Nordic BLE SoC Selected for Cloud-Connected Thermostat

Nordic Semiconductor has announced that Sikom, a developer of GSM-based IoT platforms, employs Nordic’s nRF52840 Bluetooth 5/Bluetooth Low Energy (Bluetooth LE) advanced multiprotocol System-on-Chip (SoC) in its ‘Bluetooth Thermostat EP’ to support smartphone connectivity and smart-home networking. The thermostat is available to consumers and OEMs developing their own heating control systems.

The Nordic SoC’s Bluetooth 5 long-range capability enhances connection stability, boosting range, and allowing the thermostat to be configured and controlled from anywhere in the house. From a companion app on a Bluetooth 4.0 (and later) smartphone the user can control thermostat features such as comfort and economy temperature set points, week programs, vacation modes and temperature logs.

Because the thermostat can be controlled and configured directly from the smartphone, there is no requirement for a proprietary gateway between mobile device and thermostat, lowering the cost and complexity of installation and setup. In addition, the thermostat’s Bluetooth 5 connectivity enables it to join a Sikom smart-home network and communicate directly with other wireless devices to support advanced features such as power control and limiting. The thermostat also integrates with 4G/LTE (cellular) technology to enable remote control via Sikom’s Cloud platform.

Enabled by the nRF52840 SoC’s 32-bit Arm Cortex M4F processor, 1 MB Flash memory, and 256 KB RAM, the Bluetooth Thermostat EP platform can support a variety of complex remote thermostat/heating applications. The processor has ample power to run the Bluetooth 5 RF software protocol (“stack”) and Sikom’s application software and bootloader. The SoC also supports Over-the-Air Device Firmware Updates (OTA-DFU) for future improvements.

Nordic’s nRF52840 Bluetooth 5/Bluetooth LE SoC is Nordic’s most advanced ultra low power wireless solution. The SoC supports complex Bluetooth LE and other low-power wireless applications that were previously not possible with a single-chip solution. The SoC combines the Arm processor with a 2.4 GHz multiprotocol radio architecture featuring -96dB RX sensitivity and an on-chip PA boosting output power to a maximum of 8 dBm. The SoC is supplied with the S140 SoftDevice, a Bluetooth 5-certified stack which supports all the features of the standard and provides concurrent Central, Peripheral, Broadcaster and Observer Bluetooth LE roles.

Nordic Semiconductor | www.nordicsemi.com

 

Verizon Certifies Several Telit LTE Modules

Telit has announced that Verizon has certified several of its LTE products. The seven modules are part of Telit’s portfolio of LTE Cat M1, Cat 1, Cat 4 and Cat 11 products, with the LE910-SV V2 and LE910B1-NA modules that also supports Verizon’s Voice over LTE (VoLTE) technology. The modules are now available for operation on Verizon’s 4G LTE network. The following modules are included: ME910C1-NV LTE Cat M1 module, LE910-NA V2 LTE Cat 4 module, LE910-SV V2 LTE Cat 4 VoLTE module, LE910B1-NA LTE Cat 1 VoLTE module, ME866A1-NV LTE Cat M1 module, LE866-SV1 LTE Cat 1 module and LM940 LTE Cat 11 mini PCIe module.
The ME910C1-NV, LE910-SV V2 and LE910-NA V2 modules are members of Telit’s xE910 family (shown). And the LE866-SV1, one its xE866 family, is one of the smallest cellular modules in the market.  Any of the modules can be applied as drop-in replacements in existing devices based on the families’ modules for 2G, 3G and the various categories of LTE. With Telit’s design-once-use-anywhere philosophy, developers can cut costs and development time by simply designing for the xE910 or xE866 LGA common form factors, giving them the freedom to deploy technologies best suited for the application’s environment.

Integrators and providers looking for lower costs, more security and extended product lifecycles now have more options with Telit’s Verizon-certified LTE and VoLTE modules. Telit’s certified modules may be used by its customers in segments like telematics, home and business security, person and asset tracking, wellness monitoring for the elderly and convalescent, smart home and smart buildings.

The LM940 module boasts a power-efficient platform and is the ideal solution for commercial and enterprise applications in the network appliance and router industry, such as branch office connectivity, LTE failover, digital signage, kiosks, pop-up stores, vehicle routers, construction sites and more. This module includes Linux and Windows driver support.

