A Timely Look at RFID Technology

Most of us have had that annoying experience of setting off an alarm as we leave a store because one item in our bags has a still-active radio-frequency identification (RFID) tag. So it’s back to the cashier for some deactivation (or to security for some questioning).

Retailers love RFID, for obvious reasons. So do other industries and governments dealing with limiting building access; tracking goods, livestock and people; collecting highway tolls and public transit fares; checking passports; finding airport baggage; managing hospital drug inventory… The list goes on and on.

RFIDRFID is a big business, and it is anticipated to grow despite concerns about privacy issues. Market researcher IDTechEx recently estimated that the RFID market—including tags, readers, and software and services for RFID labels, fobs, cards, and other form factors—will hit $9.2 billion in 2014 and increase to $30.24 billion in 2024.

So it’s good timing for columnist Jeff Bachiochi’s series about passive RFID tagging. Part 1 appears in Circuit Cellar’s May issue and focuses on read-only tags and transponder circuitry. It also hints at Bachiochi’s unfolding RFID project.

Other May issue highlights include DIY project articles describing an MCU-based trapdoor lift system, a customizable approach to an ASCII interface for sending commands to a sensor tool and receiving data, and a solar-powered home automation controller that enables household-device management and cloud connectivity to log temperature, energy use, and other data.

In addition, our columnists explore low-power wireless data receivers, testing and analyzing old and new batteries in a personal collection, and designing data centers to participate in smart-grid power management.

If you are a female engineer in search of some inspiration, read our interview with embedded systems expert Elecia White. Also, find out why new technology means a bright future for LEDs in emissive microdisplays.

MCU-Based Experimental Glider with GPS Receiver

When Jens Altenburg found a design for a compass-controlled glider in a 1930s paperback, he was inspired to make his own self-controlled model aircraft (see Photo 1)

Photo 1: This is the cover of an old paperback with the description of the compass-controlled glider. The model aircraft had a so-called “canard” configuration―a very modern design concept. Some highly sophisticated fighter planes are based on the same principle. (Photo used with permission of Ravensburger.)

Photo 1: This is the cover of an old paperback with the description of the compass-controlled glider. The model aircraft had a so-called “canard” configuration―a very modern design concept. Some highly sophisticated fighter planes are based on the same principle. (Photo used with permission of Ravensburger.)

His excellent article about his high-altitude, low-cost (HALO) experimental glider appears in Circuit Cellar’s April issue. The MCU-based glider includes a micro-GPs receiver and sensors and can climb to a preprogrammed altitude and find its way back home to a given coordinate.

Altenburg, a professor at the University of Applied Sciences Bingen in Germany, added more than a few twists to the 80-year-old plan. An essential design tool was the Reflex-XTR flight simulation software he used to trim his 3-D glider plan and conduct simulated flights.

Jens also researched other early autopilots, including the one used by the Fiesler Fi 103R German V-1 flying bomb. Known as buzz bombs during World War II, these rough predecessors of the cruise missile were launched against London after D-Day. Fortunately, they were vulnerable to anti-aircraft fire, but their autopilots were nonetheless mechanical engineering masterpieces (see Figure 1)

“Equipped with a compass, a single-axis gyro, and a barometric pressure sensor, the Fiesler Fi 103R German V-1 flying bomb flew without additional control,” Altenburg says. “The compass monitored the flying direction in general, the barometer controlled the altitude, and the gyro responded to short-duration disturbances (e.g., wind gusts).”

Figure 1: These are the main components of the Fieseler Fi 103R German V-1 flying bomb. The flight controller was designed as a mechanical computer with a magnetic compass and barometric pressure sensor for input. Short-time disturbances were damped with the main gyro (gimbal mounted) and two auxiliary gyros (fixed in one axis). The “mechanical” computer was pneumatically powered. The propeller log on top of the bomb measured the distance to the target.

Figure 1: These are the main components of the Fieseler Fi 103R German V-1 flying bomb. The flight controller was designed as a mechanical computer with a magnetic compass and barometric pressure sensor for input. Short-time disturbances were damped with the main gyro (gimbal mounted) and two auxiliary gyros (fixed in one axis). The “mechanical” computer was pneumatically powered. The propeller log on top of the bomb measured the distance to the target.

Altenburg adapted some of the V-1’s ideas into the flight control system for his 21st century autopilot glider. “All the Fi 103R board system’s electromechanical components received an electronic counterpart,” he says. “I replaced the mechanical gyros, the barometer, and the magnetic compass with MEMS. But it’s 2014, so I extended the electronics with a telemetry system and a GPS sensor.” (See Figure 2)

Figure 2: This is the flight controller’s block structure. The main function blocks are GPS, CPU, and power. GPS data is processed as a control signal for the servomotor.

Figure 2: This is the flight controller’s block structure. The main function blocks are GPS, CPU, and power. GPS data is processed as a control signal for the servomotor.

His article includes a detailed description of his glider’s flight-controller hardware, including the following:

Highly sophisticated electronics are always more sensitive to noise, power loss, and so forth. As discussed in the first sections of this article, a glider can be controlled by only a magnetic compass, some coils, and a battery. What else had to be done?

I divided the electronic system into different boards. The main board contains only the CPU and the GPS sensor. I thought that would be sufficient for basic functions. The magnetic and pressure sensor can be connected in case of extra missions. The telemetry unit is also a separate PCB.

Figure 3 shows the main board. Power is provided by a CR2032 lithium coin-cell battery. Two low-dropout linear regulators support the hardware with 1.8 and 2.7 V. The 1.8-V line is only for the GPS sensor. The second power supply provides the CPU with a stable voltage. The 2.7 V is the lowest voltage for the CPU’s internal ADC.

It is extremely important for the entire system to save power. Consequently, the servomotor has a separate power switch (Q1). As long as rudder movement isn’t necessary, the servomotor is powered off. The servomotor’s gear has enough drag to hold the rudder position without electrical power. The servomotor’s control signal is exactly the same as usually needed. It has a 1.1-to-2.1-ms pulse time range with about a 20-ms period. Two connectors (JP9 and JP10) are available for the extension boards (compass and telemetry)..

I used an STMicroelectronics LSM303DLM, which is a sensor module with a three-axis magnetometer and three-axis accelerometer. The sensor is connected by an I2C bus. The Bosch Sensortec BMP085 pressure sensor uses the same bus.

For telemetry, I applied an AXSEM AX5043 IC, which is a complete, narrow-band transceiver for multiple standards. The IC has an excellent link budget, which is the difference between output power in Transmit mode and input sensitivity in Receive mode. The higher the budget, the longer the transmission distance.

The AX5043 is also optimized for battery-powered applications. For modest demands, a standard crystal (X1, 16-MHz) is used for clock generation. In case of higher requirements, a temperature-compensated crystal oscillator (TCXO) is recommended.

The main board’s hardware with a CPU and a GPS sensor is shown. A CR2032 lithium coin-cell battery supplies the power. Two regulators provide 1.8  and 2.7 V for the GPS and the CPU. The main outputs are the servomotor’s signal and power switch.

