Three Workspaces, Countless Projects

Clive “Max” Maxfield, who received his BSc in Control Engineering from Sheffield Hallam University in England in 1980, began his career designing CPUs for mainframe computers. But he has branched out far beyond that, becoming a prolific writer of engineering books, an EE Times editor, a blogger, and a designer of “interesting stuff,” from silicon chips to Steampunk “Display-O-Meters,” according to his website.

Max, who now lives in Huntsville, AL, recently shared with Circuit Cellar photos and descriptions of some of his ongoing projects and creative workspaces:

I would say that I have three personal workspaces. But before we talk about my workspaces, it might be appropriate to first mention two of my several projects, which vary from artistic to technological.

This is the future home of the Prognostication Engine.

This is the future home of the Prognostication Engine.

One of my projects that is currently in full swing is my Pedagogical and Phantasmagorical Inamorata Prognostication Engine. What do you mean “What’s that when it’s at home?” Isn’t it obvious?

Pedagogical = Educational
Phantasmagorical = It’s pretty darned fantastic
Inamorata = The woman with whom one is in love
Prognostication = Predicting the future
Engine = Machine

The Prognostication Engine is intended to help me predict my wife’s mood. Will the radiance of her smile fall upon me when I return home from work in the evening?

My Prognostication Engine is going to be housed in a beautiful wooden radio cabinet circa 1929. This is going to feature two brass control panels, both of which are going to be festooned with antique knobs and buttons and switches and analog meters (the ones with the black Bakelite bezels). I’m aiming at a Steampunk “look-and-feel” that would not look out of place in a Victorian setting.

One of the tricks I use when working on this type of project is to first create to-scale Visio drawings of all of the knobs, switches, meter, and so forth, and then I create a full-sized card-and-paper mockup as shown below. This makes it much easier to move things around and experiment with different placements so as to decide on the final layout.

The paper and card mockup of the Prognostication Engine's upper and low control panels

The paper and card mockup of the Prognostication Engine’s upper and low control panels

Observe the two small pink dots at the top and bottom of each of the vertically-oriented switches and on either side of the horizontally oriented switches and buttons; also the 16 pink dots around each of the five potentiometers. These are going to be faux mother-of-pearl dots, behind which will be tri-colored LEDs implemented using Adafruit’s individual Flora NeoPixels and NeoPixel Rings, respectively.

Everything is going to be controlled using an Arduino Mega microcontroller development board. Speaking of control, the potentiometers are going to be motorized, so that if an unauthorized operator tries to modify any of the settings, the other potentiometers will automatically change to compensate (later they will all surreptitiously return to their original settings).

Now observe the three black momentary push-buttons located on the lower panel, just under the modestly sized red button (do not press the red button). These equate to gifts of chocolates and flowers and hugs. Judicious use of these buttons increases the chances of happy times; overusing them, however, may trigger the “suspicion of wrongdoing” algorithm. In reality, there’s far too much “stuff” to go into here. Suffice it to say that the large meter in the top right-hand corner of the upper panel will reflect the full range of female emotion, from “Extremely Disgruntled” to “Fully Gruntled” (LOL).

Max has another project, dubbed “BADASS Display,” which was inspired by an item he saw in an electronics boutique-type store—a “really cool 9″ tall, cylindrical Bluetooth loudspeaker, whose outer surface was covered with tri-colored LEDs implementing a sort of spectrum analyzer display.”

While Max wasn’t interested in the $199.95 price, the “seed had been sown,” he says.

Thus was conceived my Bodacious Acoustic Diagnostic Astoundingly Superior Spectromatic (BADASS) display. First of all, I took a look around YouTube to get some ideas. It turns out that there are many different ways to present spectrographic data. For example, check out Gavin Curtis’ “My Big Blue 32 Band Audio Spectrum Analyzer Lady Gaga,”  RGB Styles’s “Coffee Table,” and Techmoan’s “Giant LED Graphic Music Display (DJ Spectrum Analyzer).”

