless sensor network design at UConn, which taught me how to leverage wireless technology and avoid many of the pitfalls. That, combined with some excellent reference books I found, insured that the networking is stable. The network design provides for more network bandwidth than a single pair of data gloves require, so it is feasible to have multiple people collaborating manipulating the same on the same project.

Designing microcontroller circuits using EAGLE has been an interesting experience. While most of the new components I use regularly in designs are available in libraries from Adafruit and SparkFun, I occasionally have to design my own parts in EAGLE. Using EAGLE to its fullest potential will still take some time, but I have become reasonably proficient with it.

For soldering, I mostly still use a standard temperature controlled soldering iron with a standard tip. Amazingly, this allows me to solder 0402 resistors and capacitors and up to 100 pitch chips. When I have components that need to be soldered under the surface, I use solder paste and a modified electric skillet. This allows me to directly control the temperature of the soldering and gives me direct access to monitoring the process.

The battery charger circuit on my data glove is hand soldered and has a number of 0402-sized components, as  well as a micro USB connector, which also is a challenge to hand solder properly.

MARY: Are there similar “data gloves” out there? How are yours different?

There are a number of data glove projects, which can be found on the Internet. Some are commercial products, while others are academic projects.

My gloves are unique in that they are lightweight and self-contained on the cotton glove. All other projects that you can find on the Internet are either hard-wired to a computer or have components such as the microcontroller, batteries, or radio strapped to the arm or body.

Also, because the main structure is a self-contained cotton glove; the gloves do not interfere with other activities such as typing on a keyboard, using a mouse, writing with a pen, or even drinking from a glass. This was quite handy when developing the software for the glove because I could test the software and make programming corrections without having the inconvenience of putting the gloves on and taking them off repeatedly.

MARY: Are you working on any other projects you’d like to briefly tell us about?

KEVIN: At UConn, we are lucky to have one of the few academic programs in puppetry in the US. In the spring, I plan on taking a fine arts course at UConn in designing and making marionette puppets. This will allow me to expand the use of my data gloves into controlling and manipulating puppets for performance art.

I am collaborating on designing circuit boards with a number of people in Hartford. The more interesting collaborations are with artists, where they think differently about technology than I do. Balam Soto of Open Wire Labs is a new media artist and one of the creative artists I collaborate with regularly. He is also a member of MakeHartford and presents at Maker Faires.

MARY: What was the response to the wireless data gloves at World Maker Faire New York?

KEVIN: The response to the data gloves was overwhelmingly positive. People were making comparisons to the Nintendo Power Glove and to the movie “Minority Report.” Several musicians commented that the gloves should be excellent for performing and recording virtual musical instruments such as a guitar, trumpet and drums.

For the demonstration, I showed a custom application; which allowed both hands (or two people) to interactively manipulate points and lines on a drawing. Many people were encouraged to use the gloves for themselves, which enhanced the quality of the feedback I received.

The gloves are large-sized to fit my hands, which was quite a challenge for younger children to use because their hands were “lost” in the gloves. Even with the size challenge, it was fun watching younger children manipulating the objects on the computer screen.

I look forward to the Maker Faire next year, when I will have implemented the newer design for the data gloves and will have additional software to demonstrate. I plan on trying to put together a presentation on some form of performance art using the data gloves.