Connected Home Solutions with ZigBee and Thread-Ready Connectivity

Silicon Labs recently introduced a series of comprehensive reference designs that reduce time to market and simplify the development of ZigBee-based home automation, connected lighting and smart gateway products. The first in a series of Internet of Things (IoT) solutions, the new reference designs include hardware, firmware, and software tools for developing high-quality connected home solutions based on Silicon Labs’s ZigBee “Golden Unit” Home Automation (HA 1.2) software stack and ZigBee SoC mesh networking technology.SiliconLabs IoT-SolutionsSilicon Labs’ ZigBee connected lighting reference designs feature wireless lighting boards and a plug-in demo board. The Golden Unit ZigBee stack allows LED lights to reliably join, interoperate, and leave a mesh network. The connected lights can support white, color temperature tuning, and RGB color settings as well as dimming.

Silicon Labs’ ZigBee-based home automation reference designs include a capacitive-sense dimmable light switch and a small door/window contact sensor. The light switch provides color, color tuning, and dimming control capabilities. As opposed to conventional switches, the wireless, battery-powered switches have no moving parts and are easy to place anywhere in a home. The switch design includes Silicon Labs’s EFM8 capacitive sensing microcontroller to detect different user gestures (touch, hold, and swipe). The contact sensor reference design provides all the tools needed to create wireless, battery-powered sensors used to monitor door and window positions (open or closed).

Silicon Labs offers two ZigBee gateway options to complement the reference designs:

  • A plug-and-play USB virtual gateway that works with any PC development platform and supports the Windows, OS X, and Linux environments as a virtual machine
  • An out-of-the-box Wi-Fi/Ethernet gateway reference design based on an embedded Linux computer system

Both gateway options enable you to control and monitor ZigBee HA 1.2-compliant end nodes through Wi-Fi with any device with a web browser, such as a smartphone or tablet. With an intuitive, web-based user interface, you can easily create rules between ZigBee end devices including lights, dimmable light switches, and contact sensors.

Silicon Labs’ connected lighting, home automation, and smart gateway reference designs are currently available. The RD-0020-0601 and RD-0035-0601 connected lighting reference designs cost $49. The RD-0030-0201 contact sensor reference design is $39. The RD-0039-0201 capacitive-sense dimmable light switch reference design is $29. The USB virtual gateway is $49. The out-of-the-box Wi-Fi/Ethernet gateway reference design is $149.

Source: Silicon Labs 

STM32 Family Enabled for the ARM mbed IoT Device Platform

STMicroelectronics has announced that the STM32 family of ARM Cortex-M based microcontrollers is now enabled for the ARM mbed IoT Device Platform with the latest public version of the ARM mbed OS. The mbed platform adds a standard OS, cloud services, and development tools for creating new IoT applications.

By adding mbed to its handy design ecosystem, STMicro is encouraging more productivity and collaboration in IoT development. Using the mbed OS with STM32 development hardware enables you to innovate while reducing your product’s time to market. You can easily incorporate STM32 microcontrollers with STMicro’s sensor and power-management products to deploy “smart,” secure IoT designs.

Source: STMicroelectronics

Arcturus uCMK64-IoT module: TLS security, Ethernet, Wi-Fi and more (Sponsored)

The Arcturus uCMK64-IoT is a 60x60mm module for developing secure IoT devices that require a combination of connectivity and control. The hardware uses a 120MHz, Freescale Kinetis K64 microcontroller with Ethernet, Wi-Fi, TLS security, peripheral connectivity and optional audio. The platform is controlled using a simple command protocol over a UART or TCP/IP socket, providing options for both host-MCU or cloud integration. The protocol supports I/O, bi-directional UART-to-net communication, device services and settings. A “call home” feature automatically originates the secure TLS socket connection to a remote server, helping to egress firewalls.

uCMK64-MOD-Top_PennyThe platform is fully compatible with the eco-system of Arcturus IoT tools, including Mbarx-System Manager, a powerful tool for securely managing entire network sites. Developers can easily connect, change firmware, configure, control or probe attached sensors and peripherals. An IoT apps store, provides direct access to firmware.