Figure 3: The main board’s hardware with a CPU and a GPS sensor is shown. A CR2032 lithium coin-cell battery supplies the power. Two regulators provide 1.8 and 2.7 V for the GPS and the CPU. The main outputs are the servomotor’s signal and power switch.

Altenburg’s article also walks readers through the mathematical calculations needed to provide longitude, latitude, and course data to support navigation and the CPU’s most important sensor— the u-blox Fastrax UC430 GPS. He also discusses his experience using the Renesas Electronics R5F100AA microcontroller to equip the prototype board. (Altenburg’s glider won honorable mention in the 2012 Renesas RL78 Green Energy Challenge, see Photos 2 and 3).

The full article is in the April issue, now available for download by members or single-issue purchase.

One of the final steps is mounting the servomotor for rudder control. Thin cords connect the servomotor horn and the rudder. Two metal springs balance mechanical tolerances.

Photo 2: One of the final steps is mounting the servomotor for rudder control. Thin cords connect the servomotor horn and the rudder. Two metal springs balance mechanical tolerances.

Photo 2: This is the well-equipped high-altitude low-cost (HALO) experimental glider.

Photo 3: This is the well-equipped high-altitude low-cost (HALO) experimental glider.

Member Profile: Scott Weber

Scott Weber

Scott Weber

LOCATION:
Arlington, Texas, USA

MEMBER STATUS:
Scott said he started his Circuit Cellar subscription late in the last century. He chose the magazine because it had the right mix of MCU programming and electronics.

TECH INTERESTS:
He has always enjoyed mixing discrete electronic projects with MCUs. In the early 1980s, he built a MCU board based on an RCA CDP1802 with wirewrap and programmed it with eight switches and a load button.

Back in the 1990s, Scott purchased a Microchip Technology PICStart Plus. “I was thrilled at how powerful and comprehensive the chip and tools were compared to the i8085 and CDP1802 devices I tinkered with years before,” he said.

RECENT EMBEDDED TECH ACQUISITION:
Scott said he recently treated himself to a brand-new Fluke 77-IV multimeter.

CURRENT PROJECTS:
Scott is building devices that can communicate through USB to MS Windows programs. “I don’t have in mind any specific system to control, it is something to learn and have fun with,” he said. “This means learning not only an embedded USB software framework, but also Microsoft Windows device drivers.”

THOUGHTS ON THE FUTURE OF EMBEDDED TECH:
“Embedded devices are popping up everywhere—in places most people don’t even realize they are being used. It’s fun discovering where they are being applied. It is so much easier to change the microcode of an MCU or FPGA as the unit is coming off the assembly line than it is to rewire a complex circuit design,” Scott said.

“I also like Member Profile Joe Pfeiffer’s final comment in Circuit Cellar 276: Surface-mount and ASIC devices are making a ‘barrier to entry’ for the hobbyist. You can’t breadboard those things! I gotta learn a good way to make my own PCBs!”

Microcontroller-Based Heating System Monitor

Checking a heating system’s consumption is simple enough.

Heating system monitor

Determining a heating system’s output can be much more difficult, unless you have this nifty design. This Atmel ATmega microcontroller-based project enables you to measure heat output as well as control a circulation pump.

Heating bills often present unpleasant surprises. Despite your best efforts to economise on heating, they list tidy sums for electricity or gas consumption. In this article we describe a relatively easy way to check these values and monitor your consumption almost continuously. All you need in order to determine how much heat your system delivers is four temperature sensors, a bit of wiring, and a microcontroller. There’s no need to delve into the electrical or hydraulic components of your system or modify any of them.

A bit of theory
As many readers probably remember from their physics lessons, it’s easy to calculate the amount of heat transferred to a medium such as water. It is given by the product of the temperature change ΔT, the volume V of the medium, and the specific heat capacity CV of the medium. The power P, which is amount of energy transferred per unit time, is:

P= ΔT × CV × V // Δt

With a fluid medium, the term V // Δt can be interpreted as a volumetric flow Vt. This value can be calculated directly from the flow velocity v of the medium and the inner diameter r of the pipe. In a central heating system, the temperature difference ΔT is simply the difference between the supply (S) and return (R) temperatures. This yields the formula:

P = (TS – TR) × CV × v × pr2

The temperatures can easily be measured with suitable sensors. Flow transducers are available for measuring the flow velocity, but installing a flow transducer always requires drilling a hole in a pipe or opening up the piping to insert a fitting.

Measuring principle
Here we used a different method to determine the flow velocity. We make use of the fact that the supply and return temperatures always vary by at least one to two degrees due to the operation of the control system. If pairs of temperature sensors separated by a few metres are mounted on the supply and return lines, the flow velocity can be determined from the time offset of the variations measured by the two sensors…

As the water flows through the pipe with a speed of only a few metres per second, the temperature at sensor position S2 rises somewhat later than the temperature at sensor position S, which is closer to the boiler.

An ATmega microcontroller constantly acquires temperature data from the two sensors. The time delay between the signals from a pair of sensors is determined by a correlation algorithm in the signal processing software, which shifts the signal waveforms from the two supply line sensors relative to each other until they virtually overlap.The temperature signals from the sensors on the return line are correlated in the same manner, and ideally the time offsets obtained for the supply and return lines should be the same.

To increase the sensitivity of the system, the return line sensor signals are applied to the inputs of a differential amplifier, and the resulting difference signal is amplified. This difference signal is also logged as a function of time. The area under the curve of the difference signal is a measure of the time offset of the temperature variations…

Hot water please
If the heating system is also used to supply hot water for domestic use, additional pipes are used for this purpose. For this reason, the PCB designed by the author includes inputs for additional temperature sensors. It also has a switched output for driving a relay that can control a circulation pump.

Under certain conditions, controlling the circulation pump can save you a lot of money and significantly reduce CO2 emissions. This is because some systems have constant hot water circulation so users can draw hot water from the tap immediately. This costs electricity to power the pump, and energy is also lost through the pipe walls. This can be remedied by the author’s circuit, which switches on the circulation pump for only a short time after the hot water tap is opened. This is detected by the temperature difference between the hot water and cold water supply lines…

Circuit description
The easiest way to understand the schematic diagram is to follow the signal path. It starts at the temperature sensors connected to the circuit board, which are NTC silicon devices.

Heating system monitor schematic

Their resistance varies by around 0.7–0.8% per degree K change in temperature. For example, the resistance of a KT110 sensor is approximately 1.7 kΩ at 5 °C and approximately 2.8 kΩ at 70 °C.

