Cost-Effective, Long-Range, Low-Power Internet of Things Connectivity

SIGFOX and Texas Instruments  recently announced that they’re working together to increase Internet of Things (IoT) deployments using the Sub-1 GHz spectrum. Customers can use the SIGFOX network with TI’s Sub-1 GHz RF transceivers to deploy wireless sensor nodes that are lower cost and lower power than 3G/cellular connected nodes, while providing long-range connectivity to the IoT.TI - SIGFOX

Targeting a wide variety of applications ranging from environmental sensors to asset tracking, the SIGFOX and TI collaboration maximizes the benefits of narrowband radio technology. It also reduces barriers to entry for manufacturers interested in connecting their products to the cloud. Using the SIGFOX infrastructure reduces the cost and effort to get sensor data to the cloud and TI’s Sub-1 GHz technology provides years of battery life for less maintenance and up to 100 km range.

SIGFOX’s two-way network is based on an ultra-narrowband (UNB) radio technology for connecting devices, which is key to providing a scalable, high-capacity network with very low energy consumption and unmatched spectral efficiency. That is essential in a network that will handle billions of messages daily.

TI’s CC1120  Sub-1 GHz RF transceiver uses narrowband technology to deliver the longest-range connectivity and superior coexistence to SIGFOX’s network with strong tolerance of interference. Narrowband is the de facto standard for long-range communication due to the high spectral efficiency, which is critical to support the projected high growth of connected IoT applications. The CC1120 RF transceiver also provides years of battery lifetime for a sensor node, which reduces maintenance and lowers the cost of ownership for end users.

Sub-1 GHz networks operate in region-specific industrial scientific and medical (ISM) bands below 1 GHz including 169, 315, 433, 500, 868, 915 and 920 MHz. The networks are proprietary by nature and provide a more robust IoT connection, which is why the technology has been used for smart metering, security and alarm systems and other sensitive industrial systems. Additionally, the technology is low power, enabling years of battery life to reduce service and maintenance requirements.


SIGFOX-certified modules based on TI’s CC1120 were demonstrated at Mobile World Congress 2015 and are currently available.

Source: Texas Instruments; SIGFOX


EtherCAT Slave Controller with Integrated PHYs for the Internet of Things

Microchip Technology’s LAN9252 is a stand-alone EtherCAT slave controller with two 10/100 PHYs. Its dual 10/100 Ethernet transceivers support both fiber and copper, along with cable diagnostics capabilities. In addition, the LAN9252 supports traditional Host Bus and SPI/SQI communication, along with standalone digital I/O interfaces, enabling you to select from a wide range of microcontrollers when implementing the real-time EtherCAT communications standard. Additionally, the LAN9252 reduces system complexity and cost for developers using EtherCAT in factory-automation, process-control, motor/motion-control and Internet of Things (IoT) industrial-Ethernet applications.Microchip LAN9252 EtherCAT

The LAN9252 EtherCAT slave controller includes 4 KB of Dual-Port RAM (DPRAM) and three Fieldbus Memory Management Units (FMMUs). It also includes cable diagnostics support that allows field service technicians to rapidly and effectively diagnose line faults and provides for fiber connectivity. This EtherCAT slave controller is available in commercial, industrial and extended industrial temperature ranges, in low pin count and small body size QFN and QFP-EP packages.

To enable development with the LAN9252, two Microchip evaluation boards supporting various system architectures are available. The systems demonstrate how to interface to the LAN9252 through basic I/O connections or to microcontrollers such as the 32-bit PIC32MX family via serial communications. A Software Development Kit (SDK) is also available. The boards—EVB-LAN9252-HBI and EVB-LAN9252-DIGIO—cost $300 each.

The LAN9252 EtherCAT slave controller is available for sampling in 64-pin QFN and QFP-EP packages, starting at $7.01 each, in 10,000-unit quantities.

Source: Microchip Technology

Toshiba Expands TX04 Range of ARM Cortex-M4F-Based Microcontrollers

Toshiba Electronics Europe has announced a new ARM Cortex-M4F based microcontroller for use in secure systems control. The TMPM46BF10FG expands its existing TX04 range and adds enhanced security features that are well-suited to applications in Internet of Things (IoT) devices, energy management systems, sensor technology, and industrial equipment.Toshiba TMPM46BF10FG

Users of secure communications control systems increasingly require mass memory data for firmware generation management, failure analysis, and high-precision consecutive data storage. The TMPM46BF10FG meets these requirements for high-level security features, such as tamper detection and information concealment. The IC also meets the need to reduce the number of parts on system circuit board by supporting large capacity memory.

