Doing the Robot, 21st-Century Style

Growing up in the 1970s, the first robot I remember was Rosie from The Jetsons. In the 1980s, I discovered Transformers, which were touted as “robots in disguise,” I imitated Michael Jackson’s version of “the robot,” and (unbeknownst to me) the Arthrobot surgical robot was first developed. This was years before Honda debuted ASIMO, the first humanoid robot, in 2004.

“In the 1970s, microprocessors gave me hope that real robots would eventually become part of our future,” RobotBASIC codeveloper John Blankenship told me in a 2013 interview. It appears that the “future” may already be here.

Honda's ASIMO humanoid robot

Honda’s ASIMO humanoid robot

Welcome to the 21st century. Technology is becoming “smarter,“ as evidenced at the Consumer Electronics Show (CES) 2014, which took place in January. The show unveiled a variety of smartphone-controlled robots and drones as well as wireless tracking devices.

Circuit Cellar’s columnists and contributors have been busy with their own developments. Steve Lubbers wondered if robots could be programmed to influence each other’s behavior. He used Texas Instruments’s LaunchPad hardware and a low-cost radio link to build a group of robots to test his theory. The results are on p. 18.

RobotBASIC’s Blankenship wanted to program robots more quickly. His article explains how he uses robot simulation to decrease development time (p. 30).

The Internet of Things (IoT), which relies on embedded technology for communication, is also making advancements. According to information technology research and advisory company Gartner, by 2020, there will be close to 26 billion devices on the IoT.

With the IoT, nothing is out of the realm of a designer’s imagination. For instance, if you’re not at home, you can use IoT-based platforms (such as the one columnist Jeff Bachiochi writes about on p. 58) to preheat your oven or turn off your sprinklers when it starts to rain.

Meanwhile, I will program my crockpot and try to explain to my 8-year-old how I survived childhood without the Internet.

Dynamic Efficiency Microcontrollers

STMicroThe STM32F401 Dynamic Efficiency microcontrollers extend battery life and support innovative new features in mobile phones, tablets, and smart watches. They help manage MEMS sensors in smart-connected devices and are well suited for Internet-of-Things (IoT) applications and fieldbus-powered industrial equipment.

The STM32F401 microcontrollers include an ART accelerator, a prefetch queue, and a branch cache. This enables zero-wait-state execution from flash, which boosts performance to 105 DMIPS (285 CoreMark) at 84 MHz. The microcontrollers’ 90-nm process technology boosts performance and reduces dynamic power. Its dynamic voltage scaling optimizes the operating voltage to meet performance demands and minimize leakage.

The STM32F401 microcontrollers integrate up to 512 KB of flash and 96 KB SRAM in a 3.06-mm × 3.06-mm chip-scale package and feature a 9-µA at 1.8 V Stop mode current. The devices’ peripherals include three 1-Mbps I2C ports, three USARTs, four SPI ports, two full-duplex I2S audio interfaces, a USB 2.0 OTG full-speed interface, an SDIO interface, 12-bit 2.4-MSPS 16-channel ADC, and up to 10 timers.

Pricing for the STM32F401 microcontrollers starts at $2.88 in 10,000-unit quantities.

STMicroelectronics
www.st.com

Next-Generation Wi-Fi Modules

eConaisThe EC19D family is small, easily integrated, low-standby power single chip 802.11b/g/n Wi-Fi System In Package (SiP) modules for the Internet of Things (IoT).

The SiP modules help designers quickly and easily connect their devices to 802.11b/g/n Wi-Fi networks. At 8-mm × 8-mm, the EC19D modules can be embedded in almost any product or application. The EC19D will also include FCC, IC, and EC certifications to further simplify and speed up product design and production for use with Wi-Fi networks.

The EC19D incorporates the newest Wi-Fi 802.11b/g/n standards and features to provide designers with many options for embedding the module in their designs. The EC19D’s features include Wi-Fi Direct, ProbMeTM configuration, full TCP/IP stack, HTTPS/SSL, DHCP Client/Server, WPS, legacy Wi-Fi Client, and SoftAP modes with WPA/WPA2 support, serial to Wi-Fi, and Cloud service support.

Contact eConais for pricing.

eConais Inc.
www.econais.com

Remote Control and Monitoring of Household Devices

Raul Alvarez, a freelance electronic engineer from Bolivia, has long been interested in wireless device-to-device communication.

“So when the idea of the Internet of Things (IoT) came around, it was like rediscovering the Internet,” he says.

I’m guessing that his dual fascinations with wireless and the IoT inspired his Home Energy Gateway project, which won second place in the 2012 DesignSpark chipKIT challenge administered by Circuit Cellar.

“The system enables users to remotely monitor their home’s power consumption and control household devices (e.g., fans, lights, coffee machines, etc.),” Alvarez says. “The main system consists of an embedded gateway/web server that, aside from its ability to communicate over the Internet, is also capable of local communications over a home area wireless network.”

Alvarez catered to his interests by creating his own wireless communication protocol for the system.

“As a learning exercise, I specifically developed the communication protocol I used in the home area wireless network from scratch,” he says. “I used low-cost RF transceivers to implement the protocol. It is simple and provides just the core functionality necessary for the application.”

Figure1: The Home Energy Gateway includes a Hope Microelectronics RFM12B transceiver, a Digilent chipKIT Max32 board, and a Microchip Technology ENC28J60 Ethernet controller chip.