The sensor for supply temperature S forms a voltage divider with resistor R37. This is followed by a simple low-pass filter formed by R36 and C20, which filters out induced AC hum. U4a amplifies the sensor signal by a factor of approximately 8. The TL2264 used here is a rail-to-rail opamp, so the output voltage can assume almost any value within the supply voltage range. This increases the absolute measurement accuracy, since the full output signal amplitude is used. U4a naturally needs a reference voltage on its inverting input. This is provided by the combination of R20, R26 and R27. U5b acts as an impedance converter to minimise the load on the voltage divider…

Thermal power

PC connection
The circuit does not have its own display unit, but instead delivers its readings to a PC via an RS485 bus. Its functions can also be controlled from the PC. IC U8 looks after signal level conversion between the TTL transmit and receive lines of the ATmega microcontroller’s integrated UART and the differential RS485 bus. As the bus protocol allows several connected (peer) devices to transmit data on the bus, transmit mode must be selected actively via pin 3. Jumper JP3 must be fitted if the circuit is connected to the end of the RS485 bus. This causes the bus to be terminated in 120 Ω, which matches the characteristic impedance of a twisted-pair line…

[Via Elektor-Projects.com]

CC25 Is Now Available

Ready to take a look at the past, present, and future of embedded technology, microcomputer programming, and electrical engineering? CC25 is now available.

Check out the issue preview.

We achieved three main goals by putting together this issue. One, we properly documented the history of Circuit Cellar from its launch in 1988 as a bi-monthly magazine
about microcomputer applications to the present day. Two, we gathered immediately applicable tips and tricks from professional engineers about designing, programming, and completing electronics projects. Three, we recorded the thoughts of innovative engineers, academics, and industry leaders on the future of embedded technologies ranging from
rapid prototyping platforms to 8-bit chips to FPGAs.

The issue’s content is gathered in three main sections. Each section comprises essays, project information, and interviews. In the Past section, we feature essays on the early days of Circuit Cellar, the thoughts of long-time readers about their first MCU-based projects, and more. For instance, Circuit Cellar‘s founder Steve Ciarcia writes about his early projects and the magazine’s launch in 1988. Long-time editor/contributor Dave Tweed documents some of his favorite projects from the past 25 years.

The Present section features advice from working hardware and software engineers. Examples include a review of embedded security risks and design tips for ensuring system reliability. We also include short interviews with professionals about their preferred microcontrollers, current projects, and engineering-related interests.

The Future section features essays by innovators such as Adafruit Industries founder Limor Fried, ARM engineer Simon Ford, and University of Utah professor John Regehr on topics such as the future of DIY engineering, rapid prototyping, and small-RAM devices. The section also features two different sets of interviews. In one, corporate leaders such as Microchip Technology CEO Steve Sanghi and IAR Systems CEO Stefan Skarin speculate on the future of embedded technology. In the other, engineers such as Stephen Edwards (Columbia University) offer their thoughts about the technologies that will shape our future.

As you read the issue, ask yourself the same questions we asked our contributors: What’s your take on the history of embedded technology? What can you design and program today? What do you think about the future of embedded technology? Let us know.

CC270: Forward Progress

As you might have noticed, parts of this issue look a bit different than the publication you’re used to reading. You can see a slightly updated layout, some different colors, and a few new sections. We’ve made these changes to reflect where we are today and where we’re taking this magazine in the months to come. It’s all about forward progress. Here are the broad strokes:

FRESHENED UP LAYOUT

We’re planning an exciting layout redesign for 2013. The layout will be modern, clean, and engaging, but its fonts and colors won’t distract you from what you’re reading—professional engineering content. Since the new layout is still an issue or two away, we’re presenting you with this freshened up issue to mark the transition to 2013. We hope you like the changes.

CLIENT PROFILES

On page 20 you’ll find a new section that will appear frequently in the coming months. The purpose of our client profiles is to shine a light on one company per month and bring you an exclusive offer for useful products or services.

TECH THE FUTURE

Last month we ran Steve Ciarcia’s final “Priority Interrupt” editorial. This month we’re introducing a new section, “Tech the Future.” The EE/ECE community is on the verge of major breakthroughs in the fields of microcomputing, wireless communication, robotics, and programming. Each month, we’ll use page 80 to present some of the fresh ideas, thought-provoking research projects, and new embedded design-related endeavors from innovators who are working on the groundbreaking technologies of tomorrow.

CC25

You’ll soon have Circuit Cellar’s 25th (“CC25”) anniversary issue in your hands or on your PCs or mobile devices. Here are just a few of the exciting topics in the issue: Circuit Cellar in 1988, design/programming tips, engineers’ thoughts on the future of embedded tech, and much more. It’s going to be a classic.

Well, there’s certainly a lot of publishing-related innovation going on at our headquarters. And I know you’re equally busy at your workbenches. Just be sure to schedule some quiet time this month to read the articles in this issue. Perhaps one of our authors will inspire you to take on your first project of the new year. We feature articles on topics ranging from an MCU-based  helicopter controller to open-source hardware to embedded authentication to ’Net-based tools for energy efficiency. Enjoy!

Do Small-RAM Devices Have a Future? (CC 25th Anniversary Preview)

What does the future hold for small-RAM microcontrollers? Will there be any reason to put up with the constraints of parts that have little RAM, no floating point, and 8-bit registers? The answer matters to engineers who have spent years programming small-RAM MCUs. It also matters to designers who are hoping to keep their skills relevant as their careers progress in the 21st century.

In the upcoming Circuit Cellar 25th Anniversary Issue—which is slated for publication in early 2013—University of Utah professor John Regehr shares his thoughts on the future of small-RAM devices. He writes:

For the last several decades, the role of small-RAM microcontrollers has been clear: they are used to perform fixed (though sometimes very sophisticated) functionality in environments where cost, power consumption, and size need to be minimized. They exploit the low marginal cost of additional transistors to integrate volatile RAM, nonvolatile RAM, and numerous peripherals into the same package as the processor core, providing a huge amount of functionality in a small, cheap package. Something that is less clear is the future of small-RAM microcontrollers. The same fabrication economics that make it possible to put numerous peripherals on a single die also permit RAM to be added at little cost. This was brought home to me recently when I started using Raspberry Pi boards in my embedded software class at the University of Utah. These cost $25 to $35 and run a full-sized Linux distribution including GCC, X Windows, Python, and everything else—all on a system-on-chip with 256 MB of RAM that probably costs a few dollars in quantity.

We might ask: Given that it is already the case that a Raspberry Pi costs about the same as an Arduino board, in the future will there be any reason to put up with the constraints of an architecture like Atmel’s AVR, where we have little RAM, no floating point, and 8-bit registers? The answer matters to those of us who enjoy programming small-RAM MCUs and who have spent years fine-tuning our skills to do so. It also matters to those of us who hope to keep our skills relevant through the middle of the 21st century. Can we keep writing C code, or do we need to start learning Java, Python, and Haskell? Can we keep writing stand-alone “while (true)” loops, or will every little MCU support a pile of virtual machines, each with its own OS?