Featuring an ARM Cortex-M4F core, with a maximum operating frequency of 120 MHz, the TMPM46BF10FG incorporates 1,024 KB of flash memory and 514-KB SRAM required for secure communications control, four types of security circuits for network communications. The microcontroller also integrates an SLC NAND flash memory controller and 4- and 8-bit error correction circuitry (BCH ECC) that supports memory expansion with 1-to-4-Gb SLC NAND flash memory chips.

To provide additional levels of safety, the IC includes a 16-channel interrupt input and a clock-independent watchdog timer, which operates separately from the system clock, improving the safety of system functions. In the case of a system clock malfunction, the watchdog timer is still capable of detecting errors.

The TMPM46BF10FG incorporates a true random number generator (TRNG: SP800-90C standard) through the combination of a random entropy seed generation (ESG) circuit and Hash-DRGB created by the secure hash processor (SHA) and software program. This meets the robust standards of security that are required in network communications. The hardware based AES encryption/decryption process meets FIPS180-4 and FIPS197 standards and reduces the load on the CPU, in combination with a random seed generation circuit (ESG), and a multiple-length arithmetic (MLA) used to calculate elliptic curves for asymmetric ciphers.

The TMPM46BF10FG features direct memory access (32 channel), a 12-bit AD converter (8 channel), 16-bit timer (8 channel), SPP (3 channel), SIO/UART (4 channel), full UART (2 channel) I2C (3 channel), with an operating voltage of 2.7 to 3.6 V. Housed in an LQFP100 package, the IC measures just 14 mm × 14 mm, with a 0.5-mm pitch.

Samples are now available. Mass production will begin in October.

Source: Toshiba



Microcontroller-Based Sentry System

David Penrose’s “Sentry” project comprises an array of passive IR sensors placed throughout a building to track motion. The microcontroller-based system comprises an RF link to a processor along with an Ethernet module to unobtrusively monitor motion and activity levels.

The Sentry system uses commercial IR motion sensors (lower left) together with a customer vibration sensor (lower right) to determine where an individual is within a building. The base unit (top) integrates reports from these sensors to generate alerts to a caregiver.

Photo 1: The Sentry system uses commercial IR motion sensors (lower left) together with a customer vibration sensor (lower right) to determine where an individual is within a building. The base unit (top) integrates reports from these sensors to generate alerts to a caregiver.

Penrose writes:

My Sentry System is designed to assist those folks living alone who desire the peace of mind provided by a caregiver looking after them without the caregiver having to be present. Its implementation was facilitated by the WIZnet WIZ550io Ethernet module, which provides a rich yet simple interface to the Internet. With a simple microprocessor, the system allows the status of a resident to be continuously monitored in a minimally intrusive fashion.

Any abnormal conditions can immediately be alerted to a remote caregiver for action. In this way, a caregiver’s smartphone acts as an alert system by letting them know when a resident’s activity deviates from a normal pattern. The system is designed to be simple to set up yet very flexible in its application so the needs of different residents can be addressed. A resident with minimal needs can be monitored by a set of relaxed rules, while a resident in need of more continuous observation can be assigned a set of strict rules. In all cases, the overarching design approach was to provide a system that augments the caregiver’s capability.

Penrose goes on to describe the system:

The Sentry System integrates motion sensors, a microprocessor, and the WIZ550io Ethernet interface to monitor a resident and report abnormal activity patterns to a remote caregiver (see Photo 1). The relationship of these subsystems is illustrated in Figure 1.

Up to eight sensors transmit activity to a base unit processor, which checks for abnormal behavior of a resident. Alerts to a caregiver are generated and communicated over the Internet.

Figure 1: Up to eight sensors transmit activity to a base unit processor, which checks for abnormal behavior of a resident. Alerts to a caregiver are generated and communicated over the Internet.

The primary sensors are IR motion sensors. These can be augmented by vibration sensors, pressure mats, ultrasonic, and other devices capable of detecting a person’s presence. These sensors are placed at key locations in a resident’s home to monitor movement from room to room or within rooms. The vibration sensors are placed in favorite chairs/couches or in the bed to determine if the furniture is occupied and if there is normal activity. All of these sensors are battery powered and report over an RF link. The RF reports from these devices are received by a base unit which then compares the resident’s location and activity to a set of rules that define normal behavior for different times of day. Any deviation from normal results in an SMS text message or e-mail being sent to the caregiver along with information about how to contact the resident. In most cases, it is expected that the caregiver would respond by phoning the resident to check on them.