I decided that the first incarnation of my display would boast a 16 x 16 array of tri-colored LEDs. I decided to use Adafruit’s NeoPixel Strips. Once again, I started by creating a cardboard and paper mockup as shown below.

Cardboard and paper mockup of the BADASS Display

Cardboard and paper mockup of the BADASS Display

The NeoPixel strips I’m using have 30 pixels per meter. I’m mounting these vertically, which means the vertical separation between adjacent pixels is 33.33 mm. To provide some visual interest, I decided to make the horizontal spacing between columns 50 mm, which is 1.5 times the vertical spacing.

In the real version, the cardboard will be replaced by plywood stained to look like expensive old wood. Meanwhile, the main display panel and the smaller control panel will be formed from hardboard painted to look like antique brass. In front of each pixel will be a 1″-diameter brass bezel accompanied by a 1/2″-diameter clear Fresnel lens in the center. The hardboard panels are going to be attached to the plywood panel using brass acorn nuts. Once again, the finished unit is intended to have a Steampunk look and feel.

I’m planning on using an Arduino Mega microcontroller development board to drive the display itself. This will be accompanied by a chipKIT Max32 microcontroller board that will be used to process the stereo audio stream and extract the spectrum data.

Max’s three project work areas include his office, his kitchen table, and his garage:

I would say that my first personal workspace is the Pleasure Dome (my office). Why do I think of this as a personal workspace? Theoretically I work out of a home office. In reality, however, I prefer to rent a room in a building belonging to an engineering company called MaxVision (no relation).

When you cross the office threshold, you enter a small corner of “Max’s World” (where the colors are brighter, the butterflies are bigger, the birds sing sweeter, and the beer is plentiful and cold). One of the walls is lined with wooden bookshelves containing an eclectic mix of science books, technical books, comics, and science fiction and fantasy books and graphic novels.

Welcome to the Pleasure Dome (Max's office)

Welcome to the Pleasure Dome (Max’s office)

My office is also the repository for all of the antique knobs and switches and analog meters and large vacuum tubes and such that I collect on my travels for use in my projects. Also, I can store (and present) larger objects in the bay outside my office.

My second personal workspace is the kitchen table in the breakfast nook at our home. This is where I tend to implement the electronics portions of my projects. At the far end of the table in the image below we see the jig I constructed to hold the two brass control panels for my Inamorata Prognostication Engine project. On the floor in the right-hand side of the image is the tool box that contains my electronics tools including screwdrivers, snip, and suchlike. It also contains my test equipment in the form of a cheap-and-cheerful multimeter from Amazon, along with an iPad-based oscilloscope and an iPad-based logic analyzer, both from Oscium.

Max's kitchen table

Max’s kitchen table

Observe the plastic storage box on the nearside of the table. I have a separate storage box for each of my projects. Anything associated with a project that’s currently under construction is stored in that project’s box, including any notes I’ve made, any electronic components and their datasheets, and any mechanical parts such as nuts and bolts.

I tend to gather everything associated with a particular function or sub-unit together into smaller boxes or plastic Ziploc bags. In the case of my motorized potentiometers, for example, I have the potentiometers along with the appropriate nuts, washers, antique knobs and suchlike all gathered together. I cannot tell you how much time and frustration a bit of organization like this saves you in the long run. It also make it much easier to pack everything up when my wife, Gina, informs me that she needs the table cleared.

Below we see another view of the test jig I constructed to hold the two brass panels for the Prognostication Engine. Creating this jig only took an hour or so, but it makes life so much easier with regard to assembling the electronics and accessing everything while I’m in the prototyping and software experimentation phase of the project.

The test jig for the Prognostication Engine on the kitchen table

The test jig for the Prognostication Engine on the kitchen table

Max’s third personal workspace is his garage. When his family’s three vehicles are parked inside, his projects are packed away in a corner, including tools and tiles for a mosaic he is creating that will feature ceramic tiles fired in his recently purchased kiln.