Telit | www.telit.com

Development Tool Speeds IoT Sensor Design

STMicroelectronics offers a tool called AlgoBuilder designed to take the coding out of firmware development by letting users build sensor-control algorithms graphically with library modules, ready to compile and run on an STM32 microcontroller.

Created to simplify development of IoT devices containing ST’s MEMS sensors and MCUs, AlgoBuilder helps quickly get a proof-of-concept model up and running. Users can build their algorithms quickly and intuitively by dragging and dropping selected functions, connecting the blocks, and configuring properties. AlgoBuilder validates all design rules and automatically generates C code based on the graphical design.
AlgoBuilder provides libraries such as logic and mathematical operators, signal processing, user inputs, vector operations, and many others. Turnkey algorithms for commonly used functions such as sensor hub, motion-sensor calibration, activity recognition, motion intensity, and pedometer are included. Users can also add their own custom functions to the AlgoBuilder libraries.

AlgoBuilder provides an environment for connecting them with other logic to create a complete firmware project ready to compile using an STM32 IDE (Integrated Development Environment) such as TrueSTUDIO for STM32, SW4STM32 System Workbench for STM32, IAR-EWARM IAR Embedded Workbench for Arm and Keil µVision MDK-ARM-STM32.

AlgoBuilder can generate firmware for deployment on various STM32 platforms. These include the NUCLEO-F401RE and NUCLEO-L476RG development boards with the X-NUCLEO-IKS01A2 MEMS-sensor expansion board, and ST’s SensorTile IoT module. The SensorTile integrates a STM32L476JG ultra-low-power MCU, motion and environmental MEMS sensors and Bluetooth Low Energy (BLE) connectivity.

Users can test their firmware by launching the Unicleo-GUI application from within AlgoBuilder, to display outputs from running firmware. Unicleo-GUI is a dedicated sensor graphical user interface for use with ST’s sensor expansion software packages and X-NUCLEO boards, and lets users visualize sensor data as a time plot, scatter plot, or 3D plot.

AlgoBuilder is available now, and free to download from www.st.com/algobuilder-pr

STMicroelectronics | www.st.com

Tuesday’s Newsletter: IoT Tech Focus

Coming to your inbox tomorrow: Circuit Cellar’s IoT Technology Focus newsletter. Tomorrow’s newsletter covers what’s happening with Internet-of-Things (IoT) technology–-from devices to gateway networks to cloud architectures. This newsletter tackles news and trends about the products and technologies needed to build IoT implementations and devices.

Bonus: We’ve added Drawings for Free Stuff to our weekly newsletters. Make sure you’ve subscribed to the newsletter so you can participate.

Already a Circuit Cellar Newsletter subscriber? Great!
You’ll get your IoT Technology Focus newsletter issue tomorrow.

Not a Circuit Cellar Newsletter subscriber?
Don’t be left out! Sign up now:

Our weekly Circuit Cellar Newsletter will switch its theme each week, so look for these in upcoming weeks:

Embedded Boards.(6/26) The focus here is on both standard and non-standard embedded computer boards that ease prototyping efforts and let you smoothly scale up to production volumes.

Analog & Power. (7/3) This newsletter content zeros in on the latest developments in analog and power technologies including DC-DC converters, AD-DC converters, power supplies, op amps, batteries and more.

Microcontroller Watch (7/10) This newsletter keeps you up-to-date on latest microcontroller news. In this section, we examine the microcontrollers along with their associated tools and support products.

Class-D Audio Amplifiers Target the Smart Home

Texas Instruments (TI) has introduced three new digital-input Class-D audio amplifiers that enable engineers to deliver high-resolution audio in more smart-home and voice-enabled applications. By combining first-of-its-kind integration, real-time protection and new modulation schemes, TI’s new audio devices allow designers to reduce board space and overall bill of material (BOM) cost. These new amplifiers are designed for personal electronics applications with any power level, including smart speakers, sound bars, TVs, notebooks, projectors and Internet-of-Things (IoT) applications.