The system is designed to be easy to install and operate. The WIZ550io’s Internet interface is used to communicate to a browser allowing the caregiver or resident to configure the system. This configuration consists of identifying sensors and rooms and describing a set of rules for each room for periods in the day. This local interface also allows for a review of all past activity once the system is operational. This history data is valuable for refining the rules to reduce false alarms and ensure security. Since the interface is behind the resident’s firewall, the system is secure from improper modification. The key output from the system is the alert to the caregiver, which relies on the WIZ550io module communicating to a service site such as Exosite. The site generates the alerts sent to the caregiver.

The base unit incorporates the WIZ550io, an 89LPC936 processor, a MCP79401 real-time clock, and a serial EEPROM to process reports received from the 433-MHz receiver.

Photo 2: The base unit incorporates the WIZ550io, an 89LPC936 processor, a MCP79401 real-time clock, and a serial EEPROM to process reports received from the 433-MHz receiver.

The system’s hardware consists of a base unit and multiple sensor/reporting units. The base unit (see Photo 2) comprises a WIZ550io Ethernet interface, an inexpensive microprocessor, an RF receiver, a battery backed-up real-time clock, and a serial EEPROM. All of these pieces are integrated into a small form factor case and powered by a plug-in transformer (see Figure 2).

Figure 2: The microprocessor accomplishes all of its tasks while using only a few of the available port pins.

Figure 2: The microprocessor accomplishes all of its tasks while using only a few of the available port pins.

The remote units can be one of many different sensor/reporting devices depending on the needs of the resident. The basic sensor is the IR motion sensor, which is available from a number of different sources.  I used Bunker Hill Security sensors, which I purchased from Harbor Freight Tools (Item 93068). A sensor plus receiver is very inexpensive. Some cost only $11. The item consists of a sensor/transmitter and a receiver/alarm device. The receiver/alarm device is not used in this project although the RF receiver was lifted from one of these units to provide the receiver for the base unit. These sensor units are powered by 9-V batteries and report on an RF link at 433 MHz with a unique address code.  The code allows multiple sensors to be deployed and recognized by the base unit.

The complete article appears in Circuit Cellar 296 (March 2015).

Embedded SIM Controllers for Secure M2M Communication

Secure cellular Machine-to-Machine (M2M) communication enables automated data exchange. Infineon Technologies recently announced the SLM 97 and SLI 97 security controller families. The new products stand out with unique features required for M2M communication in industrial as well as automotive applications such as emergency Call (eCall) and Vehicle-to-Vehicle (V2V) communication.Infineon SLI97-SLM97

For the past 10 years, Infineon has provided high-quality security controllers used for M2M applications in the industrial and automotive sectors. For instance, Infineon supplies leading European car manufacturers with security controllers for eCall and other connectivity solutions for vehicles.

With the launch of the new SLM 97 and SLI 97 product families, Infineon strengthens its position in the growing industrial M2M and connected car markets. The new products enable the full implementation of embedded SIM as defined by GSMA and ETSI, increasing flexibility and simplifying the deployment of new M2M solutions.

Both SLM 97 and SLI 97 provide the following:

  • an extended temperature range from –40° to 105°C and high endurance for operation in demanding industrial and automotive environments
  • up to 1-MB SOLID FLASH memory, allowing fast prototyping and shortening time-to-market for device manufacturers
  • a set of hardware crypto-coprocessors supporting all relevant crypto schemes
  • a wide range of interfaces including ISO7816, SWP, USB, I2C, SPI to address a large variety of industrial and automotive applications
  • Common Criteria EAL 5+ (High) certification

The SLM 97 security controllers are tailored to industrial M2M applications requiring high endurance and robustness. They are qualified according to internationally recognized industrial standards and delivered in standard embedded M2M packages as well as in standard SIM card module.

The SLI 97 security controllers are qualified according to the high quality automotive standards (AEC-Q100) and tailored to the difficult environmental conditions of automotive applications. They pass through exhaustive quality processes to minimize failure rates. This makes them the perfect products for SIM cards or embedded security products in connected cars. Both families are based on field-proven products deployed in traditional Smart Card markets worldwide.