Everything tucked away

Everything tucked away

The shelves covered in plastic sheet to the right are where I place my freshly-rolled clay tiles to gradually dry without cracking. The low-down rolling cabinet in the foreground contains all of my handheld ceramic equipment (shapers and scrapers and rolling pins whatnot) along with general protective gear like face masks and safety goggles. Each of the plastic boxes on top of this cabinet is associated with a currently in-progress project. Behind this cabinet is a red rolling tool cabinet, which contains any smaller power tools, clamps, screwdrivers, wrenches and spanners, and also my soldering station and magnifying lens with helping hands and suchlike. To the right of that tool cabinet is a door (not visible in this picture) to a built-in closet, where I keep my larger power tools such as a diamond saw, desktop grinder, router, and so forth.

On the weekends, Max’s garage space opens up as his stepson drives out in his truck and Max’s wife leaves for her real estate agent’s job. “As soon as she has left, I leap into action,” Max says. “I roll out my tool boxes, set up a folding table and chair, and start work on whatever it is I’m currently working on.”

Another little corner of Max's garage work area

Another little corner of Max’s garage work area

As he works on projects in his garage, Max says he is “happily listening to stuff like Led Zeppelin, Genesis, Pink Floyd, Yes, Supertramp, Gentle Giant, The Moody Blues…”

The image below shows a close-up of the current state-of-play with regard to my BADASS Display. A week ago, I routed out the areas in the big plywood panel that will accommodate the hardboard display and control panels. In this image, I’m poised to mark out the hardboard panels and start drilling the mounting holes along with the 256 holes for the tri-state LEDs.

The BADASS Display

The BADASS Display

What can I say? Working on my hobby projects is a great way to wind down after a hard day at work, and being in any of my three personal workspaces makes me happy.

Max poised to give a presentation at the EELive! Conference in San Jose, CA, earlier this year

Max poised to give a presentation at the EELive! Conference in San Jose, CA, earlier this year

Editor’s Note: To find out more about Clive “Max” Maxfield, read his 2013 interview in Circuit Cellar. You can follow Max on Twitter @MaxMaxfield.

Stand-Alone, 8-Channel Event, State, and Count Data Logger

DATAQThe DI-160 is a stand-alone event, state, and count data logger that features four programmable measurement modes. The data logger enables you to determine when events occur, the total number of events, and the period of time in between events. It can count parts by monitoring a proximity sensor’s pulse output, or determine a machine’s downtime by monitoring AC power.

The DI-160 includes eight channels. Four ±300-VDC/peak AC isolated channels can accommodate high-level DC voltage signals, pulse inputs up 2 kHz, or AC line voltage. Four ±30-VDC/peak AC non-isolated channels (pulled high) enable you to monitor lower-level DC voltages, TTL-level, signals, or switch closures.

You can use DATAQ’s Event Recorder set-up software, which is included with the data logger, to enable/disable channels, select measurement modes on a channel-by-channel basis, and choose one of 21 sample intervals, ranging from 1 s to 24 h. Data is stored to a removable SD memory card in CSV format, enabling up to 500 days of continuous recording and easy viewing in Microsoft Excel.

The DI-160’s AC channels provide channel-to-channel and input-to-output isolation up to 500 VDC (±250-V peak AC) and have a 4-V trigger threshold. The low-voltage channels are protected up to ±30 VDC/peak AC and trigger at 2.5 V.

A built-in rechargeable battery acts as a “bridge” when disconnecting the data logger from a PC and connecting it to the USB power supply. Three LEDs indicate when the DI-160 is actively acquiring data, when the unit is connected via USB to a PC (or the included AC power supply), and the battery’s charge state. A push button enables you to start and stop recording to the SD memory card.

