A Workspace for “Engineering Magic”


Photo 1—Brandsma describes his workspace as his “little corner where the engineering magic happens.”

Sjoerd Brandsma, an R&D manager at CycloMedia, enjoys designing with cameras, GPS receivers, and transceivers. His creates his projects in a small workspace in Kerkwijk, The Netherlands (see Photo 1). He also designs in his garage, where he uses a mill and a lathe for some small and medium metal work (see Photo 2).


Photo 2—Brandsma uses this Weiler lathe for metal work.

The Weiler lathe has served me and the previous owners for many years, but is still healthy and precise. The black and red mill does an acceptable job and is still on my list to be converted to a computer numerical control (CNC) machine.

Brandsma described some of his projects.


Photo 3—Some of Brandsma’s projects include an mbed-based camera project (left), a camera with an 8-bit parallel databus interface (center), and an MP3 player that uses a decoder chip that is connected to an mbed module (right).

I built a COMedia C328 UART camera with a 100° lens placed on a 360° servomotor (see Photo 3, left).  Both are connected to an mbed module. When the system starts, the camera takes a full-circle picture every 90°. The four images are stored on an SD card and can be stitched into a panoramic image. I built this project for the NXP mbed design challenge 2010 but never finished the project because the initial idea involved doing some stitching on the mbed module itself. This seemed to be a bit too complicated due to memory limitations.

I built this project built around a 16-MB framebuffer for the Aptina MT9D131 camera (see Photo 3, center). This camera has an 8-bit parallel databus interface that operates on 6 to 80 MHz. This is way too fast for most microcontrollers (e.g., Arduino, Atmel AVR, Microchip Technology PIC, etc.). With this framebuffer, it’s possible to capture still images and store/process the image data at a later point.

This project involves an MP3 player that uses a VLSI VS1053 decoder chip that is connected to an mbed module (see Photo 3, right). The great thing about the mbed platform is that there’s plenty of library code available. This is also the case for the VS1053. With that, it’s a piece of cake to build your own MP3 player. The green button is a Skip button. But beware! If you press that button it will play a song you don’t like and you cannot skip that song.

He continued by describing his test equipment.


Photo 4—Brandsma’s test equipment collection includes a Tektronix TDS220 oscilloscope (top), a Total Phase Beagle protocol analyzer (second from top), a Seeed Technology Open Workbench Logic Sniffer (second from bottom), and a Cypress Semiconductor CY7C68013A USB microcontroller (bottom).

Most of the time, I’ll use my good old Tektronix TDS220 oscilloscope. It still works fine for the basic stuff I’m doing (see Photo 4, top). The Total Phase Beagle I2C/SPI protocol analyzer Beagle/SPI is a great tool to monitor and analyze I2C/SPI traffic (see Photo 4, second from top).

The red PCB is a Seeed Technology 16-channel Open Workbench Logic Sniffer (see Photo 4, second from bottom). This is actually a really cool low-budget open-source USB logic analyzer that’s quite handy once in a while when I need to analyze some data bus issues.

The board on the bottom is a Cypress CY7C68013A USB microcontroller high-speed USB peripheral controller that can be used as an eight-channel logic analyzer or as any other high-speed data-capture device (see Photo 4, bottom). It’s still on my “to-do” list to connect it to the Aptina MT9D131 camera and do some video streaming.

Brandsma believes that “books tell a lot about a person.” Photo 5 shows some books he uses when designing and or programming his projects.


Photo 5—A few of Brandsma’s “go-to” books are shown.

The technical difficulty of the books differs a lot. Electronica echt niet moeilijk (Electronics Made Easy) is an entry-level book that helped me understand the basics of electronics. On the other hand, the books about operating systems and the C++ programming language are certainly of a different level.

An article about Brandsma’s Sun Chaser GPS Reference Station is scheduled to appear in Circuit Cellar’s June issue.

Traveling With a “Portable Workspace”

As a freelance engineer, Raul Alvarez spends a lot of time on the go. He says the last four or five years he has been traveling due to work and family reasons, therefore he never stays in one place long enough to set up a proper workspace. “Whenever I need to move again, I just pack whatever I can: boards, modules, components, cables, and so forth, and then I’m good to go,” he explains.

Raul_Alvarez_Workspace _Photo_1

Alvarez sits at his “current” workstation.

He continued by saying:

In my case, there’s not much of a workspace to show because my workspace is whichever desk I have at hand in a given location. My tools are all the tools that I can fit into my traveling backpack, along with my software tools that are installed in my laptop.

Because in my personal projects I mostly work with microcontroller boards, modular components, and firmware, until now I think it didn’t bother me not having more fancy (and useful) tools such as a bench oscilloscope, a logic analyzer, or a spectrum analyzer. I just try to work with whatever I have at hand because, well, I don’t have much choice.