Long & Short Term

In the short term, it is clear that inertia will keep the small-RAM parts around, though increasingly they will be of the more compiler-friendly varieties, such as AVR and MSP430, as opposed to earlier instruction sets like Z80, HC11, and their descendants. But will small-RAM microcontrollers exist in the longer term (e.g., 25 or 50 years)? I’ll attempt to tackle this question by separately discussing the two things that make small-RAM parts attractive today: their low cost and their simplicity.

If we assume a cost model where packaging and soldering costs are fixed but the marginal cost of a transistor (not only in terms of fabrication, but also in terms of power consumption) continues to drop, then small-RAM parts will eventually disappear. In this case, several decades from now even the lowliest eight-pin package, costing a few pennies, will contain a massive amount of RAM and will be capable of running a code base containing billions of lines…

Circuit Cellar’s Circuit Cellar 25th Anniversary Issue will be available in early 2013. Stay tuned for more updates on the issue’s content.

DIY Green Energy Design Projects

Ready to start a low-power or energy-monitoring microcontroller-based design project? You’re in luck. We’re featuring eight award-winning, green energy-related designs that will help get your creative juices flowing.

The projects listed below placed at the top of Renesas’s RL78 Green Energy Challenge.

Electrostatic Cleaning Robot: Solar tracking mirrors, called heliostats, are an integral part of Concentrating Solar Power (CSP) plants. They must be kept clean to help maximize the production of steam, which generates power. Using an RL78, the innovative Electrostatic Cleaning Robot provides a reliable cleaning solution that’s powered entirely by photovoltaic cells. The robot traverses the surface of the mirror and uses a high voltage AC electric field to sweep away dust and debris.

Parts and circuitry inside the robot cleaner

Cloud Electrofusion Machine: Using approximately 400 times less energy than commercial electrofusion machines, the Cloud Electrofusion Machine is designed for welding 0.5″ to 2″ polyethylene fittings. The RL78-controlled machine is designed to read a barcode on the fitting which determines fusion parameters and traceability. Along with the barcode data, the system logs GPS location to an SD card, if present, and transmits the data for each fusion to a cloud database for tracking purposes and quality control.

Inside the electrofusion machine (Source: M. Hamilton)

The Sun Chaser: A GPS Reference Station: The Sun Chaser is a well-designed, solar-based energy harvesting system that automatically recalculates the direction of a solar panel to ensure it is always facing the sun. Mounted on a rotating disc, the solar panel’s orientation is calculated using the registered GPS position. With an external compass, the internal accelerometer, a DC motor and stepper motor, you can determine the solar panel’s exact position. The system uses the Renesas RDKRL78G13 evaluation board running the Micrium µC/OS-III real-time kernel.

[Video: ]

Water Heater by Solar Concentration: This solar water heater is powered by the RL78 evaluation board and designed to deflect concentrated amounts of sunlight onto a water pipe for continual heating. The deflector, armed with a counterweight for easy tilting, automatically adjusts the angle of reflection for maximum solar energy using the lowest power consumption possible.

RL78-based solar water heater (Source: P. Berquin)

Air Quality Mapper: Want to make sure the air along your daily walking path is clean? The Air Quality Mapper is a portable device designed to track levels of CO2 and CO gasses for constructing “Smog Maps” to determine the healthiest routes. Constructed with an RDKRL78G13, the Mapper receives location data from its GPS module, takes readings of the CO2 and CO concentrations along a specific route and stores the data in an SD card. Using a PC, you can parse the SD card data, plot it, and upload it automatically to an online MySQL database that presents the data in a Google map.

Air quality mapper design (Source: R. Alvarez Torrico)

Wireless Remote Solar-Powered “Meteo Sensor”: You can easily measure meteorological parameters with the “Meteo Sensor.” The RL78 MCU-based design takes cyclical measurements of temperature, humidity, atmospheric pressure, and supply voltage, and shares them using digital radio transceivers. Receivers are configured for listening of incoming data on the same radio channel. It simplifies the way weather data is gathered and eases construction of local measurement networks while being optimized for low energy usage and long battery life.

The design takes cyclical measurements of temperature, humidity, atmospheric pressure, and supply voltage, and shares them using digital radio transceivers. (Source: G. Kaczmarek)

Portable Power Quality Meter: Monitoring electrical usage is becoming increasingly popular in modern homes. The Portable Power Quality Meter uses an RL78 MCU to read power factor, total harmonic distortion, line frequency, voltage, and electrical consumption information and stores the data for analysis.

The portable power quality meter uses an RL78 MCU to read power factor, total harmonic distortion, line frequency, voltage, and electrical consumption information and stores the data for analysis. (Source: A. Barbosa)

High-Altitude Low-Cost Experimental Glider (HALO): The “HALO” experimental glider project consists of three main parts. A weather balloon is the carrier section. A glider (the payload of the balloon) is the return section. A ground base section is used for communication and display telemetry data (not part of the contest project). Using the REFLEX flight simulator for testing, the glider has its own micro-GPS receiver, sensors and low-power MCU unit. It can take off, climb to pre-programmed altitude and return to a given coordinate.

High-altitude low-cost experimental glider (Source: J. Altenburg)

Q&A: Miguel Sanchez (Professor, Designer)

Miguel Sánchez (PhD, Computer Science) is Valencia, Spain-based computer scientist, embedded tech enthusiast, and professor who regularly challenges himself to design innovative microcontroller-based systems. Since 2005, Circuit Cellar has published six of his articles about projects such as a digital video recorder (Circuit Cellar 174) and a creative DIY image-processing system (Circuit Cellar 263).

This is a sample depth image projected in a 3-D space. It appeared in Sanchez’s article, “Image Processing System Development.” (Source: M. Sanchez, Circuit Cellar 263)

In the September issue of Circuit Cellar, Sánchez tells us about his background, his work at the Universitat Politècnica de València, his current interests, and his innovative designs. An abridged version of the interview follows.

NAN PRICE: How long have you been designing microcontroller-based systems?

MIGUEL SANCHEZ: I started using computers in 1978. I built my first microcontroller project in 1984 during my first year at Universitat Politècnica de València. I haven’t stopped designing embedded systems since then.

NAN: Tell us about the first microcontroller you worked with. Where were you at the time?

MIGUEL: Our university’s lab had Intel SDK-85 boards you could program in Hex using the built-in keyboard. I guess it wasn’t built well. You sometimes lost all your work while typing your code. I learned that schematics were available and a terminal monitor was built in too. So, I built my first microcontroller-based board around an Intel 8085 using the same software that was on the original ROM. But, I changed the serial port delay value so I could use 9,600 bps instead of the original 110 bps on the terminal port. This way, I could do the same labs as my mates, but I could do my work in 8080 Assembler, which was available in Control Program/Monitor (CP/M) computers. At the time, I had an Atari 1040 ST that could run CP/M on top of a Z-80 emulator. Assembly code could be uploaded to my board’s RAM memory and later executed using SDK-85 serial monitor code.

I used the 8085’s Wait signal to build an additional EEPROM socket in this same board that, with the aid of a 555 timer, was my first EEPROM programmer. I used the Wait signal to delay write operations. In fact, I used this programmer to change the original baud rate to the new one, as I originally did not know that was something I’d want to change later.