Source: Infineon Technologies

Gecko Bluetooth Smart Solutions for Low-Power Wireless Connectivity

Silicon Labs today has launched a Bluetooth Smart solutions portfolio intended to minimize the energy consumption, cost, and complexity of wireless Internet of Things (IoT) designs. Silicon Labs’s new Blue Gecko solutions include ultra-low-power wireless system-on-chip (SoC) devices, embedded modules, and Bluegiga’s software development kit (SDK) and Bluetooth Smart software stack. Blue Gecko wireless SoCs and modules help you simplify design and speed time to market for a wide range of applications (e.g., connected home, wearable, and automotive).

The Blue Gecko portfolio addresses the largest, fastest-growing low-power wireless connectivity opportunity in the IoT market. It provides developers with the flexibility to begin development with modules and transition to SoCs when needed with little to no system redesign.SiliconLabs-Blue-Gecko

The first in a family of wireless SoCs optimized for IoT applications, Blue Gecko SoCs combine Silicon Labs’ energy-friendly EFM32 Gecko MCU technology with an ultra-low-power Bluetooth Smart transceiver. This innovative, single-die solution provides industry-leading energy efficiency, the fastest wake-up times, superior RF sensitivity and no-compromise MCU features combined with the Bluegiga Bluetooth Smart software stack to help developers reduce system power, cost and time to market. Unlike other Bluetooth Smart IC alternatives, a Blue Gecko SoC can transmit +10 dBm or higher output power with its fully integrated power amplifier and balun, further reducing design complexity.

Blue Gecko SoCs are based on the ARM Cortex-M3 and M4 cores and offer 128- to 256-KB flash sizes and 16- to 32-KB RAM sizes. The SoCs integrate an array of low-energy peripherals as well as Silicon Labs’s Peripheral Reflex System (PRS) for autonomous peripheral operation. The Blue Gecko SoC family also offers a roadmap of enhanced flash and RAM memory sizes and additional package options to meet future application needs.

Bluegiga modules based on Blue Gecko SoCs are designed to help developers accelerate time to market and reduce development costs and compliance risks by providing a precertified, plug-and-play RF design. Bluegiga Bluetooth Smart modules incorporate all features of Blue Gecko SoCs and are certified for use in all key markets including North America, Europe, Japan and South Korea. Bluegiga modules include the Bluegiga Bluetooth Smart software stack and profile toolkit and come with 256 kB flash and 32 kB RAM, providing ample available memory for onboard applications. Flexible hardware interfaces enable easy connection to a variety of peripherals and sensors, and an integrated antenna makes RF operation consistent and straightforward for the design engineer. Bluegiga Bluetooth Smart modules provide very low power operation, enabling wireless system designs to be powered from a standard 3-V coin cell battery or two AAA batteries.

Samples of Bluegiga modules based on Blue Gecko SoCs are scheduled to be available in late Q2 2015. Samples of Blue Gecko wireless SoCs are planned to be available in early Q3 in 5 mm × 5 mm QFN32 and 7 mm × 7 mm QFN48 packages. Pricing for Blue Gecko-based Bluegiga modules starts at $4.99 in 10,000-unit quantities. Blue Gecko SoC start at $0.99 in 100,000-unit quantities. The Bluegiga SDK and Bluetooth Smart software stack will be available to Silicon Labs customers at no charge.

Source: Silicon Labs

New IoT-Enabled Product Portfolio and Services

Wind River recently announced that it has enhanced and expanded its Wind River Helix product portfolio to address the system-level opportunities and challenges of the Internet of Things (IoT). In addition, the company has created an IoT professional services offering to assist customers with the creation and deployment of IoT applications.WR101_WR_Helix

Wind River has added application and data services in the cloud to its industry-leading operating systems and IoT software platform via Wind River Edge Management System, its recently launched cloud-based technology stack that is an integral part of the Intel IoT Platform. The Edge Management System agent has been integrated with VxWorks real-time operating system (RTOS), Wind River Linux, and Wind River Intelligent Device Platform.

The agents bring secure cloud connectivity to Wind River products to facilitate data capture, rules-based data analysis and response, configuration, and file transfer. Specifically, these integrations provide device-level execution capabilities, remote management and provisioning capabilities at the gateway, as well as cloud-based delivery of software updates.  This allows for seamless interaction with edge devices and simplified device-side application development.