TAS2770 15-W audio amplifier: Claimed by TI to be the first wide-supply I/V sense amplifier, the TAS2770 (shown) offers state-of-the art, real-time speaker protection when paired with TI Smart Amp algorithms. The amplifier monitors loudspeaker behavior and increases loudness while improving audio quality in applications requiring small speakers. The TAS2770 is an audio front end (AFE) that combines a digital microphone input with a powerful I/V sense amplifier. The device captures voice and ambient acoustic information for echo cancellation or noise reduction in voice-enabled applications. The TAS2770 monitors battery voltage and automatically decreases gain when audio signals exceed a set threshold, helping designers avoid clipping and extend playback time through end-of-charge battery conditions without degrading sound quality.

TAS5825M audio amplifier: Designers can achieve high-resolution audio with minimal engineering effort due to the device’s 192-kHz input sampling frequency and flexible, integrated processing flows. Additionally, the TAS5825M provides bass enhancement and thermal protection for the speaker. The TAS5825M’s dedicated serial audio interface data output provides ambient sound information to the applications processor. Engineers can reduce idle-power losses and thermal dissipation without degrading sound quality with the TAS5825M’s proprietary hybrid-mode modulation scheme.

TAS3251 audio amplifier: TI says the TAS3251 is the first integrated digital-input solution to support the highest output power and performance at 2x 175 W, all in one single package. You can enable up to 96-kHz flexible processing and self-protection features including cycle-by-cycle current limit and DC speaker protection with the TAS3251.

Designers can use TI’s PurePath Console software to easily configure the TAS2770, TAS5825M and TAS3251 Class-D audio amplifiers. Engineers can jump-start their design with the TAS2770 Stereo Audio Subsystem Reference Design. Additional resources and reference designs are available to help engineers with their smart speaker designs.

The TAS2770 Class-D audio amplifier is now available in volume quantities through the TI store and authorized distributors. Additionally, preproduction samples of the TAS5825M are now available through the TI store. The TAS3251EVM evaluation module is available today through the TI store and authorized distributors, and production quantities of the TAS3251 amplifier will be available in 2Q 2018.

Texas Instruments | www.ti.com

July Circuit Cellar: Sneak Preview

The July issue of Circuit Cellar magazine is coming soon. And we’ve rustled up a great herd of embedded electronics articles for you to enjoy.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 

Here’s a sneak preview of July 2018 Circuit Cellar:

TECHNOLOGIES FOR THE INTERNET-OF-THINGS

Wireless Standards and Solutions for IoT  
One of the critical enabling technologies making the Internet-of-Things possible is the set of well-established wireless standards that allow movement of data to and from low-power edge devices. Here, Circuit Cellar’s Editor-in-Chief, Jeff Child, looks at key wireless standards and solutions playing a role in IoT.

Product Focus: IoT Device Modules
The rapidly growing IoT phenomenon is driving demand for highly integrated modules designed to interface with IoT devices. This Product Focus section updates readers on this technology trend and provides a product album of representative IoT interface modules.

TOOLS AND TECHNIQUES AT THE DESIGN PHASE

EMC Analysis During PCB Layout
If your electronic product design fails EMC compliance testing for its target market, that product can’t be sold. That’s why EMC analysis is such an important step. In his article, Mentor Graphics’ Craig Armenti shows how implementing EMC analysis during the design phase provides an opportunity to avoid failing EMC compliance testing after fabrication.

Extreme Low-Power Design
Wearable consumer devices, IoT sensors and handheld systems are just a few of the applications that strive for extreme low-power consumption. Beyond just battery-driven designs, today’s system developers want no-battery solutions and even energy harvesting. Circuit Cellar’s Editor-in-Chief, Jeff Child, dives into the latest technology trends and product developments in extreme low power.

Op Amp Design Techniques
Op amps can play useful roles in circuit designs linking the real analog world to microcontrollers. Stuart Ball shares techniques for using op amps and related devices like comparators to optimize your designs and improve precision.

Wire Wrapping Revisited
Wire wrapping may seem old fashioned, but this tried and true technology can solve some tricky problems that arise when you try to interconnect different kinds of modules like Arduino, Raspberry Pi and so on. Wolfgang Matthes steps through how to best employ wire wrapping for this purpose and provides application examples.