My teacher, who is now one of my colleagues, was quite amused with my development and he gave me an A+. I learned a lot about microcontrollers, serial communications, Assembly language, monitor programs, and EEPROM programming algorithms. And, I learned it was not fun to design PCBs with system buses on only one copper layer. …

NAN: You designed a system to simulate strokes on a keypad to trigger modes on an alarm system (“Reverse-Engineered ECP Bus,” Circuit Cellar 201, 2007). Why did you design it and how have you used it?

MIGUEL: A local company wanted to give new life to old Ademco alarm units. These boards could only be programmed by a serial port socket once a certain service code was typed at the keyboard. I was asked whether an add-on board could be created to make these old boards Internet-enabled so they could be remotely managed and reconfigured over the ’Net.

The first thing I needed to do was to figure out how to simulate the required keystrokes. But I couldn’t find any information about the way that bus worked, so I figured that out myself. Later, I thought both the information itself and the way I figured it out might be useful to others, so I approached Circuit Cellar editors with a proposal to write an article.

That project ended up as a Rabbit-core powered board that connected the alarm board and the remote access to its serial port. Combined with a virtual serial port on the PC, it fooled the original management software into thinking the PC was directly connected to the alarm board, although it was all happening over the Internet. But the project never made it to the market for reasons unknown.

NAN: In “Three-Axis Stepper Controller” (Circuit Cellar 234, 2010), you describe how you built an Arduino-based, platform-independent driver board. Tell us about the design.

MIGUEL: When I discovered the Arduino platform, I was surprised by a few things. First, this development system was not designed by a chip vendor. Second, it was not intended for engineers but for artists! Third, I was shocked because it was multiplatform (which was possible because it was based on Java and GCC) and because none of the other development systems I was aware of were so easy to use. The price was low too, which was a plus for hobbyists and students.

The aim of that project was to show all that to the readers. The idea was also not only to show how to build a stepper controller and to explain the difference between the drive modes and the bipolar and unipolar designs, but to demonstrate how easy it was to work with Arduino.

In his 2010 article, “Three-Axis Stepper Controller,” Sanchez provided this controller circuit schematic to interface Arduino I/O headers with stepper motors. (Source: M. Sanchez, Circuit Cellar 234)

NAN: Your most recent Circuit Cellar article, “Image Processing System Development: Use an MCU to Unleash the Power of Depth Cameras” (263, 2012), describes how you used Microsoft’s Kinect motion-sensing device for an interactive art project. Tell us about the project and how you came to be involved.

MIGUEL: My university offers a master’s degree in fine arts. I met a professor from the drawing department who had seen a video of my vertical plotter on YouTube and was interested in contacting me, as we worked on the same campus. We became friends and he asked me to help him out with an idea for an installation.

The first approach used an RGB camera, but then Kinect was launched. From what I read on the ’Net, I was convinced it would be a better mousetrap. So, I bought one unit and started learning how to use it, thanks to the hack that had been made available.

The project required gathering visitors’ silhouettes and later drawing them on a big wall. The drawing was performed with a properly scaled-up version of my vertical plotter, which, by the way, was controlled by an Arduino board.

I have found working with artists is a lot of fun too, as they usually have a totally different vision than engineers.

The full article appears in the September issue.

CC266: Microcontroller-Based Data Management

Regardless of your area of embedded design or programming expertise, you have one thing in common with every electronics designer, programmer, and engineering student across the globe: almost everything you do relates to data. Each workday, you busy yourself with acquiring data, transmitting it, repackaging it, compressing it, securing it, sharing it, storing it, analyzing it, converting it, deleting it, decoding it, quantifying it, graphing it, and more. I could go on, but I won’t. The idea is clear: manipulating and controlling data in its many forms is essential to everything you do.

The ubiquitous importance of data is what makes Circuit Cellar’s Data Acquisition issue one of the most popular each year. And since you’re always seeking innovative ways to obtain, secure, and transmit data, we consider it our duty to deliver you a wide variety of content on these topics. The September 2012 issue (Circuit Cellar 266) features both data acquisition system designs and tips relating to control and data management.

On page 18, Brian Beard explains how he planned and built a microcontroller-based environmental data logger. The system can sense and record relative light intensity, barometric pressure, relative humidity, and more.

a: This is the environmental data logger’s (EDL) circuit board. b: This is the back of the EDL.

Data acquisition has been an important theme for engineering instructor Miguel Sánchez, who since 2005 has published six articles in Circuit Cellar about projects such as a digital video recorder (Circuit Cellar 174), “teleporting” serial communications via the ’Net (Circuit Cellar 193), and a creative DIY image-processing system (Circuit Cellar 263). An informative interview with Miguel begins on page 28.

Turn to page 38 for an informative article about how to build a compact acceleration data acquisition system. Mark Csele covers everything you need to know from basic physics to system design to acceleration testing.

This is the complete portable accelerometer design. with the serial download adapter. The adapter is installed only when downloading data to a PC and mates with an eight pin connector on the PCB. The rear of the unit features three powerful
rare-earth magnets that enable it to be attached to a vehicle.

In “Hardware-Accelerated Encryption,” Patrick Schaumont describes a hardware accelerator for data encryption (p. 48). He details the advanced encryption standard (AES) and encourages you to consider working with an FPGA.

This is the embedded processor design flow with FPGA. a: A C program is compiled for a softcore CPU, which is configured in an FPGA. b: To accelerate this C program, it is partitioned into a part for the software CPU, and a part that will be implemented as a hardware accelerator. The softcore CPU is configured together with the hardware accelerator in the FPGA.

Are you now ready to start a new data acquisition project? If so, read George Novacek’s article “Project Configuration Control” (p. 58), George Martin’s article “Software & Design File Organization” (p. 62), and Jeff Bachiochi’s article “Flowcharting Made Simple” (p. 66) before hitting your workbench. You’ll find their tips on project organization, planning, and implementation useful and immediately applicable.

Lastly, on behalf of the entire Circuit Cellar/Elektor team, I congratulate the winners of the DesignSpark chipKIT Challenge. Turn to page 32 to learn about Dean Boman’s First Prize-winning energy-monitoring system, as well as the other exceptional projects that placed at the top. The complete projects (abstracts, photos, schematic, and code) for all the winning entries are posted on the DesignSpark chipKIT Challenge website.

Build a Microcontroller-Based Mail Client

Does the sheer amount of junk mail that fills your Inbox make you hate everything about e-mail? If so, it’s time to have a little fun with electronic mail by building a compact microcontroller-based mail client system. Alexander Mann designed a system that uses an Atmel ATmega32 and a Microchip Technology ENC28J60 Ethernet controller to check continuously for e-mail. When a message arrives, he can immediately read it on the system’s LCD and respond with a standard keyboard.