The DI-160’s four selectable measurement modes. State mode determines an event’s duration. Event mode detects a single change of state (within a sample interval). High-Speed (HS) Counter mode yields the total number of state changes within a sample interval. AC Counter mode counts the number of times AC power turns on/off within a sample interval.

The DI-160 costs $299 and includes a mini screwdriver a 2-GB SD memory card, an AC power supply, and a mini-USB cable. The DATAQ Event Recorder software is available for free download.

DATAQ Instruments, Inc.
www.dataq.com

Q&A: Hacker, Roboticist, and Website Host

Dean “Dino” Segovis is a self-taught hardware hacker and maker from Pinehurst, NC. In 2011, he developed the Hack A Week website, where he challenges himself to create and post weekly DIY projects. Dino and I recently talked about some of his favorite projects and products. —Nan Price, Associate Editor

 

NAN: You have been posting a weekly project on your website, Hack A Week, for almost three years. Why did you decide to create the website?

Dean "Dino" Segovis at his workbench

Dean “Dino” Segovis at his workbench

DINO: One day on the Hack A Day website I saw a post that caught my attention. It was seeking a person to fill a potential position as a weekly project builder and video blogger. It was offering a salary of $35,000 a year, which was pretty slim considering you had to live in Santa Monica, CA. I thought, “I could do that, but not for $35,000 a year.”

That day I decided I was going to challenge myself to come up with a project and video each week and see if I could do it for at least one year. I came up with a simple domain name, www.hackaweek.com, bought it, and put up a website within 24 h.

My first project was a 555 timer-based project that I posted on April 1, 2011, on my YouTube channel, “Hack A Week TV.” I made it through the first year and just kept going. I currently have more than 3.2 million video views and more than 19,000 subscribers from all over the world.

NAN: Hack A Week features quite a few robotics projects. How are the robots built? Do you have a favorite?

rumblebot head

Dino’s very first toy robot hack was the Rumble robot. The robot featured an Arduino that sent PWM to the on-board H-bridge in the toy to control the motors for tank steering. A single PING))) sensor helped with navigation.

Rumble robot

The Rumble robot

DINO: I usually use an Arduino as the robot’s controller and Roomba gear motors for locomotion. I have built a few others based on existing wheeled motorized toys and I’ve made a few with the Parallax Propeller chip.

My “go-to” sensor is usually the Parallax PING))) ultrasonic sensor. It’s easy to connect and work with and the code is straightforward. I also use bump sensors, which are just simple contact switches, because they mimic the way some insects navigate.

Nature is a great designer and much can be learned from observing it. I like to keep my engineering simple because it’s robust and easy to repair. The more you complicate a design, the more it can do. But it also becomes more likely that something will fail. Failure is not a bad thing if it leads to a better design that overcomes the failure. Good design is a balance of these things. This is why I leave my failures and mistakes in my videos to show how I arrive at the end result through some trial and error.

My favorite robot would be “Photon: The Video and Photo Robot” that I built for the 2013 North Carolina Maker Faire. It’s my masterpiece robot…so far.

NAN: Tell us a little more about Photon. Did you encounter any challenges while developing the robot?

Photon awaits with cameras rolling, ready to go forth and record images.

Photon awaits with cameras rolling, ready to go forth and record images.

DINO: The idea for Photon first came to me in February 2013. I had been playing with the Emic 2 text-to-speech module from Parallax and I thought it would be fun to use it to give a robot speech capability. From there the idea grew to include cameras that would record and stream to the Internet what the robot saw and then give the robot the ability to navigate through the crowd at Maker Faire.

I got a late start on the project and ended up burning the midnight oil to get it finished in time. One of the bigger challenges was in designing a motorized base that would reliably move Photon across a cement floor.

The problem was in dealing with elevation changes on the floor covering. What if Photon encountered a rug or an extension cord?

I wanted to drive it with two gear motors salvaged from a Roomba 4000 vacuum robot to enable tank-style steering. A large round base with a caster at the front and rear worked well, but it would only enable a small change in surface elevation. I ended up using that design and made sure that it stayed away from anything that might get it in trouble.

