New Dual-Channel USB Port Power Controller

Microchip Technology recently expanded its programmable USB-port power controller portfolio with the dual-channel UCS2112. This UCS2112 port power controller supports two ports, with eight programmable continuous current limits for each port, ranging from 0.53 to 3 A for faster charging times at higher currents. You can use it as is or with USB hubs to create a complete charging or USB communication system.Microchip UCS2112


The UCS2112 port power controller is supported by Microchip’s new $140 UCS2112 Evaluation Board. The UCS2112 is available for sampling and volume production in a 20-pin QFN package. Pricing starts at $1.80 each, in 5,000-unit quantities. Microchip Eval Board USC21212

Source: Microchip Technology

Next-Gen Bluetooth Low Energy Solutions

Microchip Technology recently launched next-generation Bluetooth Low Energy (LE) solutions intended for Internet of Things (IoT) and Bluetooth Beacon applications: the IS1870 Bluetooth LE RF module, the IS1871 Bluetooth LE RF module, and the BM70 module.Microchip BM70

The Bluetooth LE devices include an integrated, certified Bluetooth 4.2 firmware stack. Data is transmitted over the Bluetooth link using Transparent UART mode, which you can integrate with any processor or PIC microcontroller with a UART interface. The module also supports standalone “hostless” operation for beacon applications.

The optimized power profile of these new devices minimizes current consumption for extended battery life, in compact form factors as small as 4 × 4 mm for the RF ICs and 15 × 12 mm for the module. The module options include RF regulatory certifications, or noncertified (unshielded/antenna-less) for smaller and more remote antenna designs that will undergo end-product emission certifications.

The BM70 Bluetooth Low Energy PICtail/PICtail Plus daughter board enables code development via USB interface to a PC. Or you can connect to Microchip’s existing microcontroller development boards, such as the Explorer 16, PIC18 Explorer and PIC32 I/O Expansion Board. The BM-70-PICTAIL costs $89.99.

The IS1870 Bluetooth LE RF IC (6 × 6 mm, 48-pin QFN package) costs $1.79 in 1,000-unit quantities. The IS1871 (4 × 4 mm, 32-pin QFN package) costs $1.76 in 1,000-unit quantities. The 30-pin BM70 Bluetooth LE modules are available with or without built-in PCB antennas, starting at $4.99 each in 1,000-unit quantities.

Source: Microchip Technology

Expanded 32-bit MCU Family with Integrated Floating Point Unit Series

Microchip Technology has launched a new series of its high-performance PIC32MZ family of 32-bit microcontrollers that features an integrated hardware floating point unit (FPU) for high performance and lower latency in intensive single and double-precision math applications. This new 48-member PIC32MZ EF series also offers a 12-bit, 18 MSPS analog-to-digital converter (ADC) for a wide array of high-speed, wide-bandwidth applications. Additionally, the PIC32MZ EF supports an extensive DSP instruction set. This combination of DSP instructions, a double-precision FPU and a high-speed ADC improves code density, decreases latency and accelerates performance in process-intensive applications.Microchip32MZ

The PIC32MZ EF series is powered by Imagination’s MIPS M-Class core at 200MHz/330 DMIPS and 3.28 CoreMarks/MHz, along with dual-panel, live-update flash memory (up to 2 MB), large RAM (512 KB), and the widest selection of connectivity peripherals in the entire PIC32 portfolio, including a 10/100 Ethernet MAC, Hi-Speed USB MAC/PHY, and dual CAN ports.

The PIC32MZ EF, in the LCCG configuration, can support up to a WQVGA display without the added cost of external graphics controllers. An optional, full-featured hardware crypto engine is also available with a random number generator for high-throughput data encryption/decryption and authentication (e.g., AES, 3DES, SHA, MD5, and HMAC).
Accelerating product cycles and rapidly evolving customer demands are increasing time-to-market pressures on designers. Microchip’s MPLAB Harmony Integrated Software Framework provides a modular, easy-to-use GUI-based development ecosystem that helps ease integration and reduces testing and speed adaptation.

The new PIC32MZ EF series is also supported by Microchip’s free MPLAB X Integrated Development Environment (IDE), within which Harmony operates, as well as the MPLAB XC32 Compilers. The MPLAB ICD 3 In-Circuit Debugger (part # DV164035, $199.95) and MPLAB REAL ICE In-Circuit Emulator System (part # DV244005, $499.98) are also available.