To complement its new IoT-enabled product portfolio, Wind River now has an IoT professional services offering to bring IoT concepts to critical infrastructure and other markets where safety and security are imperatives. The new offering will assist customers in configuring IoT systems and getting them to market faster with reduced risk and lower cost of ownership. Services include an IoT startup package, device agent configuration, application/agent interfacing, cloud applications development, and IoT safety and security requirements support.

Further expanding its operating system suite, Wind River has also announced the availability of Microkernel Profile for VxWorks. The microkernel profile is a tiny-footprint RTOS to facilitate the creation of IoT-ready differentiated devices, such as sensor hubs, microcontrollers, and wearables, as well as High Performance Embedded Computing (HPEC) platforms to address intensive data processing. It is based on proven digital signal processing RTOS technology deployed in countless applications.

These product additions and enhancements are the latest in a series of IoT-related updates to the company’s operating system suite, which include Security Profile for VxWorks, Virtualization Profile for VxWorks, and Security Profile for Wind River Linux.

Source: Wind River

New Motion Module for Easy Motion Monitoring

Microchip Technology announced at the Embedded World conference in Germany the MM7150 Motion Module, which combines Microchip’s SSC7150 motion co-processor combined with nine-axis sensors. Included in compact form factor are an accelerometer, magnetometer, and gyroscope.  With a simple I2C connection to most MCUs/MPUs, embedded applications and Internet of Things (IoT) systems can easily tap into the module’s advanced motion and position data.Microchip MM7150

The SSC7150 motion co-processor is preprogrammed with sensor fusion algorithms that intelligently filter, compensate, and combine the raw sensor data to provide highly accurate position and orientation information.  The small module self-calibrates during operation utilizing data from the prepopulated sensors—Bosch BMC150 (six-axis digital compass) and the BMG160 (three-axis gyroscope).

The single-sided MM7150 motion module is easily soldered down during the manufacturing process. You can develop motion applications for a variety of products with Microchip’s MM7150 PICtail Plus Daughter Board.  The MM7150 Motion Module is well suited for a wide range of applications: embedded (e.g., portable devices and robotics), industrial (e.g., commercial trucks, industrial automation, and patient tracking), and consumer electronics (e.g., IoT, remote controls, and wearable devices).

The MM7150 is supported by the MM7150 PICtail Plus Daughter Board (AC243007, $50) that plugs directly  into Microchip’s Explorer 16 Development Board (DM240001, $129) to enable quick and easy prototyping utilizing Microchip’s extensive installed base of PIC microcontrollers.

The 17 mm × 17 mm MM7150 is priced at $26.76 each in 1,000-unit quantities.

Source: Microchip Technology





M2M/IoT Integration Platform

Eurotech recently announced the official release of Everyware Cloud 3.5 (EC), the M2M/IoT Integration Platform. The EC machine-to-machine (M2M) Integration Platform is intended to simplify device and data management by connecting distributed devices over secure and reliable cloud services. It enables you to connect, configure, and manage devices through the lifecycle, from deployment to retirement.

With EC 3.5 a set of new remote features is available: device configuration, device control, device provisioning, and device update. These features enable the Everyware Cloud Web Console to be the single point of administration for all connected devices, and make the Everyware Cloud REST APIs the single programmable interface to remote devices. In addition, security and reliability are enhanced with Two-Factors-Authentication and platform Health Monitoring.

By using EC, you benefit from:

  • Short time to market
  • Pay-as-you-go
  • Open Standard based
  • Flexible Deployment; from public cloud, to cloud-in-a-box (Everyware Server)
  • Device Enablement; for effective asset management and asset maintenance
  • Data Enablement; for a near-time understanding of users’ preferences and asset real use, for business intelligence
  • System Enablement; for reliable, scalable, secure and user-friendly platform administration
  • IoT Application Enablement; for simple integration with enterprise business software applications

You can try EC for free for 90 days.

Source: Eurotech

Skkynet Expands Secure Cloud Service Registration for Embedded and IoT System Users

Skkynet Cloud Systems recently opened registration for its Secure Cloud Service, giving system engineers and managers of industrial, embedded, and Internet of Things (IoT) systems quick and easy access to a secure, end-to-end solution for networking data in real time. The Secure Cloud Service enables bidirectional supervisory control, integration, and sharing of data with multiple users, and real-time access to selected data sets in a web browser. The service is capable of handling over 50,000 data changes per second per client, at speeds just a few milliseconds over Internet latency.Skkynet-scs012715-01hi

First opened on a trial basis for selected customers in August 2014, the Secure Cloud Service has been used extensively, and rigorously tested for performance and security. During that time Skkynet has enhanced the system technically by increasing the range of connectable embedded devices and the number of supported data protocols, as well as automating the customer registration process.

