The Future of Sensor Technology for the IoT

Sensors are at the heart of many of the most innovative and game-changing Internet of Things (IoT) applications. We asked five engineers to share their thoughts on the future of sensor technology.


ChrisCantrellCommunication will be the fastest growth area in sensor technology. A good wireless link allows sensors to be placed in remote or dynamic environments where physical cables are impractical. Home Internet of Things (IoT) sensors will continue to leverage home Wi-Fi networks, but outdoor and physically-remote sensors will evolve to use cell networks. Cell networks are not just for voice anymore. Just ask your children. Phones are for texting—not for talking. The new 5G mobile service that rolls out in 2017 is designed with the Internet of Things in mind. Picocells and Microcells will better organize our sensors into manageable domains. What is the best cellular data plan for your refrigerator and toaster? I can’t wait for the TV commercials. — Christopher Cantrell (Software Engineer, CGI Federal)


TylerSensors of the future will conglomerate into microprocessor controlled blocks that are accessed over a network. For instance, weather sensors will display temperature, barometric pressure, humidity, wind speed, and direction along with latitude, longitude, altitude, and time thrown in for good measure, and all of this will be available across a single I2C link. Wide area network sensor information will be available across the Internet using encrypted links. Configuration and calibration can be done using webpages and all documentation will be stored online on the sensors themselves. Months’ worth of history will be saved to MicroSD drives or something similar. These are all things that we can dream of and implement today. Tomorrow’s sensors will solve tomorrow’s problems and we can really only make out the barest of glimpses of what tomorrow will hold. It will be entertaining to watch the future unfold and see how much we missed. — David C. Tyler (Retired Computer Scientist)



Quo vadis electronics? During the past few decades, electrical engineering has gone through an unprecedented growth. As a result, we see electronics to control just about everything around us. To be sure, what we call electronics today is in fact a symbiosis of hardware and software. At one time every electrical engineer worth his salt had to be able to solder and to write a program. A competent software engineer today may not understand what makes the hardware tick, just as a hardware engineer may not understand software, because it’s often too much for one person to master. In most situations, however, hardware depends on software and vice versa. While current technology enables us to do things we could not even dream about just a few years ago, when it comes to controlling or monitoring physical quantities, we remain limited by what the data sensors can provide. To mimic human intellect and more, we need sensors to convert reality into electrical signal. For that research scientists in the fields of physics, chemistry, biology, mathematics, and so forth work hard to discover novel, advanced sensors. Once a new sensor principle has been found, hardware and software engineers will go to work to exploit its detection capabilities in practical use. In my mind, research into new sensors is presently the most important activity for sustaining progress in the field of electronic control. — George Novacek (Engineer, Columnist, Circuit Cellar)


GustafikIt’s hard to imagine the future of sensors going against the general trend of lower power, greater distribution, smaller physical size, and improvements in all of the relevant parameters. With the proliferation of small connected devices beyond industrial and specialized use into homes and to average users (IoT), great advances and price drops are to be expected. Tech similar to that, once reserved for top-end industrial sensor networks, will be readily available. As electrical engineers, we will just have to adjust as always. After years of trying to avoid the realm of RF magic, I now find myself reading up on the best way to integrate a 2.4-GHz antenna onto my PCB. Fortunately, there is an abundance of tools, application notes, and tutorials from both the manufacturers and the community to help us with this next step. And with the amazing advances in computational power, neural networks, and various other data processing, I am eager to see what kind of additional information and predictions we can squeeze out of all those measurements. All in all, I am looking forward to a better, more connected future. And, as always, it’s a great time to be an electrical engineer. — David Gustafik (Hardware Developer, MicroStep-MIS)


MittalMiniature IoT, sensor, and embedded technologies are the future. Today, IoT technology is a favorite focus among many electronics startups and even big corporations. In my opinion, sensor-based medical applications are going to be very important in our day-to-day lives in the not-so-distant future. BioMEMS sensors integrated on a chip have already made an impact in industry with devices like glucometers and alcohol detectors. These types of BioMEMS sensors, if integrated inside mobile phones for many medical applications, can address many human needs. Another interesting area is wireless charging. Imagine if you could charge all your devices wirelessly as soon as you walk into your home. Wouldn’t that be a great innovation that would make your life easier? So, technology has a very good future provided it can bring out solutions which can really solve human needs. — Nishant Mittal (Master’s Student, IIT Bombay, Mumbai)