Figure 1: The Home Energy Gateway includes a Hope Microelectronics RFM12B transceiver, a Digilent chipKIT Max32 board, and a Microchip Technology ENC28J60 Ethernet controller chip.

Alvarez writes about his project in the February issue of Circuit Cellar. His article concentrates on the project’s TCI/IP communications aspects and explains how they interface.

Here is his article’s overview of how the system functions and its primary hardware components:

Figure 1 shows the system’s block diagram and functional configuration. The smart meter collects the entire house’s power consumption information and sends that data every time it is requested by the gateway. In turn, the smart plugs receive commands from the gateway to turn on/off the household devices attached to them. This happens every time the user turns on/off the controls in the web control panel.

Photo 1: These are the three smart node hardware prototypes: upper left,  smart plug;  upper right, a second smart plug in a breadboard; and at bottom,  the smart meter.

Photo 1: These are the three smart node hardware prototypes: upper left, smart plug; upper right, a second smart plug in a breadboard; and at bottom, the smart meter.

I used the simple wireless protocol (SWP) I developed for this project for all of the home area wireless network’s wireless communications. I used low-cost Hope Microelectronics 433-/868-/915-MHz RFM12B transceivers to implement the smart nodes. (see Photo 1)
The wireless network is configured to work in a star topology. The gateway assumes the role of a central coordinator or master node and the smart devices act as end devices or slave nodes that react to requests sent by the master node.

The gateway/server is implemented in hardware around a Digilent chipKIT Max32 board (see Photo 2). It uses an RFM12B transceiver to connect to the home area wireless network and a Microchip Technology ENC28J60 chip module to connect to the LAN using Ethernet.

As the name implies, the gateway makes it possible to access the home area wireless network over the LAN or even remotely over the Internet. So, the smart devices are easily accessible from a PC, tablet, or smartphone using just a web browser. To achieve this, the gateway implements the SWP for wireless communications and simultaneously uses Microchip Technology’s TCP/IP Stack to work as a web server.

Photo 2: The Home Energy Gateway’s hardware includes a Digilent chipKIT Max32 board and a custom shield board.

Photo 2: The Home Energy Gateway’s hardware includes a Digilent chipKIT Max32 board and a custom shield board.

Thus, the Home Energy Gateway generates and serves the control panel web page over HTTP (this page contains the individual controls to turn on/off each smart plug and at the same time shows the power consumption in the house in real-time). It also uses the wireless network to pass control data from the user to the smart plugs and to read power consumption data from the smart meter.

The hardware module includes three main submodules: The chipKIT Max 32 board, the RFM12B wireless transceiver, and the ENC28J60 Ethernet module. The smart meter hardware module has an RFM12B transceiver for wireless communications and uses an 8-bit Microchip Technology PIC16F628A microcontroller as a main processor. The smart plug hardware module shows the smart plugs’ main hardware components and has the same microcontroller and radio transceiver as the smart meter. But the smart plugs also have a Sharp Microelectronics S212S01F solid-state relay to turn on/off the household devices.

On the software side, the gateway firmware is written in C for the Microchip Technology C32 Compiler. The smart meter’s PIC16F628A code is written in C for the Hi-TECH C compiler. The smart plug software is very similar.

Alvarez says DIY home-automation enthusiasts will find his prototype inexpensive and capable. He would like to add several features to the system, including the ability to e-mail notifications and reports to users.

For more details, check out the February issue now available for download by members or single-issue purchase.

Places for the IoT Inside Your Home

It’s estimated that by the year 2020, more than 30 billion devices worldwide will be wirelessly connected to the IoT. While the IoT has massive implications for government and industry, individual electronics DIYers have long recognized how projects that enable wireless communication between everyday devices can solve or avert big problems for homeowners.

February CoverOur February issue focusing on Wireless Communications features two such projects, including  Raul Alvarez Torrico’s Home Energy Gateway, which enables users to remotely monitor energy consumption and control household devices (e.g., lights and appliances).

A Digilent chipKIT Max32-based embedded gateway/web server communicates with a single smart power meter and several smart plugs in a home area wireless network. ”The user sees a web interface containing the controls to turn on/off the smart plugs and sees the monitored power consumption data that comes from the smart meter in real time,” Torrico says.

While energy use is one common priority for homeowners, another is protecting property from hidden dangers such as undetected water leaks. Devlin Gualtieri wanted a water alarm system that could integrate several wireless units signaling a single receiver. But he didn’t want to buy one designed to work with expensive home alarm systems charging monthly fees.

In this issue, Gualtieri writes about his wireless water alarm network, which has simple hardware including a Microchip Technology PIC12F675 microcontroller and water conductance sensors (i.e., interdigital electrodes) made out of copper wire wrapped around perforated board.

It’s an inexpensive and efficient approach that can be expanded. “Multiple interdigital sensors can be wired in parallel at a single alarm,” Gualtieri says. A single alarm unit can monitor multiple water sources (e.g., a hot water tank, a clothes washer, and a home heating system boiler).

Also in this issue, columnist George Novacek begins a series on wireless data links. His first article addresses the basic principles of radio communications that can be used in control systems.

Other issue highlights include advice on extending flash memory life; using C language in FPGA design; detecting capacitor dielectric absorption; a Georgia Tech researcher’s essay on the future of inkjet-printed circuitry; and an overview of the hackerspaces and enterprising designs represented at the World Maker Faire in New York.

Editor’s Note: Circuit Cellar‘s February issue will be available online in mid-to-late January for download by members or single-issue purchase by web shop visitors.