The uCMK64 is IoT made easy, no complex BSP or software system integration. The development kit contains everything you need to get started.

uCMK64-Kit_ContentsKey features:

  • 120MHz ARM® Cortex® M4 microcontroller
  • Ethernet with network stack
  • 11bgn Wi-Fi
  • Optional audio
  • Socket or UART control
  • Eco-system of IoT Tools
  • -40 to +85C parts rating

Firmware:

  • TLS based secure connectivity
  • I/O controls
  • UART-to-net peripheral connectivity
  • Optional VoIP, audio and PA firmware

How to buy:

  • uCMK64-IoT Development Kit
  • uCMK64-MOD – Module
  • uCMK64-SSB – Board

Learn more at ArcturusNetworks.com

Arcturus_Logo_WHT

Next-Gen Bluetooth Low Energy Solutions

Microchip Technology recently launched next-generation Bluetooth Low Energy (LE) solutions intended for Internet of Things (IoT) and Bluetooth Beacon applications: the IS1870 Bluetooth LE RF module, the IS1871 Bluetooth LE RF module, and the BM70 module.Microchip BM70

The Bluetooth LE devices include an integrated, certified Bluetooth 4.2 firmware stack. Data is transmitted over the Bluetooth link using Transparent UART mode, which you can integrate with any processor or PIC microcontroller with a UART interface. The module also supports standalone “hostless” operation for beacon applications.

The optimized power profile of these new devices minimizes current consumption for extended battery life, in compact form factors as small as 4 × 4 mm for the RF ICs and 15 × 12 mm for the module. The module options include RF regulatory certifications, or noncertified (unshielded/antenna-less) for smaller and more remote antenna designs that will undergo end-product emission certifications.

The BM70 Bluetooth Low Energy PICtail/PICtail Plus daughter board enables code development via USB interface to a PC. Or you can connect to Microchip’s existing microcontroller development boards, such as the Explorer 16, PIC18 Explorer and PIC32 I/O Expansion Board. The BM-70-PICTAIL costs $89.99.

The IS1870 Bluetooth LE RF IC (6 × 6 mm, 48-pin QFN package) costs $1.79 in 1,000-unit quantities. The IS1871 (4 × 4 mm, 32-pin QFN package) costs $1.76 in 1,000-unit quantities. The 30-pin BM70 Bluetooth LE modules are available with or without built-in PCB antennas, starting at $4.99 each in 1,000-unit quantities.

Source: Microchip Technology

New Pre-Certified HumRC Series Remote Control Transceiver

Linx Technologies recently introduced new pre-certified remote control and sensor transceiver modules. Built on the Hummingbird platform, the HumRC Series transceiver is a frequency hopping spread spectrum (FHSS) transceiver designed for reliable bidirectional remote control and sensor applications. Available in 900 MHz, the HumRC outputs up to 10 dBm, which results in a line-of-sight range of up to 1 mile.HumRC pre-cert-series-pr-art

The HumRC Series module is a completely integrated RF transceiver and processor designed for bidirectional remote control. It employs a fast-locking FHSS system for noise immunity and higher transmitter output power as allowed by government regulations.

The remote control transceiver has eight status lines that can be individually configured as inputs to register button presses or as outputs to drive application circuitry. A selectable acknowledgement indicates that the transmission was successfully received. Primary settings are hardware-selectable, which eliminates the need for an external microcontroller or other digital interface.

The transceiver also has two analog-to-digital (ADC) inputs for sensors or circuits that output an analog voltage. The module can automatically respond to a command with these values, so a sensor node does not need an additional microprocessor.

To aid rapid development, the HumRC Series low-cost RF modules are available as part of a newly conceived type of Master Development System. This development kit is intended to assist in the rapid evaluation and integration of the HumRC Series data transceiver modules. It features several preassembled evaluation boards that include everything needed to quickly test the operation of the transceiver modules.

Source: Linx Technologies

The IAR Connect Portal for the IoT

IAR Systems recently launched IAR Connect, which is a portal that presents product development platforms and serves as hub intended to connect innovators interested in the Internet of Things (IoT) and other emerging technologies.IAR Systems connect

One of the first members of IAR Connect is Renesas Electronics. Customers using the Renesas Synergy Platform can begin product development at a high level of abstraction and focus completely on designing innovative features for embedded applications and connected devices.

