Mouser Inks Distribution Deal with Onion

Mouser Electronics has signed a global distribution agreement with Onion, a global provider of integrated wireless microprocessor modules and IoT development kits. Through the agreement, Mouser will distribute the Omega2+ device, kits, and accessories, ideal for applications such as home automation, coding education, Wi-Fi media servers, robotics and networking.

The Onion product line, available from Mouser Electronics, revolves around the Omega2+, (shown) an easy-to-use, expandable IoT computer packed with built-in Wi-Fi connectivity, a MicroSD card slot, and a powerful 580 MHz MIPS processor. Though just a fraction of the size of other single board computers, the Omega2+ is a full computer with a Linux operating system, 128 MB of DDR2 memory and 32 MB of flash storage. The device also offers 15 general-purpose inputs and outputs (GPIO), two PWM and two UART interfaces.

Mouser also now stocks a variety of docks and expansion boards, which provide additional functionality to the Omega2+ board. The Expansion Dock powers the Omega2+ and breaks out the GPIOs. The dock also allows engineers to expand their Omega2+ with expansion modules like OLED, relay, and servo. Additionally, engineers can use the Arduino Dock R2 and add the Omega2+ to existing Arduino-based projects. The Arduino Dock R2 is a full Arduino Uno that allows the Omega2 to control the Arduino’s ATmega microcontroller through a serial connection.

The Omega2 Starter Kit and Omega2 Maker Kit both include an Omega2+ board, expansion dock, breadboard, and a variety of components to help engineers quickly get started building circuits. The Maker Kit includes the same components as the Starter Kit and adds two servos, a DC motor, H-bridge chip, buzzer and three expansion boards.

Mouser Electronics | www.mouser.com/onion

Tuesday’s Newsletter: IoT Tech Focus

Coming to your inbox tomorrow: Circuit Cellar’s IoT Technology Focus newsletter. Tomorrow’s newsletter covers what’s happening with Internet-of-Things (IoT) technology–-from devices to gateway networks to cloud architectures. This newsletter tackles news and trends about the products and technologies needed to build IoT implementations and devices.

Bonus: We’ve added Drawings for Free Stuff to our weekly newsletters. Make sure you’ve subscribed to the newsletter so you can participate.

Already a Circuit Cellar Newsletter subscriber? Great!
You’ll get your IoT Technology Focus newsletter issue tomorrow.

Not a Circuit Cellar Newsletter subscriber?
Don’t be left out! Sign up now:

Our weekly Circuit Cellar Newsletter will switch its theme each week, so look for these in upcoming weeks:

Embedded Boards.(1/23 Wednesday) The focus here is on both standard and non-standard embedded computer boards that ease prototyping efforts and let you smoothly scale up to production volumes.

January has a 5th Tuesday, so we’re bringing you a bonus newsletter:
Displays and Graphics. (1/30) Display technology is where the user interacts with today’s modern embedded electronic devices This newsletter content examines the latest technology and product developments in displays along with the graphics ICs that drive those displays.

Analog & Power. (2/6) This newsletter content zeros in on the latest developments in analog and power technologies including DC-DC converters, AD-DC converters, power supplies, op amps, batteries and more.

Microcontroller Watch (2/13) This newsletter keeps you up-to-date on latest microcontroller news. In this section, we examine the microcontrollers along with their associated tools and support products.

Protect IoT Designs with PUF Circuitry

Maxim-Chip-DNA As IoT designs proliferate, security is lagging. Hardware-based security using physically unclonable function (PUF) circuitry strongly protects connected products against invasive attacks. A cryptographic key is generated only when needed and isn’t stored on the secure IC. Even probing the chip impedes the attack.


 

Protect IoT Designs with Physically Unclonable Function Circuitry

By Ben Smith, Principal Member of the Technical Staff, Embedded Security, Maxim Integrated

While DNA connects us to every other human being on the planet, it also makes each of us unique. That uniqueness has proven to be useful as a means of positive identification. For example, DNA-based evidence has exonerated some from erroneous convictions and provided verification of guilt in other cases.

The DNA that we all carry as unique identification contrasts greatly with what happens in the technology world. In technology, it’s an imperative for every instance of a type of device to be identical, right down to the last micron, microvolt, and byte. Every device must look, feel, and act the same. After all, it’s important to deliver a consistent user experience. However, this sameness is not ideal when it comes to security.

Ensuring Authenticity Via Random Chip Properties

When every device is identical, how can we know whether messages that claim to come from a particular device actually do? It is possible that those messages might originate from an impersonator. For example, consider a door secured with an access keypad. The door actuator might receive a message from the keypad that the correct code had been entered, and that the door should be opened. But how can the actuator validate that the message is authentic?