Mann writes:

My MiniEmail system is a compact microcontroller-based mail client (see Photo 1). The silent, easy-to-use system doesn’t require a lot of power and it is immune to mail worms. Another advantage is the system’s short start-up time. If you want to write a quick e-mail but your PC is off, you can simply switch on the miniature e-mail client and start writing without having to wait for your PC to boot up and load the necessary applications. All you need is an Ethernet connection and the MiniEmail system.

Photo 1: The complete MiniEmail system includes an LCD, a keyboard, and several connections. (A. Mann, Circuit Cellar 204)

HARDWARE

The hardware for the MiniEmail system is inexpensive. It cost me about $50. The LCD is the most expensive part. To keep things simple, I left the system’s power supply, 5- to 3.3-V conversion crystals, and latch out of Figure 1.

Figure 1: This is a block diagram of MiniEmail’s hardware. The arrows indicate the directions of data flow between the devices. The rounded boxes indicate parts that do not sit on the circuit board.

The main components are an Atmel ATmega32 microcontroller and a Microchip Technology ENC28J60 Ethernet controller. Because a mail client is a piece of complex software, you need a fast microcontroller that has a considerable amount of program space. The MiniEmail system uses almost all of the ATmega32’s features, including the SPI, internal EEPROM and SRAM, counters, USART interface, sleep modes, all 32 I/O lines, and most of the 32 KB of program memory. The ENC28J60 is a stand-alone Ethernet controller that provides basic functionality for transmitting frames over an Ethernet connection. It has 8 KB of built-in SRAM, which can be divided into transmit and receive buffers as desired, and it provides several interrupt sources (e.g., when new packets have arrived). The ATmega32 also has 128 KB of external SRAM connected as well as an LCD, which is a standard module with a resolution of 128 × 64 pixels.

Take a look at the ATmega32’s pin connections in Figure 2. Ports A and C are used as 8-bit-wide general I/O ports, one of which is latched using an NXP Semiconductors 74HC573.

Figure 2: Here’s the complete schematic for the MiniEmail. The LF1S022 is the RJ-45 connector for the Ethernet connection.

The two ports provide data connections to the LCD and SRAM (U3). For the SRAM, you need three additional wires: write (*RAM_WR), read strobe (*RAM_RD), and the seventeenth bit of the address (ADDR16). The LCD connector (CON1) uses five additional wires (for the signals CS1, CS2, DI, EN, and RW). CS1 and CS2 are taken from the general I/O port A (DATA6 and DATA7) and determine which of the two halves of the LCD is selected (i.e., the two controllers on the LCD module you are talking to). RW (where you can use ADDR16 again) sets the direction of the LCD access (read or write). DI describes the type of instruction sent to the LCD. EN is the enable signal for read and write cycles. For the keyboard, you need only two pins: KEY_DATA and KEY_CLOCK. The clock signal must be connected to an external interrupt pin, INT1. One additional wire is needed to switch the latch (LE).

You are left with eight I/O pins on the ATmega32’s ports B and D. RXD and TXD are connected to a MAX232, an RS-232 level converter that also provides the negative supply voltage needed for the LCD (LCD_VOUT in Figure 2). The ATmega32’s USART functionality is used as a debugging interface. It isn’t needed for normal operation.

SOFTWARE

The firmware for this project is posted on the Circuit Cellar FTP site. I wrote the firmware in C language with a few small parts of inline assembler. I used the open-source software suite WinAVR, which includes the GNU GCC compiler with special libraries for AVR devices and avrdude, a tool for the in-system programming of AVR microcontrollers…

USER INTERFACE

The user interface consists of three control elements: menus, edit fields, and an elaborate text editor. A special screen (the Mail Menu) enables you to quickly browse through your mailbox. After power-up, the system displays a greeting message. After a short while, the Main menu appears (see Photo 2).

Photo 2: This is a screenshot of MiniEmail’s main menu. In the upper-right corner, a clock shows the current time, which is retrieved from the Internet. An arrow to the left of the menu items indicates the selected item. (A. Mann, Circuit Cellar 204)

The Compose Mail, Check Mailbox, and Configuration submenus form a hierarchical menu structure. When the other items listed beneath the respective menu titles in the diagram are activated (e.g., start the text editor), they enable you to input data, such as a username and password, or retrieve mail from the mail server. “Standby” is the only action that is accessible directly from the main menu. All other actions are grouped by function in the submenus.

WRITING MAIL

With respect to the firmware, sending mail is much easier than reading it, so let’s first focus on the Compose Mail menu. The first item in the menu starts the text editor so you can enter the body of your letter. You then enter the recipient’s mailing address and the subject of your e-mail, just like you would do when sending e-mail from your PC. Additional fields, such as CC or BCC are not included, but since this requires only one more line in the header of the mail, it is not difficult. Your e-mail also needs a reply address, so the recipient knows who sent the mail. The reply address is normally the same for all of the messages you write. The text you enter in this edit field is stored in the ATmega32’s EEPROM, so you don’t have to type it every time you write a letter. After you select the last menu item, “Send” initiates the dispatch of the mail and displays a message that indicates whether or not it was successful.

CHECKING FOR MAIL

What makes this part more sophisticated is the ability to handle not only one e-mail at a time, but also fetch mail from the server. The system can determine which messages are new and which messages have been read. It can also extract data such as the sender, subject, or sent date from the header of the mail and then display the information.

The amount of mail the firmware can handle is limited by the size of the external SRAM. The maximum number of e-mails is currently 1,024. (If you’ve got more mail, you will be so busy answering it that you won’t have time to build your own MiniEmail client—or you should delete some old mail). Note that 1,024 is the number of unique identifiers that the system can remember. The server assigns a unique identifier to each piece of mail. The system uses the identifiers to keep track of which letters are new on the server, which have already been read, and which have been marked for deletion.

All of the header data for all of the 1,024 messages cannot be held in SRAM at once; only the most recent (about 50) mail headers are held. When you want to browse through older e-mails, the firmware automatically reconnects to the server and fetches the headers of the next 50 e-mails.

When you select Check Mailbox in the main menu, you get to a submenu where you can retrieve and read mail. Before you can collect your mail, you must enter your username and password, which can be stored in EEPROM for your convenience. The firmware then retrieves the headers and displays the Mail Menu, where you can browse through your e-mail. Apart from the size and the date, the first 42 characters of the subject and the mail sender are shown. In the first row, additional icons indicate (from left to right) whether a message is new, has been marked for deletion, or has been read. You can view the content of the selected message by pressing Return. When the mail is fetched from the server, it is prepared for viewing. The header and HTML tags, as well as long runs of the same character, are stripped from the mail and base64 decoding (used to encode 8-bit characters) is performed, so the content of the message is as readable as plain text. Binary attachments (e.g., images) can’t be handled. Following this, the mail is viewed in the text editor (with editing disabled).

A similar action is performed when you press “r” in the Mail Menu. In that case, you can edit the text so you can add your reply. Leaving the text editor will bring you back to the Send Mail menu, where the reply address and subject will be filled in so your mail will be clear for take-off. To delete a message, simply press D to mark it for deletion….