DEEP DIVES ON MOTOR CONTROL AND MONITORING

BLDC Fan Current
Today’s small fans and blowers depend on brushless DC (BLDC) motor technology for their operation. In this article, Ed Nisley explains how these seemingly simple devices are actually quite complex when you measure them in action. He makes some measurements on the motor inside a tangential blower and explores how the data relates to the basic physics of moving air.

Electronic Speed Control (Part 1)
An Electronic Speed Controller (ESC) is an important device in motor control designs, especially in the world of radio-controlled (RC) model vehicles. In Part 1, Jeff Bachiochi lays the groundwork by discussing the evolution of brushed motors to brushless motors. He then explores in detail the role ESC devices play in RC vehicle motors.

MCU-Based Motor Condition Monitoring
Thanks to advances in microcontrollers and sensors, it’s now possible to electronically monitor aspects of a motor’s condition, like current consumption, pressure and vibration. In this article, Texas Instrument’s Amit Ashara steps through how to best use the resources on an MCU to preform condition monitoring on motors. He looks at the signal chain, connectivity issues and A-D conversion.

AND MORE FROM OUR EXPERT COLUMNISTS

Verifying Code Readout Protection Claims
How do you verify the security of microcontrollers? MCU manufacturers often make big claims, but sometimes it is in your best interest to verify them yourself. In this article, Colin O’Flynn discusses a few threats against code readout and looks at verifying some of those claimed levels.

Thermoelectric Cooling (Part 1)
When his thermoelectric water color died prematurely, George Novacek was curious whether it was a defective unit or a design problem. With that in mind, he decided to create a test chamber using some electronics combined with components salvaged from the water cooler. His tests provide some interesting insights into thermoelectric cooling.

 

Tuesday’s Newsletter: Microcontroller Watch

Coming to your inbox tomorrow: Circuit Cellar’s Microcontroller Watch newsletter. Tomorrow’s newsletter keeps you up-to-date on latest microcontroller news. In this section, we examine the microcontrollers along with their associated tools and support products.

Bonus: We’ve added Drawings for Free Stuff to our weekly newsletters. Make sure you’ve subscribed to the newsletter so you can participate.

Already a Circuit Cellar Newsletter subscriber? Great!
You’ll get your Microcontroller Watch newsletter issue tomorrow.

Not a Circuit Cellar Newsletter subscriber?
Don’t be left out! Sign up now:

Our weekly Circuit Cellar Newsletter will switch its theme each week, so look for these in upcoming weeks:

IoT Technology Focus. (6/19) Covers what’s happening with Internet-of-Things (IoT) technology–-from devices to gateway networks to cloud architectures. This newsletter tackles news and trends about the products and technologies needed to build IoT implementations and devices.

Embedded Boards.(6/26) The focus here is on both standard and non-standard embedded computer boards that ease prototyping efforts and let you smoothly scale up to production volumes.

Analog & Power. (7/3) This newsletter content zeros in on the latest developments in analog and power technologies including DC-DC converters, AD-DC converters, power supplies, op amps, batteries and more.

Tuesday’s Newsletter: Analog & Power

Coming to your inbox tomorrow: Circuit Cellar’s Analog & Power newsletter. Tomorrow’s newsletter content zeros in on the latest developments in analog and power technologies including ADCs, DACs, DC-DC converters, AD-DC converters, power supplies, op amps, batteries and more.

Bonus: We’ve added Drawings for Free Stuff to our weekly newsletters. Make sure you’ve subscribed to the newsletter so you can participate.

Already a Circuit Cellar Newsletter subscriber? Great!
You’ll get your Analog & Power newsletter issue tomorrow.

Not a Circuit Cellar Newsletter subscriber?
Don’t be left out! Sign up now:

Our weekly Circuit Cellar Newsletter will switch its theme each week, so look for these in upcoming weeks:

Microcontroller Watch. (6/12) This newsletter keeps you up-to-date on latest microcontroller news. In this section, we examine the microcontrollers along with their associated tools and support products.

IoT Technology Focus. (6/19) Covers what’s happening with Internet-of-Things (IoT) technology–-from devices to gateway networks to cloud architectures. This newsletter tackles news and trends about the products and technologies needed to build IoT implementations and devices.

Embedded Boards.(6/26) The focus here is on both standard and non-standard embedded computer boards that ease prototyping efforts and let you smoothly scale up to production volumes.

