Lighting and Motor Control Shields for Arduino

Arduino enthusiasts will be excited to learn that Infineon Technologies has announced two new shields for RGB lighting and motor control. You can use the shields—which are compatible to Arduino Uno R3—with the XMC1100 Boot Kit, which is equipped with a 32-bit microcontroller of the XMC1000 family (uses the ARM Cortex-M0 processor).

Infineon-Arduino

Infineon RGB XMC1202 for Arduino

The RGB LED Lighting Shield for Arduino features an XMC1202 microcontroller with its Brightness Color Control Unit (BCCU) for LED lighting control. The high-current DC Motor Control Shield for Arduino contains the Infineon NovalithIC BTN8982TA integrated half-bridge driver for motor control.

The RGB LED Lighting Shield evaluation board enables you to use different LED light engines for fast prototyping. It has three independent output channels for flicker-free control of multicolor LEDs. The BCCU automated hardware engine provides a cost-effective LED lighting solution dimming and color mixing. You can expand the shield with a DMX interface for lighting and audio nodes or a 24-GHz radar sensor for motion detection.

The DC Motor Control Shield with BTN8982TA simplifies the prototyping of DC motor control designs. It can drive two unidirectional DC motors or one bidirectional DC motor. The shield features two NovalithIC BTN8982TA fully integrated high-current half-bridge drivers optimized for motor drive applications. The BTN8982TA includes three ICs: two power chips (one p-channel high-side MOSFET and one n-channel low-side MOSFET) and an integrated driver IC with one logic circuit to control and monitor the power. Other features include are diagnosis with current sense and slew rate adjustment.

Until end of January 2015, both the RGB Lighting Shield with XMC1202 for Arduino and the DC Motor Control Shield with BTN8982TA for Arduino will be available for purchase from Newark element14. After that, they’ll also be available from Infineon and its distributors.

Source: Infineon

Solid-State Lighting Solutions Project

Electronics system control, “green design,” and energy efficiency are important topics in industry and academia. Here we look at a project from San Jose-based Echelon Corp.’s 2007 “Control Without Limits” design competition. Designers were challenged to implement Pyxos technology in innovative systems that reduced energy consumption. Daryl Soderman and Dale Stepps (of INTELTECH Corp.) took First Prize for their Solid State Lighting Solutions project.

The Pyxos chip is on the board (Source: Echelon & Inteltech)

So, how does it work? Using the Pyxos FT network protocol, this alternative lighting project is a cost-effective, energy-efficient solution that’s well-suited for use in residential, commercial, or public buildings. You can easily embed the LED lighting and control system—which features SSL lighting, a user interface, motion detectors, and light sensors—in an existing network. In addition, you can control up to five zones in a building by using the system’s fully programmable ESB-proof touchpad.

Another view of the Pyxos chip is on the board (Source: Echelon & Inteltech)

 

For more information about Pyxos technology, visit www.echelon.com.

This winning project, as well as others, was promoted by Circuit Cellar based on a 2007 agreement with Echelon.