Skkynets Secure Cloud Service allows industrial and embedded systems to securely network live data in real time from any location. Secure by design, it requires no VPN, no open firewall ports, no special programming, and no additional hardware.

Source: Skkynet 

GP691 ZigBee Radio Chip and GPM6000 Modules for IoT

At CES 2015, GreenPeak Technologies announced a new GP691 ZigBee communication controller chip and GPM6000 integrated ZigBee modules for Internet of Things applications and smart home devices.IoTGreenPeak

The GP691 ZigBee communications controller provides IEEE Standard 802.15.4-compliant robust spread spectrum data communication in the worldwide 2.4-GHz band. It can run the full stack and application for ZigBee applications, including ZHA and ZLL profiles. In addition to a radio transceiver, the GP691 comprises a real-time Medium Access Control (MAC) processor, microcontroller, security engine, 16-KB RAM, and 248-KB flash memory. The GP691 is over the air upgradable and includes support for new 802.15.4-based standards upon availability, such as Thread.

ZigBee 3.0 supports a wide range of applications (e.g., home, industrial automation, and smart energy). IEEE 802.15.4-compliant, it can cover a complete home with multiple floors. Plus, it can manage dead spots and Wi-Fi interference via mesh networking. ZigBee 3.0 also supports large networks comprising thousands of devices, which also makes it suitable for industrial applications and building automation. ZigBee 3.0 also includes Green Power, part of the ZHA and ZLL profiles, which supports energy harvesting and battery-free applications. Without requiring batteries, these self-supporting devices typically generate (harvest) just enough power to transmit a brief command to the network via ZigBee.

With its partner Universal Scientific Industrial (Shanghai) Co, Ltd (USI), GreenPeak developed “an integrated module for the GP691 that reduces product design company’s time to market without having to solve RF product integration challenges or to worry about international wireless certification.”

The 25 x 17 x 2.5 mm pre-integrated, pre-certified module adds a power stage/LNA providing up to 20-dBm output power, special transmit and receive circuitry, and an integrated antenna plus a connector for a second external antenna enabling antenna diversity configurations, which all together, allow for greater range and robustness, providing coverage throughout an entire home. This module will be offered as the first in the GPM6000 module series optimized for smart home solutions.

Source: GreenPeak

Seven Engineers on the Future of Electrical Engineering

The Circuit Cellar staff thought it would be interesting to kick off 2015 by asking several long-time contributors about the future of electrical engineering and embedded systems. Here we present the responses we received to the following questions: What are your thoughts on the future of electrical engineering? What excites you? Is there something in your particular field of interest that you think will be a “game changer”?

STEVE CIARCIA: Frankly speaking, if I was smart enough to accurately predict the future, I wouldn’t be doing all this again. Seriously, “What excites me in the future?” shouldn’t be the question I’m answering here. Instead, it should be  how much does all this embedded stuff we’re seeing and talking about today look like a classic case of déją vu to me. Circuit Cellar started 40 years ago in BYTE to promote my enthusiasm for professional-level DIY computer applications (albeit mostly embedded). The names have changed to Maker this and that and Raspberry Pi whatever, but what once was, still is. Solder fumes aside, Circuit Cellar has always been about nurturing the talented engineer who designs the game changer. (Steve is an electrical engineer who founded Circuit Cellar in 1988.)

DAVID TWEED: Embedded technology is becoming more pervasive, appearing in more and more places in our lives. Embedded processors have become as powerful as desktop machines were just a few short years ago, and the their ability to connect to the world at large through high-bandwidth wireless communications has grown to match this. This is both exciting and scary, because it becomes a powerful enabler for both positive and negative changes in how we live our lives. Take the ubiquitous “smart phone” as an example. It can process two-way audio, video, GPS data, and an Internet connection simultaneously in real time. This enables powerful applications such as GPS-based route finding that can give you verbal and pictorial directions to get you where you want to go. But, as anyone who watches the popular crime drama N.C.I.S. knows, that same technology can be used to track your phone’s location, along with everything it can “see” and “hear,” including the phone calls you have made. While that kind of surveillance can be used it positive ways, such as to aid you in an emergency, it can also be used to invade your privacy. Can you really be sure that everyone in law enforcement and other areas of government has only your best interests in mind when accessing your data? The increased power of embedded systems means that autonomous mechanisms gain capabilities they didn’t have before. Fully-autonomous vehicles—cars, trucks, trains, and aircraft—will be able to carry people and goods long distances over arbitrary routes. Factory automation will become more generic, because complex general-purpose mechanisms will be as easy to use as purpose-built mechanisms that only do one thing, because the software will manage all of the low-level details of “training” the system. Machine vision will be an important part of this, giving the system the feedback it needs to interact with objects and people. “With great power comes great responsibility.” This has never been more true. I’m excited by the possibilities that increasingly powerful embedded technology will open up for us, but let’s make sure that it is used responsibly! (David is a professional electrical engineer and long-time Circuit Cellar author and technical editor.)

