Issue 263: Net-Enabled Controller, MCU-Based Blood Pressure Cuff, MOSFETs 101, & More

Although the June issue is still in production, I can report that it’s packed with projects and tips you’ll find immediately applicable. The projects include an AC tester design, an Internet-enabled controller, a DIY image-processing system, and an MCU-cased blood pressure cuff. Once you’ve had your fill of design projects, you’ll benefit from our articles on essential topics such as concurrency embedded systems, frequency mixers, MOSFET channel resistance, and “diode ORing.”

An Internet-Enabled Controller, by Fergus Dixon
Power-saving smart switches require a real-time clock-based controller. With a request for an Ethernet interface, the level of complexity increases. Once the Ethernet interface was working, connecting to the Internet was simple, but new problems arose.

Final PCB with a surface-mount Microchip Technology ENC28J60 Ethernet chip (Source: F. Dixon, CC263)

AC Tester, Kevin Gorga
The AC Tester provides a modular design approach to building a tool for repair or prototyping line voltage devices. In its simplest form, it provides an isolated variable AC voltage supply. The next step incorporates digital current and voltage meters with an electronic circuit breaker. The ultimate adds an energy meter for Watts, VA, and VAR displays.

The AC Tester powered up and running. The E meter is shown in the plastic case on the top of the tester. The series current limit bulbs are on the top. (Source: K. Gorga, CC263)

Image Processing System Development, by Miguel Sánchez
Some computer vision tasks can be accomplished more easily with the use of a depth camera. This article presents the basics on the usage of Microsoft’s Kinect motion-sensing device on your PC for an interactive art project.

Build an MCU-Based Automatic Blood Pressure Cuff, by Jeff Bachiochi
Personal health products are becoming more and more commonplace. They reinforce regular visits to personal physicians, and can be beneficial when diagnosing health issues. This article shows you how to convert a manual blood pressure cuff into an automatic cuff by adding an air pump, a solenoid release valve, and a pressure sensor to a Microchip Technology PIC-based circuit.

A manual blood pressure cuff adapted into an automatic cuff by adding an air pump, a solenoid release valve, and a pressure sensor to a microcontroller. (Source: J. Bachiochi, CC263)

Concurrency in Embedded Systems, by Bob Japenga
This is the first in an article series about concurrency in embedded systems. This article defines concurrency in embedded systems, discusses some pitfalls, and examines one of them in detail.

Radio Frequency Mixers, by Robert Lacoste
Frequency mixers are essential to radio frequency (RF) designs. They are responsible for translating a signal up or down in frequency. This article covers the basics of RF mixers, their real-life applications, and the importance of frequency range.

MOSFET Channel Resistance: Theory and Practice, by Ed Nisley
This article describes the basics of power MOSFET operation and explores the challenges of using a MOSFET’s drain-to-source resistance as a current-sensing resistor. It includes a review of fundamental enhancement-mode MOSFET equations compared with Spice simulations, and shows measurements from an actual MOSFET.

Diode ORing, by George Novacek
Diode ORing is a commonly used method for power back up. But there is a lot more behind the method than meets the eye. This article describes some solutions for maintaining uninterrupted power.

The June issue will hit newsstands in late May.

Design West Update: Compilers Unveiled

IAR Systems announced Tuesday at Design West in San Jose, CA, that GainSpan selected IAR Embedded Workbench as its primary development tool chain for MCU drivers and next-generation chip. “By standardizing on IAR Systems’ embedded software development tool chain, GainSpan will more easily support a wide range of MCUs to communicate with their modules,” IAR publicized a in a release.

It’s an important aspect of a larger plan, IAR’s ARM Strategic Accounts Manager Mike Skrtic said. IAR has overall tool chain standardization goals aimed at giving designers’ more flexibility when choosing MCUs for product development.

Remember: IAR Systems is teamed with Renesas for the RL78 Green Energy Challenge, which is administered by Circuit Cellar and Elektor. Designers are challenged to transform how the world experiences energy efficiency by developing a unique, low-power application using the RL78 MCU and IAR toolchain.