New Plug-and-Play FPC Antennas for the 3G, 4G, and LTE Bands

Antenova recently announced three new flexible printed circuit antennas—Mitis (SRFL026), Moseni (SRFL029), and Zhengi (SRFC015)—to cover the 3G, 4G, and LTE bands. The flexible antennas—which belong to Antenova’s flexiiANT range of antennas—offer options for all of the world’s 4G and LTE bands. You also have a choice of antenna shape and size. You can fold the flexible FPC antennas to fit inside small electronic devices. You can position them vertically, horizontally, or co-planar to the PCB. and are ideal for use in applications where there may not be room for an SMD antenna.Antenova Mitis Antenna

The Mitis and Moseni antennas were developed for 4G and LTE applications, including MIMO. The Zhengi covers all of the 3G and 4G LTE bands B7 (2,500–2,690 MHz) and B30, B40 (2,300–2,400 GHz), including LTE Bands B7, B30, B38, B40, and B41.

The antennas come with an IPEX MHF (UFL) cable in a choice of three lengths for easy connection to a wireless module, making them effectively plug-and-play antennas, particularly as they can be integrated without matching. Each one has a peel-back self-adhesive backing that enables you to position it in a variety of  designs.

The Mitis, Moseni and Zhengi antennas are designed for a wide variety of applications, such as smart meters, remote monitoring, M2M, and IoT devices.

Source: Antenova M2M

Arduino Primo Features Nordic Semiconductor SoC

Nordic Semiconductor recently announced that Arduino’s new Arduino Primo features its nRF52832 Bluetooth low energy SoC. The IoT-targeted Arduino Primo PCB features native Bluetooth low energy wireless connectivity and includes Near Field Communication (NFC), Wi-Fi, and infrared (IR) technologies. In addition to being able to wirelessly connect to a wide array of Bluetooth low energy sensors, the Arduino Primo uses the nRF52832 SoC’s integrated NFC for secure authentication and Touch-to-Pair (a simple BLE pairing function requiring no user interaction), and has embedded IR for traditional remote control. Nordic_Arduino_Primo_PRINT

The Nordic nRF52832 SoC’s ARM processor has ample computational overhead to manage the Arduino Primo’s on-board accelerometer, temperature, humidity, and pressure sensors. The Nordic Semiconductor nRF52832’s features and specs include:

  • 64-MHz, 32-bit ARM Cortex-M4F processor
  • 2.4-GHz multiprotocol radio that’s fully compatible with the Bluetooth 4.2 specification and features –96-dB RX sensitivity and 5.5-mA peak RX/TX currents
  • 512-KB flash memory and 64-KB RAM, and a fully-automatic power management system to optimize power consumption.

You can program via the Arduino Integrated Development Environment (IDE) programming interface. If you want to access the Arduino Prio’s most advanced features and functionality, you can use any Nordic nRF52 Series-compatible Software Development Kit (SDK) or programming tools. For example, the nRF5 SDK for IoT enables you to develop IPv6 over Bluetooth low energy applications on the nRF52832 SoC.

Source: Nordic Semiconductor

Cryptography-Enabled 32-bit Microcontroller for IoT Designs

Microchip Technology’s CEC1302 hardware crypto-enabled 32-bit microcontroller enables you to easily add security to Internet of Things (IoT) devices. Enabling pre-boot authentication of system firmware, the microcontroller prevents a variety of security attacks (e.g., man-in-the-middle, denial-of-service, and backdoor). You can also use it to authenticate firmware updates.Microchip CEC1302

The CEC1302’s features, benefits, and specs:

  • Private key and customer programming flexibility
  • Power drain savings and improved execution of application performance
  • 32-bit microcontroller with an ARM Cortex-M4 core
  • The hardware-enabled public key engine of the device is 20 to 50 times faster than firmware-enabled algorithms

In order to quickly develop applications with the CEC1302, use MikroElektronika’s CEC1302 Clicker (MIKROE-1970) and CEC1302 Clicker 2 (MIKROE-1969). You can use the boards with MikroElektronika’s complete development toolchain for Microchip CEC1302 ARM Cortex-M4 MCUs.

The CEC1302 (CEC1302D-SZ-C0) is available today for sampling and volume production in a 144-WFBGA package starting at $1.75 each in 10,000-unit quantities.

Source: Microchip Technology

Telit Announces IoT Innovation Conference

Telit announced that it will soon open registration for the 2016 Telit IoT Innovation Conference, which will take place on Tuesday, September 6, 2016 at Caesars Palace in Las Vegas. The one-day, multi-track conference will feature business use cases and provide you with tools for building your network and enabling connected devices.