OUTLOOK

I hadn’t imagined how many details would need to be considered when I started this project more than a year ago. It has been a very interesting and challenging project. It has also been a lot of fun.

The MiniEmail system provides all of the basics for communicating via email, but such a project is never really finished. There are still dozens of items on my to-do list. Fortunately, the ATmega32 can be replaced with a new member of the AVR family, the Atmel ATmega644, which is pin-compatible to the ATmega32 and has twice the flash memory (and internal SRAM). That will provide enough space for many of my new ideas. I want to get rid of the static IP address, add CC and BCC fields, use a bigger display or a smaller (variable-width) font, improve the filtering and display of mail content and attachments, and add an address book (it would be best in combination with an additional external EEPROM with an SPI, such as the AT25256).

This project proves, rather impressively, that the ATmega32 and the ENC28J60 are a powerful combination. They can be used for many useful Internet applications. My e-mail client system is surely one of the most exciting. I can think of many other interesting possibilities. At the moment, my MiniEmail assembly serves as an online thermometer so I can check my room’s temperature from anywhere in the world…

Mann’s entire article appears in Circuit Cellar 204, 2007. Type “miniemailopen”  to access the password-protected article.

DIY Solar-Powered, Gas-Detecting Mobile Robot

German engineer Jens Altenburg’s solar-powered hidden observing vehicle system (SOPHECLES) is an innovative gas-detecting mobile robot. When the Texas Instruments MSP430-based mobile robot detects noxious gas, it transmits a notification alert to a PC, Altenburg explains in his article, “SOPHOCLES: A Solar-Powered MSP430 Robot.”  The MCU controls an on-board CMOS camera and can wirelessly transmit images to the “Robot Control Center” user interface.

Take a look at the complete SOPHOCLES design. The CMOS camera is located on top of the robot. Radio modem is hidden behind the camera so only the antenna is visible. A flexible cable connects the camera with the MSP430 microcontroller.

Altenburg writes:

The MSP430 microcontroller controls SOPHOCLES. Why did I need an MSP430? There are lots of other micros, some of which have more power than the MSP430, but the word “power” shows you the right way. SOPHOCLES is the first robot (with the exception of space robots like Sojourner and Lunakhod) that I know of that’s powered by a single lithium battery and a solar cell for long missions.

The SOPHOCLES includes a transceiver, sensors, power supply, motor
drivers, and an MSP430. Some block functions (i.e., the motor driver or radio modems) are represented by software modules.

How is this possible? The magic mantra is, “Save power, save power, save power.” In this case, the most important feature of the MSP430 is its low power consumption. It needs less than 1 mA in Operating mode and even less in Sleep mode because the main function of the robot is sleeping (my main function, too). From time to time the robot wakes up, checks the sensor, takes pictures of its surroundings, and then falls back to sleep. Nice job, not only for robots, I think.

The power for the active time comes from the solar cell. High-efficiency cells provide electric energy for a minimum of approximately two minutes of active time per hour. Good lighting conditions (e.g., direct sunlight or a light beam from a lamp) activate the robot permanently. The robot needs only about 25 mA for actions such as driving its wheel, communicating via radio, or takes pictures with its built in camera. Isn’t that impossible? No! …

The robot has two power sources. One source is a 3-V lithium battery with a 600-mAh capacity. The battery supplies the CPU in Sleep mode, during which all other loads are turned off. The other source of power comes from a solar cell. The solar cell charges a special 2.2-F capacitor. A step-up converter changes the unregulated input voltage into 5-V main power. The LTC3401 changes the voltage with an efficiency of about 96% …

Because of the changing light conditions, a step-up voltage converter is needed for generating stabilized VCC voltage. The LTC3401 is a high-efficiency converter that starts up from an input voltage as low as 1 V.

If the input voltage increases to about 3.5 V (at the capacitor), the robot will wake up, changing into Standby mode. Now the robot can work.

The approximate lifetime with a full-charged capacitor depends on its tasks. With maximum activity, the charging is used after one or two minutes and then the robot goes into Sleep mode. Under poor conditions (e.g., low light for a long time), the robot has an Emergency mode, during which the robot charges the capacitor from its lithium cell. Therefore, the robot has a chance to leave the bad area or contact the PC…

The control software runs on a normal PC, and all you need is a small radio box to get the signals from the robot.

The Robot Control Center serves as an interface to control the robot. Its main feature is to display the transmitted pictures and measurement values of the sensors.

Various buttons and throttles give you full control of the robot when power is available or sunlight hits the solar cells. In addition, it’s easy to make short slide shows from the pictures captured by the robot. Each session can be saved on a disk and played in the Robot Control Center…

The entire article appears in Circuit Cellar 147 2002. Type “solarrobot”  to access the password-protected article.

Q&A: Ayse Kivilcim Coskun (Engineer, BU)

Ayse Kivilcim Coskun’s research on 3-D stacked systems has gained notoriety in academia, and it could change the way electrical engineers and chip manufacturers think about energy efficiency for years to come. In a recent interview, the Boston University engineering professor briefed us on her work and explained how she came to focus on the topics of green computing and 3-D systems.

Boston University professor Ayse Kivilcim Coskun

The following is an excerpt from an interview that appears in Circuit Cellar 264 (July 2012), which is currently on newsstands.

NAN: When did you first become interested in computer engineering?

AYSE: I’ve been interested in electronics since high school and in science and physics since I was little. My undergraduate major was microelectronics engineering. I actually did not start studying computer engineering officially until graduate school at University of California, San Diego. However, during my undergraduate education, I started taking programming, operating systems, logic design, and computer architecture classes, which spiked my interest in the area.

NAN: Tell us about your teaching position at the Electrical and Computer Engineering Department at Boston University (BU).

AYSE: I have been an assistant professor at BU for almost three years. I teach Introduction to Software Engineering to undergraduates and Introduction to Embedded systems to graduate students. I enjoy that both courses develop computational thinking as well as hands-on implementation skills. It’s great to see the students learning to build systems and have fun while learning.

NAN: As an engineering professor, you have some insight into what excites future engineers. What “hot topics” currently interest your students?

AYSE: Programming and software design in general are certainly attracting a lot of interest. Our introductory software engineering class is attracting a growing number of students across the College of Engineering every year. DSP, image processing, and security are also hot topics among the students. Our engineering students are very keen on seeing a working system at the end of their class projects. Some project examples from my embedded systems class include embedded low-power gaming consoles, autonomous toy vehicles, and embedded systems focusing on healthcare or security applications …

NAN: How did you come to focus on energy efficiency and thermal challenges?

AYSE: Energy efficiency has been a hot topic for embedded systems for several decades, mainly due to battery-life restrictions. With the growth of computing sources at all levels—from embedded to large-scale computers, and following the move to data centers and the cloud—now energy efficiency is a major bottleneck for any computing system. The focus on energy efficiency and temperature management among the academic community was increasing when I started my PhD. I got especially interested in thermally induced problems as I also had some background on fault tolerance and reliability topics. I thought it would be interesting to leverage job scheduling to improve thermal behavior and my advisor liked the idea too. Temperature-aware job scheduling in multiprocessor systems was the first energy-efficiency related project I worked on.