For us humans, engaged in face-to-face communications, these questions are non-issues. We know the person we’re talking to because we know how they look and how they sound. In other words, we know the expressions in their physical characteristics of the DNA that makes each of us unique. Imagine the possibilities if our devices possessed that kind of uniqueness.

Indeed, even with devices, there is a way, and that way can be found in physically unclonable function (PUF) technology. While each device may function in an identical way, devices with PUF technology contain an element that makes each of them unique. Deep inside devices equipped with this technology is a circuit element that measures certain physical characteristics of the chip itself. These physical characteristics are stable over time, but they do vary from device to device. The PUF technology logic uses these device-specific variations to compute a value that remains the same every time it’s computed, but that is unique to the particular instance of the device. This value serves as each device’s unique identifier, in the same way that your DNA uniquely identifies you.

The importance of sender identity and message integrity can be illustrated via this simple scenario. Consider a sensor at a remote location that sends a message that there’s a problem. Is the message truly authentic? You have a few options involving secrets and keys:

Option one: a shared secret

Before deploying the sensor, you could program in a secret, like a password. When the sensor sends a message, it would incorporate this password into the message in some agreed-upon way. Once you’ve received the message, you could check to ensure that the password was sent correctly before accepting the message.

Trouble arises when that same password is used for all such sensors. This scenario would make it easy for a cybercriminal to reverse-engineer the device in order to steal the password. Then, the hacker is free to impersonate messages from any device of that type. An even scarier situation happens when the password is sent without cryptographic protection. Then, a cybercriminal can simply eavesdrop on a conversation in order to steal the password. No need to touch the device at all. They could then impersonate any sensor anywhere they are deployed. Clearly, shared secret schemes are too vulnerable to attack.

Option two: public-key cryptography

By programming a private key into your device, your device can digitally sign messages with the private key that can be verified using a corresponding public key. This approach enables messages to be authenticated with near certainty. It is practically impossible to modify or forge a signed message. In other words, there is no known way to impersonate a signer in any reasonable amount of time without the signer’s private key.

The vulnerability in this approach lies in the fact that the secret, private key has to live somewhere in the memory space of the target device. And if an attacker can slip in malware, it’s easy for the malware to leak the private key. Once the malware is developed, firmware update mechanisms can be used to propagate the malware. Before you know, a large set of the affected devices could be compromised.

Option three: PUF technology

PUF technology represents the most secure option because its private key is never disclosed, not even to its owner. The private key is only generated when needed (when a message is ready to be signed), and it is never stored (it is immediately destroyed when no longer needed).  The computed value never appears in the microcontroller’s memory map.

There are various ways in which you can use PUF technology. For instance, before a device manufacturer deploys an internet of things (IoT) device, it can command the hardware containing PUF technology to compute a public key that corresponds to the PUF technology value – the private key. The actual PUF technology value is never disclosed. The device manufacturer then signs the public key with their own corporate private key to create a certificate that they then write back to the device. That certificate can later prove that the public key that the device presents is the same one that was computed at the factory, because nobody can create a valid certificate without the corporate private key. Once deployed, when the IoT device wants to send a message, it can sign the message by recomputing the PUF technology value, using that value as the private key. If the message receiver has the public key for that device, it can verify, with a high degree of assurance, that the message is authentic, unmodified, and came from that particular device.

Now, we’ve got millions (and growing) of IoT devices in the wild. There really isn’t a single database that tracks the public key belonging to every IoT device. Anyone receiving a message from an IoT device probably doesn’t have that particular device’s public key. However, they can request the device’s public key certificate from the device itself. When the device sends the certificate, the receiver can check the validity of the certificate via a two-step process. First, the receiver can verify the certificate’s signature using the signer’s public key. Second, assuming the certificate has proven valid, the receiver can test the validity of the device’s message by using the public key contained in the certificate. This entire process takes less than a second.

You Can’t Steal a Key that Isn’t There

So, you might be wondering, is PUF technology secure enough? The answer to this question lies in the fact that the private key doesn’t even exist until the physical properties of the chip are measured. Even then, the private key is destroyed when it is no longer needed. The private key can’t be discovered by using rogue firmware because the private key only exists in secured, walled-off hardware, not in the actual memory space of the microcontroller. Probing the chip itself will change the characteristics that are measured to determine the PUF technology value, further impeding this type of attack.

Maxim-ChipDNA-diagram

Figure 1: Block diagram of ChipDNA physically unclonable function (PUF) technology, which provides strong protection against invasive attacks.

