Member Profile: Thomas Struzik

Member Thomas Struzik at his bench.

 

  • Member Name: Thomas Struzik
  • Location: Houston, TX
  • Education: BSEE, Purdue University
  • Occupation: Software architect
  • Member Status: He has been a subscriber since day one. “I’ve got Issue 1 sitting in a box somewhere,” he said. Thomas adds that he was a BYTE magazine subscriber before Circuit Cellar.
  • Technical Interests: Thomas enjoys automation through embedded technology, robotics, low-level programming, and electronic music generation / enhancement.
  • Most Recent Embedded Tech-Related Purchase: He recently bought a CWAV USBee SX Digital Test Pod and an Atmel AVR Dragon.
  • Current and Recent Projects: Thomas is working on designing an isolated USB power supply for his car.
  • Thoughts on the Future of Embedded Technology: Ever-increasing complexity is becoming a stumbling block for the “average” user. “Few people even realize the technology embedded in everyday items,” he said. “How many people know that brand-new LCD TV they’ve got is actually running Linux under the covers? Fortunately, there seems to be a resurgence of ‘need-to-know how stuff works’ with the whole DIY/maker culture. But even that is still a small island compared to the population in general.”

CC269: Break Through Designer’s Block

Are you experiencing designer’s block? Having a hard time starting a new project? You aren’t alone. After more than 11 months of designing and programming (which invariably involved numerous successes and failures), many engineers are simply spent. But don’t worry. Just like every other year, new projects are just around the corner. Sooner or later you’ll regain your energy and find yourself back in action. Plus, we’re here to give you a boost. The December issue (Circuit Cellar 269) is packed with projects that are sure to inspire your next flurry of innovation.

Turn to page 16 to learn how Dan Karmann built the “EBikeMeter” Atmel ATmega328-P-based bicycle computer. He details the hardware and firmware, as well as the assembly process. The monitoring/logging system can acquire and display data such as Speed/Distance, Power, and Recent Log Files.

The Atmel ATmega328-P-based “EBikeMeter” is mounted on the bike’s handlebar.

Another  interesting project is Joe Pfeiffer’s bell ringer system (p. 26). Although the design is intended for generating sound effects in a theater, you can build a similar system for any number of other uses.

You probably don’t have to be coerced into getting excited about a home control project. Most engineers love them. Check out Scott Weber’s garage door control system (p. 34), which features a MikroElektronika RFid Reader. He built it around a Microchip Technology PIC18F2221.

The reader is connected to a breadboard that reads the data and clock signals. It’s built with two chips—the Microchip 28-pin PIC and the eight-pin DS1487 driver shown above it—to connect it to the network for testing. (Source: S. Weber, CC269)

Once considered a hobby part, Arduino is now implemented in countless innovative ways by professional engineers like Ed Nisley. Read Ed’s article before you start your next Arduino-related project (p. 44). He covers the essential, but often overlooked, topic of the Arduino’s built-in power supply.

A heatsink epoxied atop the linear regulator on this Arduino MEGA board helped reduce the operating temperature to a comfortable level. This is certainly not recommended engineering practice, but it’s an acceptable hack. (Source: E. Nisley, CC269)

Need to extract a signal in a noisy environment? Consider a lock-in amplifier. On page 50, Robert Lacoste describes synchronous detection, which is a useful way to extract a signal.

This month, Bob Japenga continues his series, “Concurrency in Embedded Systems” (p. 58). He covers “the mechanisms to create concurrently in your software through processes and threads.”

On page 64, George Novacek presents the second article in his series, “Product Reliability.” He explains the importance of failure rate data and how to use the information.

Jeff Bachiochi wraps up the issue with a article about using heat to power up electronic devices (p. 68). Fire and a Peltier device can save the day when you need to charge a cell phone!

Set aside time to carefully study the prize-winning projects from the Reneas RL78 Green Energy Challenge (p. 30). Among the noteworthy designs are an electrostatic cleaning robot and a solar energy-harvesting system.

Lastly, I want to take the opportunity to thank Steve Ciarcia for bringing the electrical engineering community 25 years of innovative projects, essential content, and industry insight. Since 1988, he’s devoted himself to the pursuit of EE innovation and publishing excellence, and we’re all better off for it. I encourage you to read Steve’s final “Priority Interrupt” editorial on page 80. I’m sure you’ll agree that there’s no better way to begin the next 25 years of innovation than by taking a moment to understand and celebrate our past. Thanks, Steve.