“The best way to take advantage of the possibilities of the new connected world is by providing new technology offerings, sharing knowledge and establishing strategic alliances, such as our strong partnership with Renesas. With IAR Connect, we enable innovation by connecting people and technologies. I invite everyone to connect, get inspired and explore the potential of the Internet of Things and the connected world at www.iarconnect.com”, said IAR Systems CEO Stefan Skarin in a released statement.

Source: IAR Systems

New Low-Power Smart Sensor Wireless Platform for IoT Devices

Dialog Semiconductor recently announced that it is collaborating with Bosch Sensortec to develop a low-power smart sensor platform for Internet of Things (IoT) devices. The 12-DOF smart sensor reference platform is intended for gesture recognition in wearable computing devices and immersive gaming, including augmented reality and 3-D indoor mapping and navigation.DS008_bosch-Dialog

The platform comprises Dialog’s DA14580 Bluetooth Smart SoC with three low-power Bosch Sensortecsensors: the BMM150 (for three-axis geo-magnetic field measurement), the BME280 (pressure, humidity, and temperature sensor), and the siz-axis BMI160 (a combination of a three-axis accelerometer and three-axis gyroscope in one chip). The resulting 14 × 14 mm2 unit draws less than 500 µA from a 3-V coin cell when updating and transferring all 12 × 16 bits of data wirelessly to a smartphone.

 

The 2.5 × 2.5 × 0.5 mm DA14580 SmartBond SoC integrates a Bluetooth Smart radio with an ARM Cortex-M0 application processor and intelligent power management. It more than doubles the battery life of an application-enabled smartphone accessory, wearable device, or computer peripheral in comparison with other solutions. The DA14580 includes a variety of analog and digital interfaces and features less than 15 mW power consumption in active mode and 600-nA standby current.

Bosch Sensortec’s BMI160 six-axis Inertial Measurement Unit (IMU) integrates a 16 bit, three-axis, low-g accelerometer and an ultra-low power three-axis gyroscope within a single package. When the accelerometer and gyroscope are in full operation mode, the typical current consumption is 950 µA.

The BMM150 integrates a compact three-axis geo-magnetic field sensor using Bosch Sensortec’s high performance FlipCore technology. The BME280 Integrated Environmental Unit combines sensors for barometric pressure, humidity, and temperature measurement. Its altitude measurement function is a key requirement in applications such as indoor navigation with floor tracking.

Source: Dialog Semiconductor

Small, Low-Power Battery Management Solution for the IoT

Texas Instruments’s new bq25120 battery management solution features low quiescent current (Iq) at 700-nA with the buck converter and operates at 1.8 V. Supporting batteries from 3.6-V to 4.65-V, and fast charge currents from 5-mA to 300-mA, the bq25120 enables wearables and Internet of Things (IoT) applications to remain on without draining the battery. TI Battery1

The bq25120 includes a linear charger, configurable LDO, buck converter, load switch, push button control, and battery voltage monitor. You can use it with other devices to integrate more end application features.

With the $99 bq25120 evaluation module (EVM), you can speed up time to market by easily evaluating device features and performance. The 2.5 mm × 2.5 mm bq25120 charger costs $1.60 in 1,000-piece quantities.

Source: Texas Instruments

New Ultra-Compact Wireless M-Bus Module

AMIHO Technology recently announced an ultra-compact and cost effective Wireless Meter-Bus module. The AM090 is intended primarily for connecting smart meters and Internet of Things (IoT) devices. At just 15 × 15 mm, the AM090 works well with small sensors and other IoT end points.AMIHO AM090

Fully compliant with the European standards (EN13757), the AM090 features Freescale’s Kinetis family of ARM cortex MCUs and operates at 868 MHz. The module includes a comprehensive and optimized software stack, which can be licensed as a stand-alone product for integration into other designs.