Given my circumstances, probably the most useful tools I have for debugging embedded hardware and firmware are a good-old UART port, a multimeter, and a bunch of LEDs. For the UART interface I use a Future Technology Devices International FT232-based UART-to-USB interface board and Tera Term serial terminal software.

Currently, I’m working mostly with Microchip Technology PIC and ARM microcontrollers. So for my PIC projects my tiny Microchip Technology PICkit 3 Programmer/Debugger usually saves the day.

Regarding ARM, I generally use some of the new low-cost ARM development boards that include programming/debugging interfaces. I carry an LPC1769 LPCXpresso board, an mbed board, three STMicroelectronics Discovery boards (Cortex-M0, Cortex-M3, and Cortex-M4), my STMicroelectronics STM32 Primer2, three Texas Instruments LaunchPads (the MSP430, the Piccolo, and the Stellaris), and the following Linux boards: two BeagleBoard.org BeagleBones (the gray one and a BeagleBone Black), a Cubieboard, an Odroid-X2, and a Raspberry Pi Model B.

Additionally, I always carry an Arduino UNO, a Digilent chipKIT Max 32 Arduino-compatible board (which I mostly use with MPLAB X IDE and “regular” C language), and a self-made Parallax Propeller microcontroller board. I also have a Wi-Fi 3G TP-LINK TL-WR703N mini router flashed   with OpenWRT that enables me to experiment with Wi-Fi and Ethernet and to tinker with their embedded Linux environment. It also provides me Internet access with the use of a 3G modem.

Raul_Alvarez_Workspace _Photo_2

Not a bad set up for someone on the go. Alvarez’s “portable workstation” includes ICs, resistors, and capacitors, among other things. He says his most useful tools are a UART port, a multimeter, and some LEDs.

In three or four small boxes I carry a lot of sensors, modules, ICs, resistors, capacitors, crystals, jumper cables, breadboard strips, and some DC-DC converter/regulator boards for supplying power to my circuits. I also carry a small video camera for shooting my video tutorials, which I publish from time to time at my website (www.raulalvarez.net). I have installed in my laptop TechSmith’s Camtasia for screen capture and Sony Vegas for editing the final video and audio.

Some IDEs that I have currently installed in my laptop are: LPCXpresso, Texas Instruments’s Code Composer Studio, IAR EW for Renesas RL78 and 8051, Ride7, Keil uVision for ARM, MPLAB X, and the Arduino IDE, among others. For PC coding I have installed Eclipse, MS Visual Studio, GNAT Programming Studio (I like to tinker with Ada from time to time), QT Creator, Python IDLE, MATLAB, and Octave. For schematics and PCB design I mostly use CadSoft’s EAGLE, ExpressPCB, DesignSpark PCB, and sometimes KiCad.

Traveling with my portable rig isn’t particularly pleasant for me. I always get delayed at security and customs checkpoints in airports. I get questioned a lot especially about my circuit boards and prototypes and I almost always have to buy a new set of screwdrivers after arriving at my destination. Luckily for me, my nomad lifestyle is about to come to an end soon and finally I will be able to settle down in my hometown in Cochabamba, Bolivia. The first two things I’m planning to do are to buy a really big workbench and a decent digital oscilloscope.

Alvarez’s article “The Home Energy Gateway: Remotely Control and Monitor Household Devices” appeared in Circuit Cellar’s February issue. For more information about Alvarez, visit his website or follow him on Twitter @RaulAlvarezT.

Evaluating Oscilloscopes (Part 4)

In this final installment of my four-part mini-series about selecting an oscilloscope, I’ll look at triggering, waveform generators, and clock synchronization, and I’ll wrap up with a series summary.

My previous posts have included Part 1, which discusses probes and physical characteristics of stand-alone vs. PC-based oscilloscopes; Part 2, which examines core specifications such as bandwidth, sample rate, and ADC resolution; and Part 3, which focuses on software. My posts are more a “collection of notes” based on my own research rather than a completely thorough guide. But I hope they are useful and cover some points you might not have otherwise considered before choosing an oscilloscope.

This is a screenshot from Colin O'Flynn's YouTube video "Using PicoScope AWG for Testing Serial Data Limits."

This is a screenshot from Colin O’Flynn’s YouTube video “Using PicoScope AWG for Testing Serial Data Limits.”

Topic 1: Triggering Methods
Triggering your oscilloscope properly can make a huge difference in being able to capture useful waveforms. The most basic triggering method is just a “rising” or “falling” edge, which almost everyone is (or should be) familiar with.

Whether you need a more advanced trigger method will depend greatly on your usage scenario and a bit on other details of your oscilloscope. If you have a very long buffer length or ability to rapid-fire record a number of waveforms, you might be able to live with a simple trigger since you can easily throw away data that isn’t what you are looking for. If your oscilloscope has a more limited buffer length, you’ll need to trigger on the exact moment of interest.