Maxim’s PUF circuitry takes advantage of the naturally occurring random analog characteristics of fundamental MOSFET devices to produce cryptographic keys. The solution, called ChipDNA technology (Figure 1), ensures that the unique binary value generated by each PUF circuit is guaranteed to be repeatable over temperature and voltage and as the device ages. ChipDNA technology is available in the DS28E38 DeepCover secure authenticator. To learn more about how ChipDNA works, you can read the white paper, “How Unclonable, Turnkey Embedded Security Protects Designs from the Ground Up;” watch a video; and see use cases by visiting the ChipDNA webpage.

Maxim Integrated | www.maximintegrated.com

Sponsored by: Maxim Integrated

Tuesday’s Newsletter: Microcontroller Watch

Coming to your inbox tomorrow: Circuit Cellar’s Microcontroller Watch newsletter. Tomorrow’s newsletter keeps you up-to-date on latest microcontroller news. In this section, we examine the microcontrollers along with their associated tools and support products.

Bonus: We’ve added Drawings for Free Stuff to our weekly newsletters. Make sure you’ve subscribed to the newsletter so you can participate.

Already a Circuit Cellar Newsletter subscriber? Great!
You’ll get your Microcontroller Watch newsletter issue tomorrow.

Not a Circuit Cellar Newsletter subscriber?
Don’t be left out! Sign up now:

Our weekly Circuit Cellar Newsletter will switch its theme each week, so look for these in upcoming weeks:

IoT Technology Focus. (1/16) Covers what’s happening with Internet-of-Things (IoT) technology–-from devices to gateway networks to cloud architectures. This newsletter tackles news and trends about the products and technologies needed to build IoT implementations and devices.

Embedded Boards.(1/23) The focus here is on both standard and non-standard embedded computer boards that ease prototyping efforts and let you smoothly scale up to production volumes.

January has a 5th Tuesday, so we’re bringing you a bonus newsletter:

Displays and Graphics. (1/30) Display technology is where the user interacts with today’s modern embedded electronic devices This newsletter content examines the latest technology and product developments in displays along with the graphics ICs that drive those displays.

Dotdot Spec to Run on Thread’s IP Network

The Zigbee Alliance and Thread Group have announced the availability of the Dotdot specification over Thread’s IP network. This enables developers to confidently use an established, open and interoperable IoT language over a low-power wireless IP network. This is expected to help unify the fragmented connected device industry and unlock new markets.

Dotdot is the Zigbee Alliance’s universal language for the IoT, making it possible for smart objects to work together on any network. Thread is the Thread Group’s open, IPv6-based, low-power, secure and future-proof mesh networking technology for IoT products. These two organizations have come together to deliver a mature, scalable solution for IoT interoperability that isn’t confined to single-vendor ecosystems or technologies.

Dotdot-over-Thread-no-sub-01The early Internet faced the same challenges as today’s IoT. Currently, connected devices can struggle to deliver a seamless experience because they speak different languages (or in technical terms, use different “application layers”). For the internet, the industry solved this problem with open, universal protocols over IP. Dotdot’s common device language over Thread’s IP network extends this same proven approach to the Internet of Things. With Dotdot over Thread, product and platform vendors can ensure the high-quality, interoperable user experiences needed to drive growth, while IP allows vendors to maintain a direct connection to their device.

It’s important to note that Dotdot over Thread is not another new standard. Dotdot enables the open, mature, and already widely adopted application layer at the heart of Zigbee to work across Thread’s IP network. It uses the same network technology fundamental to the internet. For product managers, new standards represent risk. Dotdot and Thread are backed by global, industry-leading companies and represent two of the most robust, widely deployed, and well-supported connectivity and interoperability technologies, driving billions of products and networks already in homes and offices.

The Dotdot specification is available today to Zigbee Alliance members. Additional resources, including the Dotdot Commissioning Application, will be available in Summer 2018, along with the opening of the Dotdot Certification program from the Zigbee Alliance. Thread launched its 1.1 specification and opened its certification program in February 2017. The Zigbee Alliance and Thread Group now share a number of common authorized test service providers, and are working with them to ensure an efficient, seamless certification process for Dotdot over Thread adopters. More information on this program will be announced soon.

The Zigbee Alliance | www.zigbee.org

Thread Group | www.threadgroup.org

Fanless SBC Targets Industrial IoT

Technologic Systems is now shipping its newest single board computer, the TS-7553-V2. The board is developed around the NXP i.MX6 UltraLite, a high performance  processor family featuring an advanced implementation of a single ARM Cortex-A7 core, which operates at speeds up to 696 MHz. While able to support a wide range of embedded applications, the TS-7553-V2 was specifically designed to target the industrial Internet of Things (IIoT) sector.

ts-7553-v2The TS-7553-V2 was designed with connectivity in mind. An on-board Xbee interface, capable of supporting Xbee or NimbleLink, provides a simple path to adding a variety of Wireless interfaces. An Xbee radio can be used to link in with a local 2.4GHz or sub 1 GHz mesh networks, allowing for gateway or node deployments. Either Digi or NimbleLink offer cellular radios for this socket, providing cellular connectivity for applications such as remote equipment monitoring and control. There is also the option for a cellular modem via daughter card. This allows transmission of serial data via TCP, UDP or SMS over the cellular network. The TS-7553-V2 also includes an on board WiFi b/g/n and Bluetooth 4.0 option, providing even more connectivity.