ROBERT LACOSTE: I think the most significant change in embedded systems these last years is the nearly mandatory inclusion of Internet connectivity. It’s called the Internet of Things (IoT). Just enter those three words in Google and the 752 million results you get will show it’s a quite hot topic. When a customer meets with us to discuss a potential new product (whatever it is), the question is no longer: “Should it be connected?” The question is: “How should it be connected?” Having said that, the key difficulty is the long list of wireless protocols trying to become the ubiquitous solution for IoT: Wi-Fi, Bluetooth, Bluetooth Low Energy, ZigBee, Zwave, 6LowPan, and a hundred others. Bluetooth seems the clear winner for smartphone-based products, but what about the other applications like home automation, logistics, smart metering, or dog tracking? Which protocol(s) will be the winner(s)? Which one will be natively supported on our Internet access gateways or even rolled-out worldwide? Will it be Thread, sponsored by Google itself? Or will it be another derivative of Bluetooth, due to its huge predominance? (The overall sales of Bluetooth-capable chips already exceed four times the human population on earth.) Or could it be one of the machine-to-machine variants of 3G/4G cellular standards being studied? Or perhaps it will be one of the solutions proposed by one of the many startups working on the technology? Or maybe it will be a completely new protocol that we’ll invent? I don’t know the answer, but the result will be the next game changer! (Robert is an electrical engineer and Circuit Cellar columnist. In 2003, he founded ALCIOM, an electrical engineering firm near Paris, France.)

CHRIS COULSTON: While tech will companies continue to evolve existing technologies to offer more features, with lower power and at a lower cost, I think that the most exciting and revolutionary technology is to be found in the Internet of Everything (IOE) concept. Hardware supporting the IOE offers up the tantalizing potential to free our designs from physical interconnects, giving our designs world wide access, allowing us to interact with our designs in real time, and allowing our design to access the almost unlimited diversity of services available on the Internet. I am excited to explore a design space that enables me to connect something trivial like my key-ring to the Internet. The Raspberry Pi was the first breakthrough with companies like Intel redefining the cutting edge with their Edison module. There are several limiters to the IOE concept including power consumption and standardization. As these issues are addressed, the potential of the IOE concept will only be limited to the creativity of engineers and makers everywhere. (Chris is a professor of electrical and computer engineering at Penn State, Behrend. He’s also technical reviewer for Circuit Cellar.)

GEORGE NOVACEK: Embedded controllers are essential components of automatic systems. Without  automation, many products could not even be manufactured. Machines, such as aircraft, medical equipment, power generators, etc. could not be operated without the assistance of smart control systems. Until some, not yet invented, technology makes electronics obsolete, the future of embedded controllers will remain bright. In the coming years, more and more engineers will be focusing on system design, while only the brightest ones will be developing microelectronic components for those systems—more sophisticated, more integrated, faster, smaller, hardened to environment, consuming less power. There continues to be a trend towards universal embedded controllers. These, equipped with the appropriate sensors and actuators and loaded with a particular application software, could be used for fly-by-wire, or for control of an industrial machinery or just about everything else. Design engineers need to be cautious not to put powerful, yet inexpensive controllers into new products just because it  can be done. There is already a proliferation of simple  consumer products equipped, without any sensible need, with microcontrollers. This often leads to lower reliability, shorter life and, because these products are usually not repairable, to greater cost of ownership and waste. (George is professional engineer and Circuit Cellar columnist who served as president of a multinational manufacturer of embedded control systems for aerospace applications.)