Source: AMIHO Technology

IoT Project: DIY, Net-Connected Wireless Water Heater

Some people like to remotely start their cars when it’s cold outside. Dan Beadle took this idea one step further by Internet-enabling his mountainside retreat’s hydronics system. The innovative design enables him to warm the house well in advance of his arrival.

Serving up the current temperature involves several computers, a Wi-Fi access point, and the DPAC Airborne module.

Serving up the current temperature involves several computers, a Wi-Fi access point, and a DPAC Airborne module.

In “Wireless Water Heater” (Circuit Cellar 163), Beadle writes:

My mountain home, where I have vacationed for years, is well insulated, making it a snap for the heater system to keep warm. I have a small, efficient heater; however, it takes forever to warm the house from a 50°F standby to a livable 68°F. Typically, I arrive late and shiver in my jacket for three or four hours until the house warms up—and that does not warm the entire house, just the portion needed to get through the night.

I had been thinking for a while about Internet-enabling the system. The idea was to turn on the heater before we start up the mountain. I have DSL at the house with a fixed IP. So, it seemed like it would be a simple task to enable a thermostat. I considered using an X10 thermostat, but, after a few of our X10-enabled lights found a mind of their own, I decided that I wanted better reliability. My next thought was to use simple copper to do the hook-up. I started planning a cable from my office/DSL entry up to the logical thermostat location. Then I procrastinated. I could not bring myself to run the wires along the surface of my redwood paneling. (And it was not at all feasible to remove the paneling.) Wireless makes the problem a lot simpler: there are no wires to run, and the applications processor and digital I/O on the module make the hardware design trivial.

Download the entire article.

 

Blue Gecko Module Simplifies Smart Design

Silicon Labs recently introduced a fully integrated, precertified Bluetooth Smart module solution that provides a speedy path to low-power wireless connectivity for the IoT. The BGM111 module is the first in a family of advanced Blue Gecko modules delivering integration, flexibility, energy efficiency, and toolchain support with an easy migration path to Blue Gecko system-on-chip (SoC) solutions. It simplifies Bluetooth Smart design for a wide variety of applications ranging from smart phone accessories to industrial sensors.

Based on Silicon Labs’s Blue Gecko wireless SoCs, the 12.9 mm × 15 mm × 2.2 mm BGM111 modules provide a plug-and-play Bluetooth Smart design precertified for use in North America, Europe, and the Asia-Pacific. The BGM111 modules are preloaded with the Bluegiga Bluetooth 4.1-compliant software stack and profiles and are field-upgradable using device firmware upgrades to Bluetooth 4.2 and beyond.SiLabs BlueGeckoThe BGM111 module is supported by Silicon Labs’s wireless SDK, which means you can use either a host or fully standalone operation through the Bluegiga BGScript scripting language. Using a familiar BASIC-like syntax, BGScript enables you to create Bluetooth applications quickly without using external MCUs to run the application logic. All application code can be executed on the BGM111 module.

Pre-production samples of the BGM111 Blue Gecko module, supported by the SLWSTK6101A Blue Gecko wireless starter kit, are currently available. BGM111 module pricing begins at $4.97 in 10,000-unit quantities. The SLWSTK6101A starter kit costs $150.

Source: Silicon Labs

Two-Pin, Self-Powered Serial EEPROM for the IoT

Atmel recently announced a two-pin, single-wire EEPROM intended for the Internet of Things (IoT), wearables, and more. The self-powered devices don’t require a power source or VCC pin, with a parasitic power scheme over the data pin. They provide ultra-low power standby of 700 nA, 200 µA for write current, and 80 µA for read current at 25°C.

The AT21CS01/11 devices eliminate the need for external capacitors and rectifiers with its parasitic power scheme over a single data pin. Plus, their ultra-high write endurance capability to allow more than 1 million cycles for each memory location to meet the requirements for today’s high-write endurance applications.

The AT21CS01/11 products include a simple product identification with a plug-and-play, 64-bit unique serial number in every device. Furthermore, they deliver industry-leading electrostatic discharge (ESD) rating (IEC 61000-4-2 Level 4 ESD Compliant), so a variety of applications (e.g., cables and consumables) can tolerate exposure to the outside environment or direct human contact while still delivering high performance.