Further radio expansion can be accomplished with the two internal USB interfaces (one on a standard USB Type A connector, and the second on simple pin headers). The USB interfaces enable support for multiple proprietary networks via a dongle or USB connected device. This provides the opportunity to run mesh, LoRa, ZigBee, automotive WiFi or other protocols with the TS-7553-v2 . All of these radio options combined with the on board 10/100Base-T Ethernet create the opportunity to communicate seamlessly with up to 5 different networks simultaneously from a single point.

The TS-75553-V2 supports standard interfaces including:

  •     10/100 Ethernet
  •     TTL UART
  •     4 USB ports (3 host interfaces and, 1 device)
  •     3 RS-232 Serial/COM ports
  •     RS-485 port
  •     CAN bus
  •     Up to 5 GPIO

A Nine-Axis Micro-Electro-Mechanical System (MEMS) motion tracking device containing a gyroscope, accelerometer and compass are optional on-board in for asset management, fleet management and other applications which would require sensing motion or vibration in the environment.

A low cost monochrome 128x64px LCD with 4 button keypad is available for Human Machine Interface (HMI) applications.  The keypad offers intuitive operation using 4 tactile function keys and the LCD is ideal for simple visualization tasks, even in harsh environments.  If HMI is not a consideration compact, lightweight, rugged enclosures are available to contain your gateway in a secure fanless enclosure. Both enclosures are DIN mountable.

Technologic Systems has taken the lead in combating read/write errors to memory that can prove fatal to Operating Systems. TS-SILO is an optional feature which will provide up to 30 seconds of reserve power in the event of a power failure. This precious extra time gives the board time to gracefully power down and ensures file system integrity. Additionally, for heavy data logging applications The TS-7553-V2 is the first SBC from Technologic Systems to include Ferroelectric RAM (FeRAM or FRAM). FeRAM advantages over flash include: lower power usage, faster write performance and a much greater maximum read/write endurance, allowing a user to keep running data logs without prematurely wearing out their flash memory. Combined these two features provide you with insurance from abrupt power loss, read/write errors and startup difficulties.

Applications with strict low power requirements will appreciate the work that’s been done to reduce power consumption to less than 2 W in typical conditions and a 9 mW sleep mode. Power over Ethernet (PoE) is supported via a daughter card, if desired.

Development can begin out-of-the-box with pre-installed Linux and utilities for controlling DIO, UARTS, CAN bus, and more. A complete board support package is provided, as well as access to our software repository and online support. Third party application support can be provided via the Technologic Systems’ Partner Network.

Technologic Systems | www.embeddedARM.com

Processor Empowers Voice-Controlled Devices

To address the convergence of immersive sensory experiences fueled by voice, video and audio demands, NXP Semiconductors has launched the i.MX 8M family of applications processors. The processors combine robust media capabilities on one chip. Voice commands are expected to dominate 50% of all searches in the next two years, increasingly thinner TVs are driving the popularity of sound bars for home automation, and consumers are embracing the IoT for creating more convenient richer sensory-driven experiences.

The NXP i.MX 8M processors address designers’ requirements for one platform that combines A/V and machine learning to create connected products that can be controlled via voice command. The chips provide the process technology and edge computing needs to manage and reduce the command and question response time of smart connected devices. The i.MX 8MF is suited for a wide range of residential IoT and device control applications including everything.from smart TVs, television subscription services, sound bars and other smart speakers, to streaming media players and DVR/PVR. The processor family is also ideal for managing lighting, thermostats, door locks, home security, smart sprinklers, other systems and devices for a more intuitive and responsive home environment.

NXP’s i.MX 8M family’s features that include:

  • Video and audio capabilities with full 4K Ultra HD resolution, High Dynamic Range (HDR) and the highest levels of pro-audio fidelity
  • Performance and versatility with up to four 1.5 GHz ARM Cortex-A53 cores, flexible memory options, and high-speed interfaces for flexible connectivity
  • Advanced Human Machine Interface (HMI) featuring dual displays, vision procession unit (VPU), and an enriched user experience
  • Scalability and pin-and-power compatibility

NXP Semiconductors | www.nxp.com/iMX8M

Bluetooth 5-Compliant ICs Boast -105 dBm Sensitivity

Toshiba Electronic Devices & Storage has added two new devices to its lineup of ICs that are compliant with the Bluetooth low energy standard. The new TC35680FSG (featuring built-in flash memory) and TC35681FSG are well-suited to applications requiring long-range communication, including beacon tags, IoT devices and industrial equipment. Sample shipments will begin later this month.