Four new PIC32MZ EF development tools are also available today. The complete, turn-key PIC32MZ Embedded Connectivity with FPU EF Starter Kit ($119); the PIC32MZ Embedded connectivity with Floating Point Unit and Crypto Starter Kit ($119); the PIC32MZ2048EF PIM Explorer 16 Plug In Module ($25); and the PIC32MZ EF Audio 144-pin PIM for Bluetooth Audio Development Kit ($25).

The 48 members of the PIC32MZ EF series are available for sampling and volume production. The crypto engine is integrated into 16 of the PIC32MZ EF MCUs, and there are 12 MCUs with 512 KB of flash memory, 24 MCUs with 1 MB of flash memory, and 12 MCUs with 2 MB of flash memory. Pricing starts at $5.48 each in 10,000-unit quantities.

Source: Microchip Technology

New Highly Configurable Low-Power Embedded Controllers

Microchip Technology recently announced the MEC14XX family of highly configurable low-power embedded controllers, which enables multiple I/O signals to be configured to support either 3.3 or 1.8 V and reduces materials cost by eliminating the need for external voltage translators.Microchip MEX14xx

Intended for for general x86 computing, the MEC14XX family also allow for a seamless migration of intellectual property (IP) reuse across multiple x86 computing platform architectures, including Intel Atom, Intel iCore and AMD-based systems. The devices are available with a choice of 128, 160, or 192 KB of closely coupled SRAM for code and data that loads from SPI-flash.

Each member of the MEC14XX family is based on Microchip’s 32-bit PIC MCU architecture and is supported by Microchip’s development tools. Examples include the MPLAB XC Compilers, the MPLAB REAL ICE In-Circuit Emulator (part # DV244005, $499), the MPLAB ICD 3 In-Circuit Debugger (part # DV164035, $199), and the PICkit 3 Starter Kit (part # DV164130, $64).

The MEC1404 (128-KB SRAM) and MEC1408 (192-KB SRAM) embedded controllers supporting the Intel LPC interface cost $1.68 each in 10,000-unit quantities. The MEC1418 (192-KB SRAM) embedded controller costs $2.05 in 10,000-unit quantities. All MEC14XX devices are available in a 128-VTQFP package.

Source: Microchip Technology

New 32-Bit MCU Series for Embedded Control and Touch

Microchip Technology recently announced a new series within its PIC32MX1/2 32-bit microcontroller family that features a 256-KB flash configureation and 16-KB of RAM. The microcontrollers provide flexibility to low-cost applications that need complex algorithms and application code. More specifically, they are intended to help designers looking to develop products with capacitive touch screens or touch buttons, as well as USB device/host/OTG connectivity.Microchip PIC32mx1

The PIC32MX1/2 MCU series provides  up to 50 MHz/83 DMIPS performance for executing advanced control applications and mTouch capacitive touch sensing. In addition, it has an enhanced 8-bit Parallel Master Port (PMP) for graphics or external memory, a 10-bit, 1-Msps, 13-channel ADC, support for SPI and I2S serial communications interfaces, and USB device/host/On-the-Go (OTG) functionality.

Microchip’s MPLAB Harmony software development framework further simplifies designs by integrating the license, resale, and support of Microchip and third-party middleware, drivers, libraries and Real-Time Operating Systems (RTOS). Specifically, Microchip’s readily available software packages—including USB stacks and Graphics and Touch libraries—can greatly reduce the development time of applications such as consumer, industrial and general-purpose embedded control.

These latest PIC32MX1/2 MCUs are available now in 28-pin QFN, SPDIP ,and SSOP packages and 44-pin QFN, TQFP and VTLA packages. Pricing starts at $1.91 each, in 10,000-unit quantities.

Source: Microchip Technology

Two New PIC Families with Core-Independent Peripherals

Looking for an 8-bit microcontroller for an IoT application? Microchip Technology announced from ESC 2015 Silicon Valley two new 8-bit families that expand its growing portfolio of PIC microcontrollers with Core-Independent Peripherals (CIPs).