NAN: In May 2011, you were awarded the A. Richard Newton Graduate Scholarship at the Design Automation Conference (DAC) for a joint project, “3-D Systems for Low-Power High-Performance Computing.” Tell us about the project and how you became involved.

AYSE: My vision is that 3-D stacked systems—where multiple dies are stacked together into a single chip—can provide significant benefits in energy efficiency. However, there are design, modeling, and management challenges that need to be addressed in order to simultaneously achieve energy efficiency and reliability. For example, stacking enables putting DRAM and processor cores together on a single 3-D chip. This means we can cut down the memory access latency, which is the main performance bottleneck for a lot of applications today. This gain in performance could be leveraged to run processors at a lower speed or use simpler cores, which would enable low-power, high-performance computing. Or we can use the reduction in memory latency to boost performance of single-chip multicore systems. Higher performance, however, means higher power and temperature. Thermal challenges are already pressing concerns for 3-D design, as cooling these systems is difficult. The project focuses on simultaneously analyzing performance, power, and temperature and using this analysis to design system management methods that maximize performance under power or thermal constraints.

I started researching 3-D systems during a summer internship at  the Swiss Federal Institute of Technology (EPFL) in the last year of my PhD. Now, the area is maturing and there are even some 3-D prototype systems being designed. I think it is an exciting time for 3-D research as we’ll start seeing a larger pool of commercial 3-D stacked chips in a few years. The A. Richard Newton scholarship enabled us to do the preliminary research and collect results. Following the scholarship, I also received a National Science Foundation (NSF) CAREER award for designing innovative strategies for modeling and management of 3-D stacked systems.

The entire interview appears in Circuit Cellar 264  (July 2012).

Elektor Weekly Wrap-Up: Project Generator, 32-Bit Linux on an 8-Bit MCU, & Computer Vision Simplified

Last week Elektor staffers put in a long workweek of, well, a little bit of everything: lab work, news reporting, and book launching. Let’s start with the lab.

Elektor’s Project Generator Edition

The Elektor Lab’s workers were finishing up their final lab duties relating to Elektor’s upcoming double summer edition—the Project Generator Edition, PGE.

Elektor Lab staff preps for the summer issue

Thijs Beckers reported: “Extra attention is paid to the quality of this year’s projects, after upping the standards already in the selection process. We set an ambitious goal for all of us, lab workers and editors alike, to bring you articles and circuit ideas from the utmost quality, with crystal clear details and lots of PCB layouts. All of this would of course be unfeasible without our highly respected freelance contributors and experts, who we are grateful for their efforts in supporting this year’s extra-thick magazine with fresh and exciting projects and circuits.”

Getting read for the "Project Generator Edition"

32-Bit Linux on an 8-Bit MCU

Elektor editor Clemens Valens reported last week about an interesting project by Dmitry Grinberg. Clemens said Dmitry ported a 32-bit operating system to an 8-bit microcontroller lacking most of the features needed to actually run the OS. Seem odd? Learn more here.

A 32-bit OS ported to an 8-bit micro

Computer Vision Simplified

Elektor announced Wednesday a new book on the topic of computer vision. Fevzi Özgül’s Design your own PC Visual Processing and Recognition System in C# is intended for “engineers, scientists and enthusiasts with developed programming skills or with a strong interest in image processing technology on a PC.”

The book, which Özgül wrote using Microsoft C# and utilizing object-oriented practices, is a practical how-to guide. He covers essential image-processing techniques and provides practical application examples so you can produce high-quality image processing software. Click here for more information.

CircuitCellar.com is an Elektor group publication.

 

Issue 263: Net-Enabled Controller, MCU-Based Blood Pressure Cuff, MOSFETs 101, & More

Although the June issue is still in production, I can report that it’s packed with projects and tips you’ll find immediately applicable. The projects include an AC tester design, an Internet-enabled controller, a DIY image-processing system, and an MCU-cased blood pressure cuff. Once you’ve had your fill of design projects, you’ll benefit from our articles on essential topics such as concurrency embedded systems, frequency mixers, MOSFET channel resistance, and “diode ORing.”

An Internet-Enabled Controller, by Fergus Dixon
Power-saving smart switches require a real-time clock-based controller. With a request for an Ethernet interface, the level of complexity increases. Once the Ethernet interface was working, connecting to the Internet was simple, but new problems arose.

Final PCB with a surface-mount Microchip Technology ENC28J60 Ethernet chip (Source: F. Dixon, CC263)

AC Tester, Kevin Gorga
The AC Tester provides a modular design approach to building a tool for repair or prototyping line voltage devices. In its simplest form, it provides an isolated variable AC voltage supply. The next step incorporates digital current and voltage meters with an electronic circuit breaker. The ultimate adds an energy meter for Watts, VA, and VAR displays.

The AC Tester powered up and running. The E meter is shown in the plastic case on the top of the tester. The series current limit bulbs are on the top. (Source: K. Gorga, CC263)

Image Processing System Development, by Miguel Sánchez
Some computer vision tasks can be accomplished more easily with the use of a depth camera. This article presents the basics on the usage of Microsoft’s Kinect motion-sensing device on your PC for an interactive art project.

Build an MCU-Based Automatic Blood Pressure Cuff, by Jeff Bachiochi
Personal health products are becoming more and more commonplace. They reinforce regular visits to personal physicians, and can be beneficial when diagnosing health issues. This article shows you how to convert a manual blood pressure cuff into an automatic cuff by adding an air pump, a solenoid release valve, and a pressure sensor to a Microchip Technology PIC-based circuit.

A manual blood pressure cuff adapted into an automatic cuff by adding an air pump, a solenoid release valve, and a pressure sensor to a microcontroller. (Source: J. Bachiochi, CC263)

Concurrency in Embedded Systems, by Bob Japenga
This is the first in an article series about concurrency in embedded systems. This article defines concurrency in embedded systems, discusses some pitfalls, and examines one of them in detail.

Radio Frequency Mixers, by Robert Lacoste
Frequency mixers are essential to radio frequency (RF) designs. They are responsible for translating a signal up or down in frequency. This article covers the basics of RF mixers, their real-life applications, and the importance of frequency range.

MOSFET Channel Resistance: Theory and Practice, by Ed Nisley
This article describes the basics of power MOSFET operation and explores the challenges of using a MOSFET’s drain-to-source resistance as a current-sensing resistor. It includes a review of fundamental enhancement-mode MOSFET equations compared with Spice simulations, and shows measurements from an actual MOSFET.

Diode ORing, by George Novacek
Diode ORing is a commonly used method for power back up. But there is a lot more behind the method than meets the eye. This article describes some solutions for maintaining uninterrupted power.

The June issue will hit newsstands in late May.