Linux Still Rules IoT, Says Survey, with Raspbian Leading the Way

By Eric Brown

The Eclipse Foundation’s Eclipse IoT Working Group has released the results of its IoT Developer Survey 2018, which surveyed 502 Eclipse developers between January and March 2018. While the sample size is fairly low—LinuxGizmos’  own 2017 Hacker Board survey had 1,705 respondents—and although the IoT technologies covered here extend beyond embedded tech into the cloud, the results sync up pretty well with 2017 surveys of embedded developers from VDC Research and AspenCore (EETimes/Embedded). In short, Linux rules in Internet of Things development, but FreeRTOS is coming on fast. In addition, Amazon Web Services (AWS) is the leading cloud service for IoT.

 Eclipse IoT Developer Survey 2018 results for OS usage (top) and yearly variations for non-Linux platforms (bottom)
(Source: Eclipse Foundation)
(click images to enlarge)
 

When asked what operating systems were used for IoT, a total of 71.8% of the Eclipse survey respondents listed Linux, including Android and Android Things (see farther below). The next highest total was for Windows at 23%, a slight decrease from last year.

The open source, MCU-focused FreeRTOS advanced to 20%. Last December, the FreeRTOS project received major backing from Amazon. In fact, the Eclipse Foundation calls it an “acquisition.” This is never an entirely correct term when referring to a truly open source project such as FreeRTOS, but as with Samsung’s stewardship of Tizen, it appears to be essentially true.

Amazon collaborated with FreeRTOS technical leaders in spinning a new Amazon FreeRTOS variant linked to AWS IoT and AWS Greengrass. The significance of Amazon’s stake in FreeRTOS was one of the reasons Microsoft launched its Linux-based Azure Sphere secure IoT SoC platform, according to a VDC Research analyst.

The growth of FreeRTOS and Linux has apparently reduced the number of developers who code IoT devices without a formal OS or who use bare metal implementations. The “No OS/Bare Metal category” was second place in 2017, but has dropped sharply to share third place with FreeRTOS at 20%.

Other mostly open source RTOSes that had seen increases in 2017, such as mBed, Contiki, TinyOS, and Riot OS, dropped in 2018, with Contiki seeing the biggest dive. All these platforms led the open source Zephyr, however, as well as proprietary RTOSes like Micrium PS. The Intel-backed Zephyr may have declined in part due to Intel killing its Zephyr-friendly Curie module.

Eclipse IoT results for OS usage for constrained devices (top)
and gateways (bottom)

(Source: Eclipse Foundation)
(click images to enlarge)

When the Eclipse Foundation asked what OS was used for constrained devices, Linux still led the way, but had only 38.7%, followed by No OS/Bare Metal at 19.6%, FreeRTOS at 19.3%, and Windows at 14.1%. The others remained in the same order, ranging from Mbed at 7.7% to Riot OS at 4.7% for the next four slots.

When developers were asked about OS usage for IoT gateways, Linux dominated at 64.1% followed by Windows at 14.9%. Not surprisingly, the RTOSes barely registered here, with FreeRTOS leading at 5% and the others running at 2.2% or lower.

Eclipse IoT survey results for most popular Linux distributions
(Source: Eclipse Foundation)
(click image to enlarge)

Raspbian was the most popular Linux distro at 43.3%, showing just how far the Raspberry Pi has come to dominate IoT. The Debian based Ubuntu and more IoT-oriented Ubuntu Core were close behind for a combined 40.2%, and homegrown Debian stacks were used by 30.9%.

Android (19.6%) and the IoT-focused Android Things (7.9%) combined for 27.5%. Surprisingly, the open source Red Hat based distro CentOS came in next at 15.6%. Although CentOS does appear on embedded devices, its cloud server/cloud focus suggests that like Ubuntu, some of the Eclipse score came from developers working in IoT cloud stacks as well as embedded.

Yocto Project, which is not a distribution, but rather a set of standardized tools and recipes for DIY Linux development, came next at 14.2%. The stripped-down, networking focused OpenWrt and its variants, including the forked LEDE OS, combined for 7.9%. The OpenWrt and LEDE OS projects reunited as OpenWrt in January of this year. A version 18, due later this year, will attempt to integrate those elements that have diverged.