The PIC16F1579 and PIC16F18877 8-bit MCU families provide you with with a variety of intelligent options in low pin count packages and a wide operating voltage range.Microchip PIC16F157X

Both families offer the Peripheral Pin Select feature for flexible pin mapping and PCB routing to minimize EMI and crosstalk. Intended applications include consumer electronics, the Internet of Things (IoT), wearable technology and safety-critical systems.

The Curiosity Development Board costs $20. Pricing for the PICs starts at $0.51 each in 10,000-unit quantities.

Source: Microchip Technology

Multi-Touch Solution Brings Modern UI Elements to Embedded Designs

Microchip Technology recently announced a new addition to its Human Interface Solutions portfolio. The MTCH6303 is a turnkey projected-capacitive touch controller for touch pads and screens. Touch sensors with up to 1,000 nodes and diagonals of up to 10” are supported. The MTCH6303 provides multi-touch coordinates as well as a ready-made multi-finger surface gesture suite that brings modern user interface (UI) elements (e.g., pinch and zoom, multi-finger scrolling, and swipes) to any embedded design, with minimal host requirements.Microchip MTCH6303

The MTCH6303’s advanced signal processing provides noise-avoidance techniques and predictive tracking for 10 fingers, at scan rates of up to 250 Hz with a minimum of 100 Hz each for five touches. It also combines with Microchip’s MTCH652 high-voltage line driver to achieve a superior signal-to-noise ratio (SNR) for outstanding touch performance in noisy environments.

When combined with the MGC3130, the MTCH6303 solution can support 3-D air gestures up to 20 cm from the touch panel. Microchip’s MGC3130 E-field-based 3-D tracking and gesture controller includes Microchip’s GestIC technology, allowing user input via natural hand and finger movements in free space. Thus, you can create interface-control possibilities in two and three dimensions.

The advanced capabilities of the MTCH6303 create robust, ready-to-go touch and gesture solutions for the rapid growth of human-interface applications and requirements in the industrial (e.g., machine control panels), home automation (e.g., lighting controls) and office equipment (e.g., printers) markets, among others.

The MTCH6303 is supported by Microchip’s new $149 Multi-Touch Projected Capacitive Touch Screen Development Kit (part # DV102013), which is now available with free, downloadable software. The DV102013 incorporates the MTCH6303 projected-capacitive touch controller and the MTCH652 high-voltage driver on a controller board, and includes a transparent, 8″ ITO touch panel for easy demonstration of the MTCH6303’s touch-controller capabilities and supporting graphical user interface (GUI) functionality.

Microchip’s free MTCH6303 GUI provides you with complete access to the configuration and tuning parameters. Advanced visualization windows assist all user levels with easy-to-comprehend feedback, to accelerate design integration for fast time-to-market.

Additionally, Microchip empowers designers by providing access to the firmware library, to enable further customizations for maximum design flexibility and control.

The new MTCH6303 is available today in 64-pin QFN and TQFP packages, for sampling and volume production. Pricing starts at $2.46 each, in 10,000-unit quantities.

The MTCH652 is available today in 28-pin QFN, SOIC and SSOP packages, for sampling and volume production. Pricing starts at $1.04 each, in 10,000-unit quantities. The MGC3130 is available in a 28-pin QFN package for sampling and volume production. Pricing starts at $2.26 each in 10,000-unit quantities.

Source: Microchip Technology

High-Side Current/Power Sensor

Microchip Technology recently introduced the PAC1921, a high-side current sensor with both a digital output, as well as a configurable analog output that can present power, current or voltage over the single output pin. Simultaneously, all power related output values are also available over the 2-Wire digital bus, which is compatible with I2C. The PAC1921 is available in a 10-lead 3 × 3 mm VDFN package. It was designed with the 2-Wire bus to maximize data and diagnostic reporting, while having the analog output to minimize data latency. The analog output can also be adjusted for use with 3-, 2-, 1.5-, or 1-V microcontroller inputs.Microchip PAC1921 Eval

The PAC1921 is ideal for networking, power-distribution, power-supply, computing and industrial-automation applications that cannot allow for latency when performing high-speed power management. A 39-bit accumulation register and 128 times gain configuration make this device ideal for both heavy and light system-load power measurement, from 0 to 32 V. It has the ability to integrate more than two seconds of power-consumption data. Additionally, the PAC1921 has a READ/INT pin for host control of the measurement period; and this pin can be used to synchronize readings of multiple devices.