The new communication ICs support the full spectrum of data rates required for the high-speed features—2M PHY and Coded PHY (500 kbps and 125 kbps)—found in the Bluetooth 5.0 standard. The new devices also deliver an industry-leading receiver sensitivity level of -105 dBm (at125k bps ) and a built-in high efficiency power amplifier in the transmission block that provides up to +8 dBm transmission power.

Bluetooth technology continues to evolve to meet wireless connectivity needs, and recent enhancements to the standard have been designed to increase Bluetooth’s functionality with the IoT. By adding Bluetooth 5.0-compliant ICs to its extensive lineup, Toshiba helps companies integrate Bluetooth low energy products into IoT devices and addresses the growing demand for high-throughput, long-range communications.

Based on an ARM Cortex-M0 processor, the new ICs incorporate a 256 KB Mask ROM to support the Bluetooth baseband process, and 144 KB of RAM for processing Bluetooth baseband, stack and data. Toshiba’s TC35680FSG and TC35681FSG also feature 18-port GPIOs as interfaces, which can be set to 2 channels each for SPIs, I2C, and UART. This allows for the structuring of systems that connect to various peripheral devices. These GPIOs can be set for a wakeup function, 4-channel PWM, 5-channel AD converter interfaces, an external amplifier control interface for long-range communication and more.

The TC35680FSG includes 128 KB of flash memory for storing user programs and various data in stand-alone operations, making it well-suited to a wide range of applications and removing the need for external non-volatile memory. This also lowers the part count, which reduces both the cost and mounting area.

The TC35681FSG, which does not include a built-in flash memory, operates in conjunction with an external non-volatile memory or host processor. A wide operating range of -40° to +125°C makes it suitable for applications exposed to high temperatures.

Toshiba Electronic Devices & Storage | www.toshiba.semicon-storage.com

Chipsets Provide Low Power LoRa Solutions

Semtech has announced its next generation LoRa devices and wireless radio frequency (RF) technology (LoRa Technology) chipsets enabling innovative LPWAN use cases for consumers with its advanced technology. Addressing the need for cost-effective and reliable sensor-to-cloud connectivity in any type of RF environment, the new features and capabilities will significantly improve the performance and capability of IoT sensor applications that demand ultra-low power, small form factor and long range wireless connectivity with a shortened product development cycle.

The next generation LoRa radios extends Semtech’s industry leading link budget by 20% with a 50% reduction in receiver current (4.5 mA) and a high power +22 dBm option. This extends battery life of LoRa-based sensors up to 30%, which reduces the frequency of battery replacement. The extended connectivity range, with the ability to reach deep indoor and outdoor sensor locations, will create new markets as different types of verticals integrate LoRa Technology in their IoT applications including healthcare and pharmaceuticals, media and advertising, logistics/shipping and asset tracking.

The new platform has a command interface that simplifies radio configuration and shortens the development cycle, needing only 10 lines of code to transmit or receive a packet, which will allow users to focus on applications. The small footprint, 45% less than the current generation, is highly configurable to meet different application requirements utilizing the global LoRaWAN open standard. The chipsets also supports FSK modulation to allow compatibility with legacy protocols that are migrating to the LoRaWAN open protocol for all the performance benefits LoRa Technology provides.

Three new devices, SX1262 (+22dBm), SX1261 (+15dBm) and SX1268 (+22dBm, China frequency bands) are currently sampling to lead customers and partners and will be available in full production in late Q1 2018. Development kits for various regions and associated software will also be available at that time.

LoRa Technology New Features:

  • 50% less power in receive mode
  • 20% more extended range
  • +22 dBm transmit power
  • A 45% reduction in size: 4mm by 4mm
  • Global continuous frequency coverage: 150-960MHz
  • Simplified user interface with implementation of commands
  • New spreading factor of SF5 to support dense networks
  • Protocol compatible with existing deployed LoRaWAN networks

 

Semtech | www.semtech.com/iot

Express Logic IoT Platform Gets Thread Certification

Express Logic has announced that its Industrial Grade X-Ware IoT Platform is an official Thread Certified Product, and the only such solution from an independent RTOS provider. Created by the Thread Group, Thread is a reliable, low-power, secure, and scalable mesh networking solution that provides a foundation on which any application layer can run.