AWS and Azure rise, Google Cloud falls

The remainder of the survey dealt primarily with IoT software. Amazon’s AWS, which is the cloud platform used by its AWS IoT data aggregation platform and the related, Linux-based AWS Greengrass gateway and edge platform, led IoT cloud platforms with 51.8%. This was a 21% increase over the 2017 survey. Microsoft Azure’s share increased by 17% to 31.2%, followed by a combined score for private and on-premises cloud providers of 19.4%.

The total that used Google Cloud dropped by 8% to 18.8%. This was followed by Kubernetes, IBM Bluemix, and OpenStack On Premises.

Other survey findings include the continuing popularity of Java and MQTT among Eclipse developers. Usage of open source software of all kinds is increasing — for example, 93% of respondents say they use open source data base software, led by MySQL. Security and data collection/analytics were the leading developer concerns for IoT while interoperability troubles seem to be decreasing.

There were only a few questions about hardware, which is not surprising considering that Eclipse developers are primarily software developers. Cortex M3/M4 chips led among MCU platforms. For gateways there was an inconclusive mix of Intel and various Arm Cortex-A platforms. Perhaps most telling: 24.9% did not know what platform their IoT software would run on.

They did, however, know their favorite IDE. It starts with an E.

Further information

More information on the Eclipse IoT Developer Survey may be found in this blog announcement by Benjamin Cabé, which links to a slides from the full survey.

This article originally appeared on LinuxGizmos.com on April 30.

Eclipse IoT Working Group | iot.eclipse.org/working-group

Firms Team to Enable LoRaWAN Availability in 10 Cities

Semtech has announced that machineQ, Comcast’s enterprise Internet of Things (IoT) network service, has connected operational LoRaWAN networks to 10 U.S. cities. The extensive and comprehensive network coverage in these markets increases access at the network edge to add value to solutions providers and enterprises, establishing a strong foundation for nationwide deployment.

According to ABI Research, IoT technology revenues across 12 key smart city technologies and verticals, including metering, parking and street lighting, is expected to grow from around $25 billion in 2017 to $62 billion in 2026 at an average growth rate of 11%. This rapid adoption will need a proven infrastructure that is able to scale and provide key LoRa capabilities to support multiple applications.
MachineQ has rolled out networks in Philadelphia, Chicago, San Francisco, Atlanta, Baltimore, Boston, Denver, Detroit, Indianapolis, Miami, Minneapolis/St. Paul, Oakland, Pittsburgh, Seattle and Washington D.C. The comprehensive network presence in these 10 cities demonstrates the steady progress of enabling smart business decisions with the broad adoption of Semtech’s LoRa devices and wireless radio frequency technology (LoRa Technology) for their smart applications.

According to Semtech, machineQ’s optimized LoRaWAN network drives even more diverse applications and IoT adoption. MachineQ’s widespread and comprehensive presence in these 10 cities demonstrates shows that Semtech’s LoRa Technology is able to support a diverse number of applications in making cities smarter, from improving parking congestion to remote lighting control for street lights.

Semtech | www.semtech.com

Next Newsletter: Sensors and Measurement

Coming to your inbox tomorrow: Circuit Cellar’s Sensors and Measurement newsletter.
May has a 5th Tuesday, so we’re bringing you this bonus newsletter beyond our normal four rotating weekly subject areas. While sensors have always played a key role in embedded systems, the exploding IoT phenomenon has pushed sensor technology to the forefront. This newsletter looks at the latest technology trends and product developments in sensors and measurement.

Bonus: We’ve added Drawings for Free Stuff to our weekly newsletters. Make sure you’ve subscribed to the newsletter so you can participate.

Already a Circuit Cellar Newsletter subscriber? Great!
You’ll get your
Sensors & Measurement newsletter issue tomorrow.

Not a Circuit Cellar Newsletter subscriber?
Don’t be left out! Sign up now:

Our weekly Circuit Cellar Newsletter will switch its theme each week, so look for these in upcoming weeks:

Embedded Boards.(5/22) The focus here is on both standard and non-standard embedded computer boards that ease prototyping efforts and let you smoothly scale up to production volumes.

Analog & Power. (6/5) This newsletter content zeros in on the latest developments in analog and power technologies including DC-DC converters, AD-DC converters, power supplies, op amps, batteries and more.