The PAC1921 is supported by Microchip’s $64.99 PAC1921 High-Side Power and Current Monitor Evaluation Board (ADM00592). The PAC1921 is available for sampling and volume production, in a 10-lead 3 × 3 mm VDFN package, starting at $1.18 each in 5,000-unit quantities.

Source: Microchip Technology

New USB3.0 Smart Hub Family

Microchip Technology recently announced  the USB5734/44, a USB3.0 Smart Hub family that enables host and device port swapping, I/O bridging, and other serial communication interfaces. The USB5734 and USB5744 devices feature an integrated microcontroller that creates new functionality for USB hubs while lowering overall BOM costs and reducing software complexity.MicrochipUSB5734

The new USB3.0 Smart hubs enable an upstream host controller to communicate to numerous types of external peripherals beyond the USB connection through direct bridging from USB to I2C, SPI, UART, and GPIO interfaces. This eliminates the need for an additional external microcontroller, while providing improved control from the USB host hardware.

Microchip’s FlexConnect technology enables the USB5734 Smart Hub to dynamically swap between a USB host and a USB device through hardware or software system commands giving the new USB host access to downstream resources. The FlexConnect technology can also switch common downstream resources between two different USB hosts. Incorporating FlexConnect into a system simplifies the overall software requirements of the primary host, as class drivers and application software stay local to the Device-turned-Host.

Available 56-pin, 7 x 7 mm package, the USB5744 is the industry’s smallest USB3.0 Hub for applications where board space is important. You can use the USB5734 and USB5744 USB3.0 controller hubs for a variety of applications (e.g., computing, embedded, medical, industrial, and networking markets).

The USB5734 and USB5744 are supported by Microchip’s $399 USB 3.0 Controller Hub Evaluation Board (EVB-USB5734) and $299 USB 3.0 Small Form Factor Controller Hub Evaluation Board (EVB-USB5744). The former includes mezzanine cards that can be used as preset application configurations for easy testing and development of a USB5734 system.

The USB5734 is available in 64-pin QFN (9 × 9 mm) packages starting at $4.20 each in 10,000-unit quantities. The USB5744 is available in 56-pin QFN (7 × 7 mm) packages starting at $3.75 each in 10,000-unit quantities.

Source: Microchip Technology

New dsPIC33EP “GS” Family Optimized for Digital Power Applications

Microchip Technology recently launched the 14-member dsPIC33EP “GS” family of digital signal controllers (DSCs).  The family delivers the performance needed to implement more sophisticated nonlinear, predictive and adaptive control algorithms at higher switching frequencies. The advanced algorithms enable energy-efficient power supply designs with better power supply specifications.  Higher switching frequencies enable the development of physically smaller power supplies that offer higher densities and lower costs.Microchip dsPIC33

In comparison to older DSCs, the new dsPIC33EP “GS” devices provide less than half the latency, when used in a three-pole three-zero compensator, and consume up to 80% less power in any application. The new family includes advanced features such as Live Update Flash capability, which is especially helpful for high-availability or “always-on” systems.  Live Update can be used to change the firmware of an operating power supply, including the active compensator calculation code, while maintaining continuous regulation. Variants from this new digital-power-optimized DSC family are available in an industry’s-smallest, 4 × 4 mm UQFN package for space-constrained designs.

Other key features of this family include up to five 12-bit ADCs with as many as 22-ADC inputs, providing total throughput of 16 Msps with a 300-ns ADC latency.  The dsPIC33EP “GS” devices include 12-bit DACs for each of the four analog comparators for higher-precision designs. The two on-chip programmable gain amplifiers can be used for current sensing and other precision measurements.  Including these advanced analog amplifiers on the device reduces the number of external components required, thereby saving cost and board space.

The dsPIC33EP “GS” family is well suited for a wide range of applications, including computer, telecom (e.g., AC/DC and DC/DC power supplies), and industrial (e.g., solar inverters and LED lighting).