The X-Ware IoT Platform, powered by Express Logic’s high-performance ThreadX RTOS and NetX Duo dual IPv4/IPv6 TCP/IP stack, provides industrial-grade implementations of IPv6 over Low Power Wireless Personal Area Networks (6LoWPAN), Constrained Application Protocol (CoAP), and Datagram Transport Layer Security (DTLS).

According to Express Logic, Thread certification provides more than just protocol compliance. Rather than measuring against single reference implementations, Thread testing validates each device’s specification conformance against a blended network comprised of four reference stacks to ensure device interoperability and reduce risk and time to market. Compliance to the Thread certification protocols and standards is administered and regulated by UL a global, independent, safety and certification company with more than a century of expertise in implementing certification solutions and standards.

The X-Ware IoT Platform contains no open source, is high performance, and boasts an extremely small footprint. The X-Ware IoT Platform automatically scales to use only what is needed by the application, making it well suited for the smallest low-power IoT devices. In addition to the performance and size advantages of the X-Ware IoT Platform, ThreadX and NetX Duo have attained the highest level of safety certifications. They include IEC 61508 SIL 4, IEC 62304 Class C, ISO 26262 ASIL D, EN 50128 SW-SIL 4, UL 60730-1 Annex H, CSA E60730-1 Annex H, IEC 60730-1 Annex H, 60335-1 Annex R and IEC 60335-1 Annex R, 1998.

 

Thread certification will also allow developers to confidently leverage the entire X-Ware IoT Platform solution, including the safety-certified FileX, GUIX, and USBX solutions and technologies, knowing it will seamlessly connect to other Thread-certified devices.

Express Logic | www.rtos.com

Thread Group | www.threadgroup.org

Automotive-Grade IoT Gateways

Eurotech has expanded its range of Multi-service IoT Gateways with the launch of the DynaGATE 10-12 and the announcement of the DynaGATE 10-06. Both systems are carrier pre-certified, with an integrated LTE Cat 1 cellular, GPS, Wi-Fi, BLE, E-Mark and SAE/J1455 certifications and a -40 ºC to +85 ºC operating temperature.

The DynaGATE 10-12 is a low-power gateway based on the TI AM335X Cortex-A8 (Sitara) processor family, with 1 GB RAM and 4 GB eMMC. It features a 6 to 36VDC power supply with transient protection and vehicle ignition sense, 2x protected RS-232/RS-485 serial ports, 2x CAN bus interfaces, 3x noise and surge protected USB ports and 4x isolated digital I/Os. The DynaGATE 10-12 is suitable for on-board applications, with a metal enclosure, high retention connectors and screw-flange terminal blocks.

The connectivity capabilities of the DynaGATE 10-12 include an internal LTE Cat 1 modem with dual Micro-SIM support, Wi-Fi, Bluetooth Low Energy, 2x Fast Ethernet ports, and an internal GPS (optionally with Dead Reckoning) for precise geolocation.

DynaGATE 10-06.jpgThe DynaGATE 10-06 (shown) is an IP67, heavy-duty IoT gateway for Automotive applications. It features an internal battery that provides minutes of uninterrupted operation in case of power failure. Based on the NXP i.MX 6UltraLite Cortex-A7 processor, with 512MB RAM and 4GB eMMC, the DynaGATE 10-06 features a 6 to 36V power supply with protections and vehicle ignition sense, 3x protected RS-232/RS-485 serial ports, 2x CAN bus interfaces, 1x noise and surge protected USB port and 2x protected digital I/O. All these interfaces are available through a rugged AMPSEAL connector.

The DynaGATE 10-06 connectivity capabilities range from an internal LTE Cat 1 modem with dual Micro-SIM support, Wi-Fi, Bluetooth Low Energy, to a dedicated GPS with optional Dead Reckoning and 2x Fast Ethernet ports on rugged M12 connectors.

In addition, the DynaGATE 10-12 and DynaGATE 10-06 connectivity capabilities can be expanded through the ReliaCELL 10-20 family, that includes several 2G/3G/LTE global, rugged cellular modules certified by leading carriers. The DynaGATE 10-12 is also expandable with Eurotech ReliaLORA 10-12, a LoRa LPWAN Gateway unit, and the ReliaIO 10-12, a DAQ unit that provides analog inputs, more digital I/O interfaces and other functionalities.

The DynaGATE 10-12 and the DynaGATE 10-06 come with a genuine Oracle Java SE Embedded 8 Virtual Machine and Everyware Software Framework (ESF), a commercial, enterprise version of Eclipse Kura, the Java/OSGi edge computing platform for IoT gateways. Distributed and supported by Eurotech, ESF adds advanced security, diagnostics, provisioning, remote access and full integration with Everyware Cloud (EC), the Eurotech IoT integration platform (separately available).