Before I detail some of the other methods, I want to mention that you can sometimes use external instruments for triggering. For example, you might have a logic analyzer with an extremely advanced triggering mechanism.  If that logic analyzer has a “trigger out,” you can trigger the oscilloscope from your logic analyzer.

On to the trigger methods! There are a number of them related to finding “odd” pulses: for example, finding glitches shorter or wider than some length or finding a pulse that is lower than the regular height (called a “runt pulse”). By knowing your scope triggers and having a bit of creativity, you can perform some more advanced troubleshooting. For example, when troubleshooting an embedded microcontroller, you can have it toggle an I/O pin when a task runs. Using a trigger to detect a “pulse dropout,” you can trigger your oscilloscope when the system crashes—thus trying to see if the problem is a power supply glitch, for example.

If you are dealing with digital systems, be on the lookout for triggers that can function on serial protocols. For example, the Rigol Technologies stand-alone units have this ability, although you’ll also need an add-on to decode the protocols! In fact, most of the serious stand-alone oscilloscopes seem to have this ability (e.g., those from Agilent, Tektronix, and Teledyne LeCroy); you may just need to pay extra to enable it.

Topic 2: External Trigger Input
Most oscilloscopes also have an “external trigger input.”  This external input doesn’t display on the screen but can be used for triggering. Specifically, this means your trigger channel doesn’t count against your “ADC channels.” So if you need the full sample rate on one channel but want to trigger on another, you can use the “ext in” as the trigger.
Oscilloscopes that include this feature on the front panel make it slightly easier to use; otherwise, you’re reaching around behind the instrument to find the trigger input.

Topic 3: Arbitrary Waveform Generator
This isn’t strictly an oscilloscope-related function, but since enough oscilloscopes include some sort of function generator it’s worth mentioning. This may be a standard “signal generator,” which can generate waveforms such as sine, square, triangle, etc. A more advanced feature, called an arbitrary waveform generator (AWG), enables you to generate any waveform you want.

I previously had a (now very old) TiePie engineering HS801 that included an AWG function. The control software made it easy to generate sine, square, triangle, and a few other waveforms. But the only method of generating an arbitrary waveform was to load a file you created in another application, which meant I almost never used the “arbitrary” portion of the AWG. The lesson here is that if you are going to invest in an AWG, make sure the software is reasonable to use.

The AWG may have a few different specifications; look for the maximum analog bandwidth along with the sample rate. Be careful of outlandish claims: a 200 MS/s digital to analog converter (DAC) could hypothetically have a 100-MHz analog bandwidth, but the signal would be almost useless. You could only generate some sort of sine wave at that frequency, which would probably be full of harmonics. Even if you generated a lower-frequency sine wave (e.g., 10 MHz), it would likely contain a fair amount of harmonics since the DAC’s output filter has a roll-off at such a high frequency.

Better systems will have a low-pass analog filter to reduce harmonics, with the DAC’s sample rate being several times higher than the output filter roll-off. The Pico Technology PicoScope 6403D oscilloscope I’m using can generate a 20-MHz signal but has a 200 MS/s sample rate on the DAC. Similarly, the TiePie engineering HS5-530 has a 30-MHz signal bandwidth, and similarly uses a 240 MS/s sample rate. A sample rate of around five to 10 times the analog bandwidth seems about standard.

Having the AWG integrated into the oscilloscope opens up a few useful features. When implementing a serial protocol decoder, you may want to know what happens if the baud rate is slightly off from the expected rate. You can quickly perform this test by recording a serial data packet on the oscilloscope, copying it to the AWG, and adjusting the AWG sample rate to slightly raise or lower the baud rate. I illustrate this in the following video.

Topic 4: Clock Synchronization

One final issue of interest: In certain applications, you may need to synchronize the sample rate to an external device. Oscilloscopes will often have two features for doing this. One will output a clock from the oscilloscope, the other will allow you to feed an external clock into the oscilloscope.

The obvious application is synchronizing a capture between multiple oscilloscopes. You can, however, use this for any application where you wish to use a synchronous capture methodology. For example, if you wish to use the oscilloscope as part of a software-defined radio (SDR), you may want to ensure the sampling happens synchronous to a recovered clock.

The input frequency of this clock is typically 10 MHz, although some devices enable you to select between several allowed frequencies. If the source of this clock is anything besides another instrument, you may have to do some clock conditioning to convert it into one of the valid clock source ranges.

Summary and Closing Comments
That’s it! Over the past four weeks I’ve tried to raise a number of issues to consider when selecting an oscilloscope. As previously mentioned, the examples were often PicoScope-heavy simply because it is the oscilloscope I own. But all the topics have been relevant to any other oscilloscope you may have.