Microcontroller Watch (6/12) This newsletter keeps you up-to-date on latest microcontroller news. In this section, we examine the microcontrollers along with their associated tools and support products.

Edge-as-a-Service Solution Targets Commercial IoT

Rigado has announced Cascade, its new integrated Edge-as-a-Service solution. Designed for commercial IoT applications like Asset Tracking, Smart Workplaces and Connected Retail, Cascade helps companies save six months of time—or more—in bringing their solutions to market, without the need for upfront hardware investments.

Offered as an integrated monthly subscription starting at $9/month, Cascade gives you the wireless infrastructure, edge computing platform and managed security updates that allow IoT product and project teams to focus on driving maximum value from their IoT apps—and not on the underlying edge infrastructure, security and maintenance.

Rigado’s  Cascade Edge-as-a-Service does so with four main components:

Cascade-500 IoT Gateway: Rigado’s newest IoT gateway offers a range of connectivity options including Bluetooth 5, Zigbee, Thread, Wi-Fi & LTE; security features like file system encryption; and 800 MHz of edge computing power.

Edge Protect Service: A managed, automated security service, Edge Protect provides automatic OS and security updates when common vulnerabilities, exposures and exploits are discovered. The service also provides signature authentication to ensure that what your developers publish is exactly what runs.

Edge Direct Tools: Secure edge device orchestration and systems performance monitoring allow your operations teams to set alerts and diagnose issues; provision gateways with secure IDs and encrypted keys; and flexibly schedule, manage and apply application updates. Edge Direct integrates with existing DevOps processes and CI tools and uses a familiar app store deployment model. With Edge Direct, technicians are able to stay out of the field, remotely deploying—and rolling back if necessary—updates for reliable maintenance.

Edge Connect Platform: Gives developers a secure connectivity and computing platform with a fully containerized edge OS. Featuring Ubuntu Core by Canonical with secure boot and an encrypted file system, Edge Connect also leverages Snaps, a simple application packaging system that makes it easier for developers to build and maintain application containers at the edge. With Edge Connect, your developers can work in the programming language of their choice and can easily and securely add multiple apps and functionalities onto a single gateway. Last, EdgeConnect also offers easier connections to IoT sensors and beacons using API calls that do not require device or protocol expertise.

Cascade benefits engineers by shaving months off of their IoT design and build efforts by helping them quickly develop and deploy edge applications. EdgeConnect APIs, with their ‘web-style’ access to devices, greatly simplifies architecture and saves thousands of lines of code and weeks of development and testing time.

Operational teams who are tasked with ongoing edge maintenance can use their same DevOps workflows, dashboards, and tools, such as CI, to monitor their IoT solutions. Edge performance monitoring helps Operations keep a close eye on device health and connectivity to manage successful scaling.

Cascade gives your IoT Support the solutions they need to effectively diagnose and fix client-specific issues. Able to easily integrate into existing support applications, IoT support needs little to no additional team or tools to effectively track device performance, diagnostics and update configurations.

 

Business teams benefit from the ability to easily scale IoT solutions across the commercial enterprise – all with a solution that mirrors their own SaaS Commercial IoT model. With increased security, a faster time to market and the ability to extend easily to the entire commercial enterprise, Cascade gives your business teams the ability to introduce innovation at the speed of the market.

You can get started with Rigado’s Cascade Evaluation Kit.

Rigado | www.rigado.com

IoT Edge Server Manages Distributed Devices

Advantech has announced its new generation of wireless connectivity: the Edge Intelligence Server EIS-D210 series. As smart cities and industry 4.0 deployment installs millions of IoT sensors and devices, wireless communications has become the fastest growing sector and wireless networks have been part of every application. As a result, the task of remotely managing distributed devices becomes more complex.

To echo market requirements, Advantech EIS-D210 series is powered by an Intel Celeron processor N3350 and has LoRa/Wi-Fi/Bluetooth and WISE-PaaS/EdgeSense edge intelligence and sensing software built-in. It is also pre-integrated with Microsoft Azure IoT Edge and AWS Greengrass to extend cloud intelligence to edge devices and enable real-time decisions at the edge. Advantech EIS-D210 is an integrated solution from the edge to the cloud and simplifies IoT application deployment. It’s well suited for applications in smart factory, smart energy and intelligent agriculture applications that need wireless sensor network management.