Eurotech | www.eurotech.com

Partner Program to Focus on Security

Microchip Technology has also established a Security Design Partner Program for connecting developers with third-party partners that can enhance and expedite secure designs. Along with the program, the company has also released its ATECC608A CryptoAuthentication device, a secure element that allows developers to add hardware-based security to their designs.

Microchip 38318249941_bf38a56692_zAccording to Microchip, the foundation of secured communication is the ability to create, protect and authenticate a device’s unique and trusted identity. By keeping a device’s private keys isolated from the system in a secured area, coupled with its industry-leading cryptography practices, the ATECC608A provides a high level of security that can be used in nearly any type of design. The ATECC608A includes the Federal Information Processing Standard (FIPS)-compliant Random Number Generator (RNG) that generates unique keys that comply with the latest requirements from the National Institute of Standards and Technology (NIST), providing an easier path to a whole-system FIPS certification.

Other features include:

  • Boot validation capabilities for small systems: New commands facilitate the signature validation and digest computation of the host microcontroller firmware for systems with small MCUs, such as an ARM Cortex-M0+ based device, as well as for more robust embedded systems.
  • Trusted authentication for LoRa nodes: The AES-128 engine also makes security deployments for LoRa infrastructures possible by enabling authentication of trusted nodes within a network.
  •  Fast cryptography processing: The hardware-based integrated Elliptical Curve Cryptography (ECC) algorithms create smaller keys and establish a certificate-based root of trust more quickly and securely than other implementation approaches that rely on legacy methods.
  •  Tamper-resistant protections: Anti-tampering techniques protect keys from physical attacks and attempted intrusions after deployment. These techniques allow the system to preserve a secured and trusted identity.
  •  Trusted in-manufacturing provisioning: Companies can use Microchip’s secured manufacturing facilities to safely provision their keys and certificates, eliminating the risk of exposure during manufacturing.

In addition to providing hardware security solutions, customers have access to Microchip’s Security Design Partner Program. These industry-leading companies, including Amazon Web Services (AWS) and Google Cloud Platform, provide complementary cloud-driven security models and infrastructure. Other partners are well-versed in implementing Microchip’s security devices and libraries. Whether designers are looking to secure an Internet of Things (IoT) application or add authentication capabilities for consumables, such as cartridges or accessories, the expertise of the Security Design Partners can reduce both development cost and time to market.

For rapid prototyping of secure solutions, designers can use the new CryptoAuth Xplained Pro evaluation and development kit (ATCryptoAuth-XPRO-B) which is an add-on board, compatible with any Microchip Xplained or Xplained Pro evaluation board. The ATECC608A is available for $0.56 each in 10,000 unit quantities. The ATCryptoAuth-XPRO-B add-on development board is available for $10.00 each.

Microchip Technology | www.microchip.com

Stainless Steel Panel PCs Meet Food Industry Needs

Axiomtek has introduced the release of two new IP66/IP69K stainless steel touch panel computers: the 15″ GOT815L-511 and 17″ GOT817L-511 (shown). These Intel Kaby Lake processor-based stainless steel touch panel PCs are especially designed for use in extreme humidity, moist, dusty or wet environments. The highly reliable stainless touch got817-511panel computers adopt a high brightness LCD display with 420 nits (GOT815L-511) and 350 nits (GOT817L-511) brightness to ensure visibility in harsh environments with varying light intensity and come with options for projected capacitive touch or 5-wire flat resistive touchscreen display. The SUS316 stainless steel case can prevent bacteria growth and rust brought on by prolonged usage in moist and wet environments. Furthermore, the flat panel design prevents accumulation of dust and moisture and also makes cleaning easier.

The 15” XGA and 17” SXGA stainless steel panel computers come with rich I/O interfaces with M12-type connectors including two RS-232/422/485 ports, four USB 2.0 ports and one gigabit Ethernet port. They both support one DDR4-2133 SO-DIMM slot with up to 16GB system memory, and one 2.5″ SSD or 2.5″ SATA HDD for storage. Additionally, two PCI Express Mini Card slots are available for wireless network connections. The NEMA 4X Intel Core-based rugged touch panel computers are compatible with Windows 10 and Windows 10 IoT. Mounting ways include suspension and VESA arm.

Axiomtek’s 15-inch GOT815L-511 and 17-inch GOT817L-511 are going to be available in January, 2018.

Axiomtek | www.axiomtek.com

The Quest for Extreme Low Power

Input Voltage

–Jeff Child, Editor-in-Chief

JeffHeadShot

Over the next couple years, power will clearly rank as a major design challenge for the myriad of edge devices deployed in Internet of Things (IoT) implementations. Such IoT devices are wireless units that need to be always on and connected. At the same time, they need low power consumption, while still being capable of doing the processing power needed to enable machine intelligence. The need for extreme low power in these devices goes beyond the need for long battery life. Instead the hope is for perpetually powered solutions providing uninterrupted operation—and, if possible, without any need for battery power. For their part, microcontroller vendors have been doing a lot in recent years within their own labs to craft extreme low power versions of their MCUs. But the appetite for low power at the IoT edge is practically endless.