Elektor & element14 Partner for Embedded Linux Webinar at Electronica 2012

Want to learn more about Embedded Linux? You’re in luck. On Wednesday, November 14, Elektor and Farnell/element14 will partner to run an informative webinar on the topic at Electronica 2012 in Munich, Germany. If you’re at the show, you can attend the recordings for free. Register before October 31 to get free Electronica entry tickets from Farnell/element14.

Attendees should go to the Farnell/element14 stand (Hall 5, Stand 558) for the Elektor Academy seminar, which will focus on the latest developments on the innovative Embedded Linux board. You can watch the presentation and ask the experts questions. The webinar will be recorded and webcast a bit later.

  • Presenter: Embedded Linux expert Benedict Sauter, the board’s designer
  • Description: Benedict Sauter will take you through the design and update us on the latest applications.
  • When: Wed, November 14, 2012
  • Time: 11:30 CET
  • Where: Farnell element14 stand (Messe München, Hall 5, Booth 558)
  • Language: English

Visit the element14 page about the Elektor Academy event for more information and to register for a free entry ticket.

CircuitCellar.com is an Elektor International Media publication.

Elektor Weekly Wrap-Up: E-Blocks, Embedded Linux, & the Elektor Lab

Last week Elektor staffers provided the Circuit Cellar staff with an E-Blocks kit to open and analyze, introduced a new course on Embedded Linux (along with an affordable Linux board), and gave members a behind-the-scenes look at the Elektor Lab. Let’s review.

E-Blocks

Early last week, the Elektor editorial department sent Circuit Cellar staffers an E-Blocks kit to open and review.

E-Blocks: The Elektor Pro PICmicro Starter Kit

So, what are E-Blocks?

E-blocks are small circuit boards. Each contains a block of electronics that you would typically find in an electronic system. The 40 circuit boards in the E-blocks product line use rugged, nine-way, D-type connectors as a connection bus for eight signal lines and earth. Power (5 or 3.3 V) is wired separately. Thus, you can assemble a complete system to be assembled in a matter of minutes.

The system’s functionality can be enhanced further by the addition of more than 40 sensors and accessories.

Systems based on microcontrollers can be programmed using flowcharts, C, or Assembly. Systems based on CPLD/FPGA technologies can be programmed in block diagrams, VHDL or Verilog. A range of CD ROM tutorials, which includes compilers, development tools and manuals, provides support to students who are new to any of these technologies. (Source)

Click here for more information.

Take closer look at the E-Blocks kit. It includes a Microchip Technology PIC16F877A chip, a multiprogrammer board, an LCD board, a switch board, Flowcode, an internal power supply, and documentation.

Embedded Linux Made Easy

Elektor announced last Wednesday an introductory course on Embedded Linux that’s accompanied by a compact circuit board:

In this beginners’ course you will learn where the most important applications and software components, the basis of our Linux system, originate from. You will also learn how the hardware is constructed and how it operates. The next step is to install a suitable Linux development environment on a PC to compile our own source code. By the end of the course you will be able to construct a simple heating controller with a graphical display and data analysis via a browser.

The Linux board features:

  • Two-layer board using readily-available components
  • No special debugging or programming hardware required
  • Fully bootable from an SD memory card
  • Linux pre-installed
  • 180-MHz ARM9 MCU, 8-MB RAM (32 MB optional), 64 MB swap
  • Integrated USB-to-RS-232 converter for console access
  • Relay, external power supply, and pushbuttons for quick testing
  • Four GPIO pins, 3 A/D channels and a PWM channel
  • I²C and SPI buses accessible from Linux
  • USB interface for further expansion

More info.

Workspaces

Circuit Cellar has been publishing workspace writes for the past few weeks. Last week, our colleagues at Elektor gave the world some insight about the Elektor Lab:

Developing electronic circuits necessitates measurement equipment, tools and a good place to work. Many electronics engineers, pro or hobbyist, tinkerers, researchers and other refer to this place as their “Lab”. We at Elektor have our Lab where we develop and test the circuits we publish in the magazine. Over the years, we have collected, (mis)used and destroyed quite a lot of gear, soldering irons and components here, and it is only thanks to regular & rigorous ‘clean-up’ campaigns that we keep our lab workable.

Many of our readers have access to their own often substantial labs, with equipment that sometimes even the NASA would be jealous of. So what does your electronics workspace look like? Our colleagues at Circuit Cellar have begun posting write-ups about workspaces, hackspaces, and “circuit cellars” on their website. If you would like to show off your lab, just send them some pictures and descriptions and they will post it on the Circuit Cellar website. Don’t worry about cleaning up first as our lab is probably in a similar state as yours. (Source)

Email pictures and descriptions of your workspaces, hackspaces, and circuit cellars to our editors.

CircuitCellar.com is an Elektor International Media publication.