Microchip’s MPLAB Starter Kit for Digital Power (DM330017-2, $129.99) supports the dsPIC33EP “GS” family. The 14 family members are available in various packages, from 28 to 64 pins. All the new DSCs are currently available for sampling and volume production, starting at $1.10 each in high volume.

EtherCAT Slave Controller with Integrated PHYs for the Internet of Things

Microchip Technology’s LAN9252 is a stand-alone EtherCAT slave controller with two 10/100 PHYs. Its dual 10/100 Ethernet transceivers support both fiber and copper, along with cable diagnostics capabilities. In addition, the LAN9252 supports traditional Host Bus and SPI/SQI communication, along with standalone digital I/O interfaces, enabling you to select from a wide range of microcontrollers when implementing the real-time EtherCAT communications standard. Additionally, the LAN9252 reduces system complexity and cost for developers using EtherCAT in factory-automation, process-control, motor/motion-control and Internet of Things (IoT) industrial-Ethernet applications.Microchip LAN9252 EtherCAT

The LAN9252 EtherCAT slave controller includes 4 KB of Dual-Port RAM (DPRAM) and three Fieldbus Memory Management Units (FMMUs). It also includes cable diagnostics support that allows field service technicians to rapidly and effectively diagnose line faults and provides for fiber connectivity. This EtherCAT slave controller is available in commercial, industrial and extended industrial temperature ranges, in low pin count and small body size QFN and QFP-EP packages.

To enable development with the LAN9252, two Microchip evaluation boards supporting various system architectures are available. The systems demonstrate how to interface to the LAN9252 through basic I/O connections or to microcontrollers such as the 32-bit PIC32MX family via serial communications. A Software Development Kit (SDK) is also available. The boards—EVB-LAN9252-HBI and EVB-LAN9252-DIGIO—cost $300 each.

The LAN9252 EtherCAT slave controller is available for sampling in 64-pin QFN and QFP-EP packages, starting at $7.01 each, in 10,000-unit quantities.

Source: Microchip Technology

Power Monitoring IC for High-Accuracy Power Measurement

Microchip Technology recently expanded its power-monitoring IC portfolio with the addition of the MCP39F511. The highly integrated and accurate single-phase power-monitoring IC is designed for the real-time measurement of AC power. It combines the most popular power calculations with unique advanced features, making it well suited for use in high-performance commercial and industrial products (e.g., lighting systems, smart plugs, power meters, and AC/DC power supplies).

Source: Microchip Technology

Source: Microchip Technology

To address industry requirements for better accuracy across current loads, additional power calculations, and event monitoring of various power conditions, the MCP39F511 power-monitoring IC provides all of the popular standard power calculations combined with advanced features. The import and export of active energy accumulation, four-quadrant reactive energy accumulation, zero-crossing detection and dedicated PWM output have now been integrated on-chip, along with the ability to measure active, reactive and apparent power, RMS current and RMS voltage, line frequency, and power factor.

Allowing for more accurate power measurements, which is critical to higher-performance designs, this new device is capable of just 0.1 % error across a wide 4000:1 dynamic range. Additionally, its 512 bytes of EEPROM allow operating-condition storage. The MCP39F511 also includes two 24-bit delta-sigma ADCs with 94.5 dB of SINAD performance, a 16-bit calculation engine, and a flexible two-wire interface. A low-drift voltage reference, in addition to an internal oscillator, is integrated to reduce implementation costs. This unique combination of features and performance allows designers to add highly accurate power-monitoring functions to their end applications with minimal firmware development, speeding development time.

The MCP39F511 is supported by Microchip’s MCP39F511 Power Monitor Demonstration Board (ADM00667), which costs $150. The MCP39F511 is available now for sampling and volume production, in a 28-lead, 5 × 5 mm QFN package. It costs $1.82 each in 5,000-unit quantities.

Source: Microcchip Technology

Registration Opens for 19th Annual Worldwide MASTERs Conference

Microchip Technology Inc., a leading provider of microcontroller, mixed-signal, analog and Flash-IP solutions, today announced that registration is open for its 19th annual Worldwide MASTERs Conference at the JW Marriott Desert Ridge Resort in Phoenix, AZ.  The Main Conference takes place from August 19 to 22, 2015. The Pre-Conference is held on August 17-18, 2015.Microchip video MASTERS

The MASTERs Conference provides design engineers with an annual forum for sharing and exchanging technical information about Microchip’s 8-, 16-, and 32-bit PIC microcontrollers, high-performance analog and interface solutions, dsPIC digital signal controllers, wireless and mTouch sensing solutions, memory products, and MPLAB development systems—including the industry’s only singular IDE to support an entire 8-, 16-, and 32-bit microcontroller portfolio.