The next challenge was giving Photon some sensors so it could navigate and stay away from obstacles. I used one PING))) sensor mounted on its head and turned the entire torso into a four-zone bump sensor, as was a ring around the base. The ring pushed on a series of 42 momentary contact switches connected together in four zones. All these sensors were connected to an Arduino running some simple code that turned Photon away from obstacles it encountered. Power was supplied by a motorcycle battery mounted on the base inside the torso.

The head held two video cameras, two smartphones in camera mode, and one GoPro camera. One video camera and the GoPro were recording in HD; the other video camera was recording in time-lapse mode. The two smartphones streamed live video, one via 4G to a Ustream channel and the other via Wi-Fi. The Ustream worked great, but the Wi-Fi failed due to interference.

Photon’s voice came from the Emic 2 connected to another Arduino sending it lines of text to speak. The audio was amplified by a small 0.5-W LM386 amplifier driving a 4” speaker. An array of blue LEDs mounted on the head illuminated with the brightness modulated by the audio signal when Photon spoke. The speech was just a lot of lines of text running in a timed loop.

Photon’s brain includes two Arduinos and an LM386 0.5-W audio amplifier with a sound-to-voltage circuit added to drive the mouth LED array. Photon’s voice comes from a Parallax Emic 2 text-to-speech module.

Photon’s brain includes two Arduinos and an LM386 0.5-W audio amplifier with a sound-to-voltage circuit added to drive the mouth LED array. Photon’s voice comes from a Parallax Emic 2 text-to-speech module.

Connecting all of these things together was very challenging. Each component needed a regulated power supply, which I built using LM317T voltage regulators. The entire current draw with motors running was about 1.5 A. The battery lasted about 1.5 h before needing a recharge. I had an extra battery so I could just swap them out during the quick charge cycle and keep downtime to a minimum.

I finished the robot around 11:00 PM the night before the event. It was a hit! The videos Photon recorded are fascinating to watch. The look of wonder on people’s faces, the kids jumping up to see themselves in the monitors, the smiles, and the interaction are all very interesting.

NAN: Many of your Hack A Week projects include Parallax products. Why Parallax?

DINO: Parallax is a great electronics company that caters to the DIY hobbyist. It has a large knowledge base on its website as well as a great forum with lots of people willing to help and share their projects.

About a year ago Parallax approached me with an offer to supply me with a product in exchange for featuring it in my video projects on Hack A Week. Since I already used and liked the product, it was a perfect offer. I’ll be posting more Parallax-based projects throughout the year and showcasing a few of them on the ELEV-8 quadcopter as a test platform.

NAN: Let’s change topics. You built an Electronic Fuel Injector Tester, which is featured on HomemadeTools.net. Can you explain how the 555 timer chips are used in the tester?

DINO: 555 timers are great! They can be used in so many projects in so many ways. They’re easy to understand and use and require only a minimum of external components to operate and configure.

The 555 can run in two basic modes: monostable and astable.

Dino keeps this fuel injector tester in his tool box at work. He’s a European auto technician by day.

Dino keeps this fuel injector tester in his tool box at work. He’s a European auto technician by day.

An astable circuit produces a square wave. This is a digital waveform with sharp transitions between low (0 V) and high (+ V). The durations of the low and high states may be different. The circuit is called astable because it is not stable in any state: the output is continually changing between “low” and “high.”

A monostable circuit produces a single output pulse when triggered. It is called a monostable because it is stable in just one state: “output low.” The “output high” state is temporary.

The injector tester, which is a monostable circuit, is triggered by pressing the momentary contact switch. The single-output pulse turns on an astable circuit that outputs a square-wave pulse train that is routed to an N-channel MOSFET. The MOSFET turns on and off and outputs 12 V to the injector. A flyback diode protects the MOSFET from the electrical pulse that comes from the injector coil when the power is turned off and the field collapses. It’s a simple circuit that can drive any injector up to 5 A.