EIS-D210W has a built-in certificated Wi-Fi (IEEE802.11a/b/g/n/ac 2.4GHz/5GHz standard) and Bluetooth 4.1 module, and EIS-D210L incorporates a built-in private LoRa long-range modem. All EIS-D210 series have built-in dual GbE, COM (RS-232/422/485), VGA/HDMI, four USB 3.0 and mPCIe ports. The mPCIe ports can be extended to support 3G/4G LTE. EIS-D210 series provide several connection capabilities and peripheral support for multiple wireless/wired communications.

EIS-D210 series comes with Advantech’s WISE-PaaS/EdgeSense edge intelligence and sensing integration software, which provides an IoT SDK and documents for wireless sensor (LoRa, Wi-Fi, Bluetooth) data integration and supporting field protocols (MQTT/OPC/Modbus) for sensor/device data acquisition. With these, customers can quickly incorporate data integration, data pre-processing, and edge analytics to their applications.

EIS-D210 series is also pre-integrated with Azure IoT Edge and AWS Greengrass, ensuring that IoT devices can respond quickly to local events, interact with local resources, operate with intermittent connections, and minimize the cost of transmitting IoT data to the cloud. Furthermore, after data modeling and machine learning with data, results can be pushed back to edge (IoT Edge/ Greengrass) to provide data prediction for IoT applications.

EIS-D210W (Wi-Fi/Bluetooth) became available at end of April and EIS-D210L (LoRa) will become available in June.

Advantech | www.advantech.com

Software Speeds Safety Certification for STM32-Based Systems

STMicroelectronics has announced new free software for its STM32 microcontrollers. The functional-safety design package cuts complexity and IEC 61508 safety-certification costs for STM32-based safety critical applications. This resource is created for designers of STM32-based devices in the field of industrial controls, robots, sensors, medical, or transportation, which must be certified up to Safety Integrity Level (SIL) 2 or 3 of the recognized safety standard IEC 61508. ST’s STM32 SIL Functional-Safety Design Package simplifies system development and certification.

The SIL Functional-Safety Design Package comprises documentation and the X-CUBE-STL, a software Self-Test Library certified to IEC 61508 SIL3. The package is initially available for the STM32F0 series. ST will continue to introduce equivalent packages for all other series in the STM32 family throughout 2018 and 2019. There are currently more than 800 STM32 microcontroller variants.

ST’s STM32 SIL Functional Safety Design Package contains full documentation to support development of STM32-based embedded systems to meet IEC 61508 requirements for functional safety. The documentation comprises safety manuals that detail all applicable safety requirements, or conditions of use, with implementation guidelines to help developers certify their products to SIL 2 or SIL 3 in accordance with IEC 61508. Also included are the mandatory Failure-Modes Effects Analysis (FMEA), containing the detailed list of microcontroller failure modes and related mitigation measures, and Failure-Mode Effects and Diagnostics Analysis (FMEDA), which gives a static snapshot reporting IEC 61508 failure rates, computed at both the microcontroller and basic functions detail levels.

The software self-test library, X-CUBE-STL, is a software-based diagnostic suite for detecting random hardware failures in STM32 safety-critical core components comprising the CPU, SRAM, and Flash memory. The Diagnostic Coverage is verified by state-of-the-art ST proprietary fault injection methodology. Integrated with the familiar and proven STM32Cube workflow, it is application-independent thereby allowing use with any user application, and is delivered as compiler-agnostic object code.

TÜV Rheinland, a leading international certification institute for functional safety certification to relevant international standards, has positively assessed X-CUBE-STL-F0 according to the functional safety standard IEC 61508:2010. Detailed information of the certificate will be soon available on www.fs-products.com. Swiss-based sensor manufacturer Contrinex is the first to use ST’s Functional-Safety Design Package to certify safety products based on STM32F0 microcontrollers.

The Functional-Safety Design Package for STM32F0 microcontrollers is available from www.st.com, free of charge, subject to Non-Disclosure Agreement (NDA) with ST. Equivalent packages for other STM32 series will be introduced throughout 2018 and 2019.

 

STMicroelectronics | www.st.com