In other compiler-related news, Microchip Technology announced Monday at Design West its new MPLAB XC C compiler line, which supports its approximately 900 microcontrollers. Microchip’s Joe Drzewiecki said the compilers reduce code size by about 35% and improve code execution speed by about 30%. But you can judge for yourself because Microchip offers 8-, 16-, and 32-bit free editions of MPLAB XC compilers. According to Microchip reps, they are” fully functional and have no license restrictions for commercial use.”

So, if you give MPLAB XC a try, let us know what you think!

Design West Update: Advanced 8-Bit MCUs

Is the 8-bit MCU dead? No. And if you take a look at Microchip Technology’s PIC16F(LF)178x family, it’s clear that it will be around for a long time to come.

Microchip Technology announced Monday from Design West in San Jose, CA, that it “expanded its 8-bit PIC16F(LF)178X midrange core MCU family to include advanced analog and integrated communication peripherals, such as on-chip 12-bit analog-to-digital converters (ADCs), 8-bit digital-to-analog converters (DACs), operational amplifiers, and high-speed comparators, along with EUSART (including LIN), I2C, and SPI interface peripherals.”

Microchip claims the low power consumption and advanced analog and digital integration make the MCUs (28- and 40-pin packages) well suited for lighting (LED), battery management, motor control, and more.

Check out the specs and more details at www.microchip.com/pagehandler/en-us/family/8bit/.

DIY Cap-Touch Amp for Mobile Audio

Why buy an amp for your iPod or MP3 player when you can build your own? With the proper parts and a proven plan of action, you can craft a custom personal audio amp to suit your needs. Plus, hitting the workbench with some chips and PCB is much more exciting than ordering an amp online.

In the April 2012 issue of Circuit Cellar, Coleton Denninger and Jeremy Lichtenfeld write about a capacitive-touch, gain-controlled amplifier while studying at Camosun College in Canada. The design features a Cypress Semiconductor CY8C29466-24PXI PSoC, a Microchip Technology mTouch microcontroller, and a Texas Instruments TPA1517.

Denninger and Lichtenfeld write:

Since every kid and his dog owns an iPod, an MP3 player, or some other type of personal audio device, it made sense to build a personal audio amplifier (see Photo 1). The tough choices were how we were going to make it stand out enough to attract kids who already own high-end electronics and how we were going to do it with a budget of around $40…

The capacitive-touch stage of the personal audio amp (Source: C. Denninger & J. Lichtenfeld)

Our first concern was how we were going to mix and amplify the low-power audio input signals from iPods, microphones, and electric guitars. We decided to have a couple of different inputs, and we wanted stereo and mono outputs. After doing some extensive research, we chose to use the Cypress Semiconductors CY8C29466-24PXI programmable system-on-chip (PSoC). This enabled us to digitally mix and vary the low-power amplification using the programmable gain amplifiers and switched capacitor blocks. It also came in a convenient 28-pin DIP package that followed our design guidelines. Not only was it perfect for our design, but the product and developer online support forums for all of Cypress’s products were very helpful.
Let’s face it: mechanical switches and pots are fast becoming obsolete in the world of consumer electronics (not to mention costly when compared to other alternatives). This is why we decided to use capacitive-touch sensing to control the low-power gain. Why turn a potentiometer or push a switch when your finger comes pre-equipped with conductive electrolytes? We accomplished this capacitive touch using Microchip Technology’s mTouch Sensing Solutions series of 8-bit microcontrollers. …

 

The audio mixer flowchart

Who doesn’t like a little bit of a light show? We used the same aforementioned PIC, but implemented it as a voltage unit meter. This meter averaged out our output signal level and indicated via LEDs the peaks in the music played. Essentially, while you listen to your favorite beats, the amplifier will beat with you! …
This amp needed to have a bit of kick when it came to the output. We’re not talking about eardrum-bursting power, but we wanted to have decent quality with enough power to fill an average-sized room with sound. We decided to go with a Class AB audio amplifier—the TPA1517 from Texas Instruments (TI) to be exact. The TPA1517 is a stereo audio-power amplifier that contains two identical amplifiers capable of delivering 6 W per channel of continuous average power into a 4-Ω load. This quality chip is easy to implement. And at only a couple of bucks, it’s an affordable choice!

 

The power amplification stage of the personal audio amp (Souce: C. Denninger & J. Lichtenfeld)

The complete article—with a schematic, diagrams, and code—will appear in Circuit Cellar 261 (April 2012).