Offering a fresh take on the topic, I recently spoke with Paul Washkewicz, vice president and co-founder of Eta Compute about the startup’s extreme low power technology for microcontrollers. The company claims to offer the lowest power MCU intellectual property (IP) available today, with voltages as low as 0.3 V. Eta Compute has developed and implemented a unique low power design methodology that delivers up to a 10x improvement in power efficiency. Its IP and custom designs operate over severe variations in conditions such as temperature, process, voltage and power supply variation. Eta Compute’s approach is a self-timed technology supporting dynamic voltage scaling (DVS) that is insensitive to process variations, inaccurate device models and path delay variations.

The technology has been implemented in a variety of chip functions. Among these are M0+ and M3 ARM cores scaling 0.3 V to 1.2 V operation with additional low voltage logic support functions such as real-time clocking (RTC), Advanced Encryption Standard (AES) and digital signal processing. The technology has also been implemented in an A-D converter sensor interface that consumes less than 5 µW. The company has also crafted an efficient power management device that supports dynamic voltage scaling down to 0.25 V with greater than 80% efficiency.

According to the company, Eta Compute’s technology can be implemented in any standard foundry process with no modifications to the process. This allows ease of adoption of any IP and is immune to delays and changes in process operations. Manufacturing is straightforward with the company’s IP able to port to technology nodes at any foundry. Last fall at ARM TechCon, David Baker, Ph.D. and Fellow at Eta Compute, did a presentation that included a demonstration of a small wireless sensor board that can operate perpetually on a small 1 square inch solar cell.

Attacking the problem from a different direction, another startup, Nikola Labs, is applying its special expertise in antenna design and advanced circuitry to build power harvesting into products ranging from wearables to sensors to battery-extending phone cases. Wi-Fi routers, mobile phones and other connected devices are continually emitting RF waves for communication. According to the company, radio wave power is strongest near the source—but devices transmit in all directions, saturating the surrounding area with stray waves. Nikola Labs’ high-performance, compact antennae capture this stray RF energy. Efficient electronics are then used to convert it into DC electricity that can be used to charge batteries or energize ultra-low power devices.

Nikola’s technology can derive usable energy from a wide band of frequencies, ranging from LTE (910 MHz) to Wi-Fi (2.4 GHz) and beyond (up to 6 GHz). Microwatts of power can be harvested in an active ambient RF area and this can rise to milliwatts for harvesters placed directly on transmitting sources. Nikola Labs has demonstrated energy harvesting from a common source of RF communication waves: an iPhone. Nikola engineers designed a case for iPhone 6 that captures waste RF transmissions, producing up to 30 mW of power to extend battery life by as much as 16% without impacting the phone’s ability to send and receive data.

Whether you address the challenge of extreme low power from the inside out or the outside in—or by advancing battery capabilities—there’s no doubt that the demand for such technologies will only grow within the coming years. With all that in mind, I look forward to covering developments on this topic in Circuit Cellar throughout 2018.

This appears in the January (330) issue of Circuit Cellar magazine

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

Next Newsletter: Embedded Boards

Coming to your inbox tomorrow: Circuit Cellar’s Embedded Boards newsletter. Tomorrow’s newsletter content focuses on both standard and non-standard embedded computer boards that ease prototyping efforts and let you smoothly scale up to production volumes.

Bonus: We’ve added Drawings for Free Stuff to our weekly newsletters. Make sure you’ve subscribed to the newsletter so you can participate.

zeta-enlargedAlready a Circuit Cellar Newsletter subscriber? Great!
You’ll get your Embedded Boards newsletter issue tomorrow.

Not a Circuit Cellar Newsletter subscriber?
Don’t be left out! Sign up now:

Our weekly Circuit Cellar Newsletter will switch its theme each week, so look for these in upcoming weeks:

Analog & Power. (1/2) This newsletter content zeros in on the latest developments in analog and power technologies including DC-DC converters, AD-DC converters, power supplies, op amps, batteries and more.

Microcontroller Watch. (1/9) This newsletter keeps you up-to-date on latest microcontroller news. In this section, we examine the microcontrollers along with their associated tools and support products.

IoT Technology Focus. (1/23) Covers what’s happening with Internet-of-Things (IoT) technology–-from devices to gateway networks to cloud architectures. This newsletter tackles news and trends about the products and technologies needed to build IoT implementations and devices.