There is a broad range of class offerings for 2015, to meet the growing needs of software and hardware design engineers and engineering managers, with more than 100 classes being offered—39 of which are new this year.  In addition to lecture-based classes, there are 47 hands-on workshops that enable attendees to learn more about specific applications by using development tools and writing code in the classrooms.  Classes are available for engineers with advanced experience or little knowledge in the concepts and basics of the technology being discussed.

Based on its overwhelming success at previous MASTERs, Microchip is again offering a two-day Pre-Conference for those who wish to attend as many classes as possible during the week. These classes are also designed for beginner through advanced attendees. For example, “Introduction to Embedded Programming Using C” is a two-day, 16-hour, step-by-step crash course in C, with practical hands-on exercises.

MASTERs classes cover a wide range of electronic-engineering topics, including connectivity sessions on Ethernet, TCP/IP, USB, CAN and wireless (e.g., Bluetooth and Wi-Fi), graphics and capacitive-touch interface development, intelligent power supplies, firmware development, motor control, selecting op amps for sensor applications, DSP and using an RTOS.

Additional activities include networking sessions between third-party partners and attendees to discuss relevant design topics, meeting with third-party development tool experts and a simulated wafer fab plant tour.

Entry to the MASTERs Conference courses, a USB Flash Drive with all class materials, round-trip airport transportation, accommodations for three nights with meals, evening entertainment, and more are included in the Conference cost of $1,526, if you register by May 8, 2015 to receive the Early Bird Discount.

Source: Microchip Technology


CAN Flexible Data-Rate Transceiver Family

Microchip Technology recently launched the MCP2561/2FD family of CAN Flexible Data-Rate (FD) transceivers. As an interface between a CAN controller and the physical two-wire CAN bus, the transceivers work for both the CAN and CAN FD protocols. Thus, the family helps automotive and industrial manufacturers with current CAN communication needs and provides a path for newer CAN FD networks.Microchip MCP25612FD CAN FD transceivers

In-vehicle networking growth continues to be driven by the need for electronic monitoring and control. As application features in power train, body and convenience, diagnostics and safety increase, more Electronic Control Units (ECUs) are being added to existing CAN buses, causing automotive OEMs to become bandwidth limited. In addition, the end-of-line programming time for ECUs is on the rise due to more complex application programs and calibration, which raises production line costs. The emerging CAN FD bus protocol solves these issues by increasing the maximum data rate while expanding the data field from 8 data bytes up to 64 data bytes.

With their robustness and industry-leading features, including data rates of up to 8 Mbps, Microchip’s MCP2561/2FD transceivers enable customers to implement and realize the benefits of CAN FD. These new transceivers have one of the industry’s lowest standby current consumption (less than 5 µA typical), helping meet ECU low-power budget requirements. Additionally, these devices support operation in the –40°C to 150°C temperature range, enabling usage in harsh environments.

The new family of MCP2561/2FD CAN FD transceivers is available in eight-pin PDIP, SOIC and 3 × 3 mm DFN (leadless) packages, providing additional design flexibility for space-limited applications. The family also provides two options. The MCP2561FD comes in an 8-pin package and features a SPLIT pin. This SPLIT pin helps to stabilize the common mode in biased split-termination schemes. The MCP2562FD is available in an eight-pin package and features a Vio pin. This Vio pin can be tied to a secondary supply in order to internally level shift the digital I/Os for easy microcontroller interfacing. This is beneficial when a system is using a microcontroller at a VDD less than 5 V (e.g., 1.8 V or 3.3 V), and eliminates the need for an external level translator, decreasing system cost and complexity.

The MCP2561FD and MCP2562FD transceivers are both available now for sampling and volume production in 8-pin PDIP, SOIC and 3 × 3 mm DFN packages, starting at $0.69 each, in 5,000-unit quantities.

Source: Microchip Technology