ED NISLEY: The rise of the Maker Movement changes everything in the embedded systems field: Makers take control over the devices in their lives, generally by repurposing embedded hardware in ways its designers never intended. The trend becomes clear when dirt-cheap USB TV tuners become software defined radios. Embedded systems must eventually sprout exposed (and documented!) interfaces, debugging hooks, and protocols, because collaboration with Makers who want to turn the box inside-out and build something better can enrich our world beyond measure. Excluding those people won’t work over the long term: just as DRM-encumbered music became unacceptable, welded-shut embedded systems will become historic curiosities. You can make it so! (Ed is an electrical engineer and long-time Circuit Cellar columnist and contributor.)

KEN DAVIDSON: Twenty-five years ago, while developing the Circuit Cellar Home Control System (HCS) II, our group created a series of interface boards that could be placed around the house and communicate using RS-485. Tons of discrete wire running throughout buildings was the norm at the time, and the idea of running just a single twisted pair between units was novel and exciting. This all predated inexpensive Ethernet and public Internet. Today, such distributed intelligence has only gotten better, smaller, and cheaper. With the Internet of Things (IoT) everybody is talking about, it’s not unusual to find a wireless interface and embedded intelligence right down to the level of a light bulb. There was an episode of The Big Bang Theory where the guys set up the apartment lights so they could be controlled from anywhere in the world. Everyone got a laugh when the “geeks” were excited when someone from Japan was blinking their lights. But the idea of such embedded intelligence and remote access continuing to evolve and improve truly is exciting. I look forward to the day in the not-too-distant future when such control is commonplace to most people and not just a geeky novelty. (Ken is an embedded software engineer who has been contributing to Circuit Cellar for years as an author and editor.)

These responses appear in Circuit Cellar 294 (January 2015).

Consumer Interest in Wearables Increases

New consumer research from Futuresource Consulting highlights a significant increase in consumers’ intentions to purchase wearable devices. Interviewing more than 8,000 people in May and and October in the US, the UK, France, and Germany, the study saw interest in fitness trackers and smart watches rise by 50% and 125%, respectively. However, interest in smart glasses and heart rate monitors has stalled.

Source: Futuresource

Source: Futuresource

The overall wearables market has seen significant growth so far in 2014, with Futuresource forecasting full-year sales of over 51 million units worldwide. However, it’s only just warming up, and wearables sales are expected to accelerate from 2015 as new brands enter the space.

The most marked change since May is the strong growth in the number of iPhone owners intending to purchase wearable devices. iPhone owners now lead the way in all categories – particularly in smartwatches, which 17% of iPhone owners expressed an intent to purchase in the next 12 months, up from only 6% in May 2014. This increase coincides with September’s announcement of the Apple Watch. As Apple customers are typically some of the earliest adopters of new technologies, their increasing engagement with the smartwatch category is a strong positive for the Apple Watch release in early 2015.

Source: Futuresource Consulting

Embedded Bluetooth Modules for the Internet of Things

ASIX Electronics Corp. has launched five AXB series embedded Bluetooth modules, the AXB031/AXB033 for Internet of Things applications and the AXB051/AXB052/AXB081 for wireless audio applications. You can connect the AXB modules to any MCU with UART interface, or you can operate it as a standalone unit without an MCU.ASIX-BT_Modules

The Bluetooth 4.0 AXB031 and AXB033 modules are well suited for wearable applications, such as medical sensors and activity monitors, as well as commercial/industrial automation and smart home applications.

According to the company’s release, ASIX offers “developers a full-featured Bluetooth Smart stacks and application development environment to make it easy to add Bluetooth Smart to embedded system. In addition, ASIX also provides a dual-mode Bluetooth 4.0 audio module, AXB081, and two Bluetooth 3.0 audio modules, AXB051/AXB052, for the fast-growing wireless audio applications, such as wireless stereo speakers, headphones, home theater, automotive hands-free, and MirrorLink car player applications.”

Source: ASIX

WillowTree Apps Named Microchip Design Partner

Microchip Technology recently announced its first App Developer Specialist—WillowTree Apps—the latest company to join its Design Partner Network. WillowTree is an iOS, Android, and Mobile Web app developer that enables Microchip’s customers to focus on Internet of Things (IoT) designs.MicrochipWillowTree

WillowTree wrote the first mobile app for Microchip’s Wi-Fi Client Module Development Kit 1, which is available in the Apple App Store. It enables customers to quickly get up and running with the kit’s cloud-based demo. WillowTree can also modify this cloud-demo app to suit a broad range of customer IoT design requirements.

Source: Microchip Technology