MCU-Based Blood Pressure Monitoring Eval Kit

Renesas Electronics has announced an expansion of its healthcare solution lineup with the launch of a new blood pressure monitoring evaluation kit. The new blood pressure monitoring evaluation kit comprises hardware and software elements needed to jump start blood pressure measurement design. The kit includes a pressure sensor, arm cuff, pump, electronically controlled valve, LCD panel and a reference board. The reference board incorporates an RL78 MCU-based ASSP (application specific standard product) that includes analog functions required for blood pressure measurement. Reference software and graphical user interface (GUI) development tool are also part of the new evaluation kit. Using the new evaluation kit, system manufacturers can immediately begin their system evaluations and significantly reduce their development time.


The Internet of Things offers consumers connected tools with which to manage their personal healthcare more efficiently. For instance, blood pressure monitors are already popular personal medical devices and the market is expected to grow further as blood pressure monitoring functions are incorporated into wearable devices. The growth of this market offers new business opportunities, but can also be challenging, particularly for system manufacturers who are new to the connected healthcare device ecosystem and may not have the built-in application-specific expertise. Blood pressure measurement requires a specific expertise, including filtering functions for extracting the waveforms required for measurement, making it extremely time consuming to start studying this area from the very beginning.

Renesas has developed the new blood pressure monitoring evaluation kit to alleviate the development pain points, providing functions close to those used in actual blood pressure monitors thus accelerating blood pressure measurement system development.

Key features of the blood pressure monitoring evaluation kit:

The new blood pressure monitoring evaluation kit comprises hardware and software elements needed to jump start blood pressure measurement design, including:

  • A full range of hardware components, including a pressure sensor, arm cuff, pump, electronically controlled valve, LCD panel, and a reference board that incorporates the newly-developed RL78/H1D ASSP with the analog functions required for blood pressure measurement.
  • Reference software that provides the algorithms required for blood pressure measurement and that can be easily modified, as well as access to smartphone applications, and a graphical user interface (GUI) tool.
  • A Bluetooth Low Energy (BLE) module, which enables the measured data to be transmitted to a smartphone under the Continua standard blood pressure monitoring (BPM) profile is also provided in the new evaluation kit.

Development support with GUI tool, specialized for blood pressure measurement

  • The pressure sensor, pump, electronically controlled valve components, and pulse width modulation control can be set from the GUI tool. If the system structure is the same, the GUI tool can also be used for system evaluation of the actual application the system manufacturer is developing.
  • The IIR digital filter calculations required for extracting the pulse waveform from the cuff pressure output waveform during blood pressure measurement can also be simulated using the GUI tool. The digital filter constants calculated based on this simulation can be written from the GUI tool to the RL78/H1D firmware and verified in the actual application being developed. This significantly reduces the number of steps in the development process.

RL78/H1D ASSP with optimized analog functions for healthcare applications

  • The RL78/H1D is a new ASSP of the RL78 Family of MCU. The RL78/H1D, designed to control systems required for blood pressure measurement with a single chip. It incorporates rich analog functions including high-resolution delta sigma A/D converters, programmable gain instrumentation amplifiers, D/A converters, operational amplifiers, and other circuits required for blood pressure measurement, as well as timers for PWM (pulse-width modulation) control.
  • In addition to the delta sigma 24-bit A/D converters, the RL78/H1D also provides 10-bit sequential comparison A/D converters that operate asynchronously. This simplifies implementation of systems providing temperature measurement and battery voltage monitoring while measuring the blood pressure.
  • The Rich analog functions make the new ASSP ideal not only for blood pressure monitoring systems but also for a wide array healthcare application including biosensors.
  • Samples of the RL78/H1D ASSP are available now. Pricing varies depending on the memory capacity, package and number of pins. For example, the R5F11NMG 80-pin LQFP package type with 128 KB flash ROM capacity is priced at US$3.50. The R5F11NMG includes an LCD controller for arm- and wrist-type blood pressure monitors, and a 4mm x 4 mm miniature ball grid array (BGA) package for use in wearable devices.

Renesas plans to expand its range of solutions for the healthcare field and will continue to contribute to the realization of a safe and secure smart society, including the development of smart connected devices for the industrial and healthcare industries.

 

The new blood pressure monitoring evaluation kit is scheduled to be available for order from May 10 priced at $600 per unit.

Renesas Electronics | www.renesas.com

1 W DC-DC Converters Medical Approved

MINMAX Technology has announced the MINMAX MAU01M / MSCU01M series, a new range of high performance 1 W medical safety approved DC-DC converters with encapsulated SIP-7 & SMD packages. They are specifically designed for medical applications. The series includes  models available for input voltages of 4.5 VDC to 5.5 VDC, 10.8 VDC to 13.2 VDC, and 21.6 to 26.4 VDC. The I/O isolation is specified for 4,000 VAC with reinforced insulation and ated for a 300 Vrms working voltage.

40e5a6c0900620d4a836fb17d0ef3ecbFurther features include short circuit protection, a low leakage current of 2 μA max. and operating ambient temperating range of -40°C to 95°C. This is achieved without de-rating and with a high efficiency of up to 84%. The MAU01M / MSCU01M series conforms to the 4th edition medical EMC standard. It meets 2xMOPP (Means of Patient Protection) per 3rd edition of IEC/EN 60601-1 & ANSI/AAMI ES60601-1. The MAU01M / MSCU01M series offer an economical solution for demanding medical instrument applications that require a certified supplementary and reinforced insulation system to comply with latest medical safety approvals under the 2x MOPP requirements.