This is a homebrew PCB for Dino's fuel injector tester. Two 555s drive a MOSFET that switches the injector.

This is a homebrew PCB for Dino’s fuel injector tester. Two 555s drive a MOSFET that switches the injector.

NAN: You’ve been “DIYing” for quite some time. How and when did your interest begin?

DINO: It all started in 1973 when I was 13 years old. I used to watch a TV show on PBS called ZOOM, which was produced by WGBH in Boston. Each week they had a DIY project they called a “Zoom-Do,” and one week the project was a crystal radio. I ordered the Zoom-Do instruction card and set out to build one. I got everything put together but it didn’t work! I checked and rechecked everything, but it just wouldn’t work.

I later realized why. The instructions said to use a “cat’s whisker,” which I later found out was a thin piece of wire. I used a real cat’s whisker clipped from my cat! Anyway, that project sparked something inside me (pun intended). I was hooked! I started going house to house asking people if they had any broken or unwanted radios and or TVs I could have so I could learn about electronics and I got tons of free stuff to mess with.

My mom and dad were pretty cool about letting me experiment with it all. I was taking apart TV sets, radios, and tape recorders in my room and actually fixing a few of them. I was in love with electronics. I had an intuition for understanding it. I eventually found some ham radio guys who were great mentors and I learned a lot of good basic electronics from them.

NAN: Is there a particular electronics engineer, programmer, or designer who has inspired the work you do today?

DINO: Forrest Mims was a great inspiration in my early 20s. I got a big boost from his “Engineer’s Notebooks.” The simple way he explained things and his use of graph paper to draw circuit designs really made learning about electronics easy and fun. I still use graph paper to draw my schematics during the design phase and for planning when building a prototype on perf board. I’m not interested in any of the software schematic programs because most of my projects are simple and easy to draw. I like my pencil-and-paper approach.

NAN: What was the last electronics-design related product you purchased and what type of project did you use it with?

DINO: An Arduino Uno. I used two of these in the Photon robot.

NAN: What new technologies excite you and why?

DINO: Organic light-emitting diodes (OLEDs). They’ll totally change the way we manufacture and use digital displays.

I envision a day when you can go buy your big-screen TV that you’ll bring home in a cardboard tube, unroll it, and place it on the wall. The processor and power supply will reside on the floor, out of the way, and a single cable will go to the panel. The power consumption will be a fraction of today’s LCD or plasma displays and they’ll be featherweight by comparison. They’ll be used to display advertising on curved surfaces anywhere you like. Cell phone displays will be curved and flexible.

How about a panoramic set of virtual reality goggles or a curved display in a flight simulator? Once the technology gets out of the “early adopter” phase, prices will come down and you’ll own that huge TV for a fraction of what you pay now. One day we might even go to a movie and view it on a super-huge OLED panorama screen.

NAN: Final question. If you had a full year and a good budget to work on any design project you wanted, what would you build?

DINO: There’s a project I’ve wanted to build for some time now: A flight simulator based on the one used in Google Earth. I would use a PC to run the simulator and build a full-on seat-inside enclosure with all the controls you would have in a jet airplane. There are a lot of keyboard shortcuts for a Google flight simulator that could be triggered by switches connected to various controls (e.g., rudder pedals, flaps, landing gear, trim tabs, throttle, etc.). I would use the Arduino Leonardo as the controller for the peripheral switches because it can emulate a USB keyboard. Just program it, plug it into a USB port along with a joystick, build a multi-panel display (or use that OLED display I dream of), and go fly!

Google Earth’s flight simulator also lets you fly over the surface of Mars! Not only would this be fun to build and fly, it would also be a great educational tool. It’s definitely on the Hack A Week project list!

Editor’s Note: This article also appears in the Circuit Cellar’s upcoming March issue, which focuses on robotics. The March issue will soon be available for membership download or single-issue purchase.