You can check out my YouTube playlist dealing with oscilloscope selection and review.  Some topics might suggest further questions to ask.

I’ve probably overlooked a few issues, but I can’t cover every possible oscilloscope and option. When selecting a device, my final piece of advice is to download the user manual and study it carefully, especially for features you find most important. Although the datasheet may gloss over some details, the user manual will typically address the limitations you’ll run into, such as FFT length or the memory depths you can configure.

Author’s note: Every reasonable effort has been made to ensure example specifications are accurate. There may, however, be errors or omissions in this article. Please confirm all referenced specifications with the device vendor.

Client Profile: Lauterbach, Inc

1111 Main Street #115
Vancouver, WA 98660


LauterbachFeatured Product: The TRACE32-ICD in-circuit debugger supports a range of on-chip debug interfaces. The debugger’s hardware is universal and enables you to connect to different target processors by simply changing the debug cable. The PowerDebug USB 3.0 can be upgraded with the PowerProbe or the PowerIntergrator to a logic analyzer.

Product Features: The TRACE 32-ICD JTAG debugger has a 5,000-KBps download rate. It features easy high-level Assembler debugging and an interface to all industry-standard compilers. The debugger enables fast download of code to target, OS awareness debugging, and flash programming. It displays internal and external peripherals at a logical level and includes support for hardware breakpoints and trigger (if supported by chip), multicore debugging (SMP and AMP), C and C++, and all common NOR and NAND flash devices.

For more information, visit www.lauterbach.com/bdmusb3.html.

A Well-Organized Workspace for Home Automation Systems

Organization and plenty of space to work on projects are the main elements of Dean Boman’s workspace (see Photo 1). Boman, a retired systems engineer, says most of his projects involve home automation. He described some of his workspace features via e-mail:

My test equipment suite consists of a Rigol digital oscilloscope, a triple-output power supply, various single-output power supplies, and several Microchip Technology in-circuit development tools.

I have also built a simple logic analyzer, an FPGA programmer, and an EPROM programmer. For PCB fabrication, I have a complete setup from MG Chemicals to expose, develop, etch, and plate boards up to about 6” × 9” in size.

Photo 1: Boman’s workbench includes overhead cabinets to help reduce clutter. The computer in the foreground is his web server and main home-automation system controller. (Source: D. Boman)

Photo 1: Boman’s workbench includes overhead cabinets to help reduce clutter. The computer in the foreground is his web server and main home-automation system controller. (Source: D. Boman)

Boman is currently troubleshooting a small 1-W ham radio transmitter (see Photo 2).

Photo 2: Boman is currently troubleshooting a small 1-W ham radio transmitter (Source: D. Boman)

Photo 2: Here is his workbench with the radio transmitter. (Source: D. Boman)

Boman says the 10’ long countertop surface (in the background in Photo 3) is:

Great for working on larger items (e.g., computers). It is also a great surface for debugging designs as you have plenty of room for test equipment, drawings, and datasheets.

Photo 3: Boman’s setup includes plenty of spacefor large projects. (Source: D. Boman)

Photo 3: Boman’s setup includes plenty of room for large projects. (Source: D. Boman)

Most of Boman’s projects involve in-home automation (see Photo 4).

My current system provides functions such as: security system monitoring, irrigation control, water leak detection, temperature monitoring, electrical usage monitoring, fire detection, access control, weather monitoring, water usage monitoring, solar hot water system control, and security video recording. I also have an Extra Class ham radio license (WE7J) and build some ham radio equipment.

Here is how he described his system setup:

The shelf on the top contains the network routers and the security system. The cabinets on the wall contain an irrigation system controller and a network monitor for network management. I was fortunate in that we built a custom home a few years ago so I was able to run about two miles of cabling in the walls during construction.

Photo 4: Boman has various elements of his home-automation control system mounted on the wall. (Source: D. Boman)

Photo 4: Boman has various elements of his home-automation control system mounted on the wall. (Source: D. Boman)

Boman uses small containers to hold an inventory of surface-mount components (see Photo 5).

Over the past 10 years or so I have migrated to doing surface-mount designs almost exclusively. I have found that once you get over the learning curve, the surface-mount designs are much simpler to design and troubleshoot then the through-hole type technology. The printed wiring boards are also much simpler to fabricate, which is important since I etch my own boards.

Photo 5: Surface-mount components are neatly corralled in containers. (Source: D. Boman)

Photo 5: Surface-mount components are neatly corralled in containers. (Source: D. Boman)

Overall, Boman’s setup is well suited to his interests. He keeps everything handy in well-organized containers and has plenty of testing space In addition, his custom-built home enabled him to run behind-the-scenes cabling, freeing up valuable workspace.

Do you want to share images of your workspace, hackspace, or “circuit cellar”? Send your images and space info to editor<at>circuitcellar.com.