MINMAX Technology | www.minmaxpower.com

December Circuit Cellar: A Sneak Preview

The December issue of Circuit Cellar magazine is coming soon. Want a sneak peak? We’ve got a great selection of excellent embedded electronics articles for you.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 Here’s a sneak preview of December Circuit Cellar:

MICROCONTROLLERS IN MOTION

Special Feature: Electronics for Wearable Devices
Circuit Cellar Chief Editor Jeff Child examines how today’s microcontrollers, sensors and power electronics enable today’s wearable products.

329 Cover Screen CapSimulating a Hammond Tonewheel Organ
(Part 2)

Brian Millier continues this two-part series about simulating the Hammond tonewheel organ using a microcontrollers and DACs. This time he examines a Leslie speaker emulation.

Money Sorting Machines (Part 1)
In this new article series, Jeff Bachiochi looks the science, mechanics and electronics that are key to sorting everything from coins to paper money. This month he discusses a project that uses microcontroller technology to sort coins.

Designing a Home Cleaning Robot (Part 1)
This four-part article series about building a home cleaning robot starts with Nishant Mittal discussing his motivations behind to his design concept, some market analysis and the materials needed.

SPECIAL SECTION: GRAPHICS AND VISION

Designing High Performance GUI
It’s critical to understand the types of performance problems a typical end-user might encounter and the performance metrics relevant to user interface (UI) design. Phil Brumby of Mentor’s Embedded Systems Division examines these and other important UI design challenges.

Building a Robotic Candy Sorter
Learn how a pair of Cornell graduates designed and constructed a robotic candy sort. It includes a three degree of freedom robot arm and a vision system using a Microchip PIC32 and Raspberry Pi module.

Raster Laser Projector Uses FPGA
Two Cornell graduates describe a raster laser projector they designed that’s able to project images in 320 x 240 in monochrome red. The laser’s brightness and mirrors positions are controlled by an FPGA and analog circuitry.

ELECTRICITY UNDER CONTROL

Technology Spotlight: Power-over-Ethernet Solutions
Power-over-Ethernet (PoE) enables the delivery of electric power alongside data on twisted pair Ethernet cabling. Chief Editor Jeff Child explores the latest chips, modules and other gear for building PoE systems.

Component Overstress
When an electronic component starts to work improperly, Two likely culprits are electrical overstress (EOS) and electrostatic discharge (ESD). In his article, George Novacek breaks down the important differences between the two and how to avoid their effects.

AND MORE FROM OUR EXPERT COLUMNISTS:

Writing the Proposal
In this conclusion to his “Building an Embedded Systems Consulting Company” article series, Bob Japenga takes a detailed look at how to craft a Statement of Work (SOW) that will lead to success and provide clarity for all stakeholders.

Information Theory in a Nutshell
Claude Shannon is credited as one of the pioneers of computer science thanks to his work on Information Theory, informing how data flows in electronic systems. In this article, Robert Lacoste provides a useful exploration of Information Theory in an easily digestible way.

2.5 A Step-Down Regulator Keeps EMC/EMI Emissions Low

Analog Devices, which recently acquired Linear Technology, has announced the LTM8065, a µModule (power module) step-down regulator with up to 40 V input voltage (42 V abs max), which can safely operate from unregulated or fluctuating 12 V to 36 V input supplies in noisy environments such as industrial robotics, test and measurement, medical, factory automation and avionics systems. The Silent Switcher architecture minimizes EMC/EMI emissions enabling the LTM8065 to pass CISPR 22 class B for use in noise-sensitive signal processing applications, including imaging and RF systems. The LTM8065’s small 6.25 mm x 6.25 mm x 2.32 mm BGA package includes a switching regulator controller, power switches, inductor and other supporting components. With only two 0805 sized capacitors and two 0603 sized resistors, the LTM8065’s solution occupies approximately 100mm², about half the size of equivalent power level module solutions.

LTM8065The LTM8065 can deliver 2.5 A of continuous (3.5 A peak) output current to a 5 V load from a 12 V input at up to 85°C ambient without a heat sink or airflow. The output voltage is adjustable with one resistor from 0.97 V to 18 V. This wide output voltage range provides versatility, using one product to generate common system bus voltage of 3.3 V, 5 V, 12 V and 15 V. The switching frequency is adjustable by an external single resistor or can be synchronized to an external clock from 200 kHz to 3 MHz. It enables customer operation of the device in or out of the specific frequency. The LTM8065 has four modes: Burst Mode® operation, pulse-skipping mode, pulse-skip mode with spread spectrum modulation and external synchronization mode. The quiescent current at burst mode is 8 µA, making it ideal for battery operating systems.

The LTM8065 operating temperature range is –40°C to 125°C. 1,000-piece pricing starts at $7.75 each.

Analog Devices – Linear Technology | www.linear.com

New Reflective Optical Sensor for Industrial and Medical Applications

TT Electronics recently introduced the Photologic V OPB9000, which is a reflective CMOS logic output sensor with programmable sensitivity, output polarity, and drain select. It provides dependable edge and presence detection of reflective media under a wide range of ambient light conditions. The OPB9000 is well suitable for a variety of applications, including industrial printing, dispensing, manufacturing automation, security devices, and portable medical equipment.TT Electronics TT058

The OPB9000’s features, benefits, and specs:

  • Programmable sensitivity, output polarity, and drain select
  • 25+ kilolux ambient light immunity along with a wide operating temperature range
  • The self-calibration feature avoids the need for constant recalibration as the LED ages, saving valuable time and effort.
  • Temperature compensation and automatic gain control features
  • 6-µs response time ensures high-speed detection for time-critical applications.
  • Fully integrated analog front end and digital interface
  • Combines an infrared emitter and integrated logic sensor in a 4.0 mm × 2.2 mm × 1.5 mm surface-mount package

Source: TT Electronics