The new devices follow the I2C protocol, which enables easy migration from existing EEPROM with less overhead and the capability to connect up to eight devices on the same bus. The AT21CS01 devices offer a security register with a 64-bit factory programmed serial number and an extra 16 bytes of user-programmable and permanently lockable storag.

The AT21CS01 is intended for low-voltage applications operating at 1.7 to 3.6 V. For applications that require higher voltage ranges (e.g., Li-Ion/polymer batteries), the AT21CS11 supports a 2.7 to 4.5 V operating range.

The AT21CS01 devices are available in production quantities in three-lead SOT23, eight-lead SOIC, and four-ball WLCSP. Pricing starts at $0.32 in 5,000-piece quantities. The AT21CS11 will be available in Q4 2015.

Source: Atmel

Advantech Offers Full Support of Microsoft Windows 10 IoT

Advantech now supports Windows 10 IoT (Internet of Things), which is intended to power a wide variety of intelligent connected devices, such as mobile point-of-sale units, robots, and medical equipment. Windows 10 IoT is designed to connect through Azure IoT Services and to provide enterprise-grade security along with machine-to-machine and machine-to-cloud connectivity.AdvantechWin10

Advantech offers diverse platforms with Windows 10 IoT preinstalled, including boards, systems, and gateways. Advantech WISE-PaaS Platform as a Service supports Windows 10 IoT with Core, Mobile, and Industry versions through Universal Windows Apps structure to offer Cloud Services. With it, developers can rapidly build applications and easily and deploy IoT cloud solutions.

Source: Advantech Corp.

Simple Energy Profiling for IoT Applications

Silicon Labs recently announced a new release of the Simplicity Studio development platform designed to make IoT system design easier and faster. Simplicity Studio—which enables concurrent microcontroller and wireless design—features an enhanced real-time Energy Profiler tool, faster execution speed, and an easier installation process. Featuring a easy to use UI and high accuracy, the Eenergy Profiler tool will enable you to optimize your IoT designs for ultra-low energy and long battery life.image002 Simplicity Silabs

The Energy Profiler’s Energy Score feature enables you to benchmark your IoT system’s energy efficiency. With it, you can score design iterations by overall energy efficiency.

Simplicity Studio’s features and specs:

  • An Eclipse-based IDE
    Graphical configuration tools
    Energy profiling and battery estimation tools
    Network analysis tools

The latest release of Simplicity Studio with the enhanced Energy Profiler is available at: www.silabs.com/simplicity-studio.

Source: Silicon Labs

Simplified IoT Connectivity with the Thread Networking Solution

Silicon Labs recently launched the Thread networking solution, which offers developers a straightforward way to develop Thread-compliant products for the Internet of Things (IoT), including thermostats, wireless sensor networks, and more. Thread provides a standards-based, low-power mesh networking solution based on IP. It enables secure and scalable Internet connectivity for battery-powered devices in connected environments. SiliconLabsThread

Silicon Labs offers a variety of mesh-networking SoCs and a common development platform for both ZigBee and Thread solutions. With the Silicon Labs Thread stack, EM35xx wireless SoC platform, and hardware and software tools, you can seemlessly migrate from ZigBee to Thread via over-the-air (OTA) upgrades. Silicon Labs’ hardware and software roadmap enable multi-protocol, multi-band 2.4-GHz and sub-GHz wireless connectivity for the IoT.

Silicon Labs offers essential development and debugging tools. Its AppBuilder tool simplifies and accelerates the development of IP-based mesh networking applications. With AppBuilder you configure mesh networking applications for Thread protocol using Silicon Labs’ application framework. A Silicon Labs Desktop Network Analyzer tool provides complete visibility of all wireless networking activity by using the unique packet trace port available in Silicon Labs’ mesh networking SoCs.

The Silicon Labs Thread software stack and sample application are available at no charge if you have a registered EM35x-DEV development kit. The EM35x-DEV kits provide a common platform for both ZigBee and Thread development, allowing you to address multiple markets. Thread modules are available now from Silicon Labs’s ecosystem partners, including California Eastern Labs (CEL) and Telegesis.

Source: Silicon Labs