As an attendee, you can study real IoT business use cases, network with IoT innovators, discover new technologies for IoT solution deployment, connect with partners, and learn more about Telit products and its IoT ecosystem.

Registration opens soon!

Source: Telit

IAR Systems Supports Wireless Gecko SoCs for IoT connectivity

IAR Systems now supports Silicon Labs Wireless Gecko SoCs, which provide scalable solutions and include Thread and ZigBee stacks for mesh networks, intuitive radio interface software for proprietary protocols, and Bluetooth Low Energy technology for point-to-point connectivity. The IAR Embedded Workbench development provides extensive debugging and profiling possibilities such as complex code and data breakpoints, run-time stack analysis, call stack visualization, code coverage analysis, and integrated monitoring of power consumption. IAR Systems also offers integrated add-on tools for static analysis and run-time analysis.

Support for the Wireless Gecko SoCs is available using IAR Embedded Workbench for ARM, from version 7.60. Free trial versions are available.

Source: IAR Systems

The Future of IoT Security

With the onset of Internet of Things (IoT) technology, an enormous number of devices are now accessible via the Internet and are therefore vulnerable to cyberattack. Society is still adjusting to the fact that devices that people used to trust can now betray them in unexpected ways. Your television may expose your conversations, your printer may divulge your documents, and your fitness monitor may reveal your health information. All of these attacks become possible in the presence of IoT devices which are not designed with security in mind. System designers are trained to evaluate system design options in terms of their impact on system characteristics such as power, performance, and time-to-market, but security is a property which is less well understood. Designers of IoT devices need to have the ability to consider, both qualitatively and quantitatively, how design alternatives affect the security of the system. To do that, designers must understand the essential aspects of common cyberattacks.

The nature of cyberattacks is broad and ever-changing as attackers alter their techniques over time. However, there are a number of attack themes which are fundamental to many cyberattacks and change only infrequently. Designers need to understand these important attack themes and how to defend against them. A good example is a vulnerability to a buffer overflow attack which is usually a result of weak coding practices, such as neglecting to verify that the amount of data written into a buffer is not greater than the size of the buffer. Defense against buffer overflow can likely be achieved through static code analysis and proper testing techniques, without the need to include any security components in the IoT device.

Another attack against IoT devices is a battery draining attack which consumes power by exploiting features of the network communication protocol being used by the device. Different protocols, and their interface controllers, have different degrees of vulnerability to such attacks, and the system designer needs to be aware of this when selecting a communication protocol.

This essay appears in Circuit Cellar 309, April 2016. Subscribe to Circuit Cellar to read project articles, essays, interviews, and tutorials every month!

 
Defending against some attacks will require the use of software and hardware components which are dedicated to security-related tasks. Such components incur overheads which must be considered by the designer. A common example is whether or not to use encryption, what type of encryption, and whether that encryption should be implemented in hardware or software. Besides the power and cost trade-offs involved, the designer will need to be able to estimate how well each type of encryption protects the system from, for example, a man-in-the-middle attack which intercepts communications with other devices.

IoT security is clearly an important design property which must be considered by designers who understand the complexities of cybersecurity. A problem for the field of IoT is that there is a shortage of IoT designers who understand cybersecurity. There is a range of possible solutions to address the shortage problem which vary based on who takes responsibility to find a solution. One alternative is education or training to ensure that designers are aware of the complexities of the security problem and can address them during the design process. Individual IoT designers may take responsibility for their own training, which means that the designer will individually seek out learning materials and possibly courses. As a professor I feel that individuals should always take responsibility for their own education, but in practice this is difficult and may not consistently result in the best outcome for all concerned. An individual who is not familiar with security will have a hard time determining what is important to learn and what is not, so they may waste time and money on education with no real value. In my role as Vice Chair of Undergraduate Studies, I am frequently asked about what a student needs to learn to be productive in industry, but if an individual cannot find an appropriate mentor to provide them with some direction, then their attempts at education may not be fruitful.

Another alternative is to place the responsibility for the development of secure IoT devices on the companies which employ the designers and sell the IoT devices. For this to happen, company managers must first accept that security costs money and that security is worth some expenditure. As long as security is seen as an overhead with no direct financial benefit, industry is not be motivated to make the necessary changes to build secure systems. Too often, security is largely ignored until a successful cyberattack against a company is publicized and the company suffers in terms of reputation and possible lawsuits. Industry needs to accept the importance of security upfront to avoid the more significant costs of dealing with successful attacks.

Companies can take several different approaches to ensuring security including guaranteeing that their designers are appropriately knowledgeable about IoT security. A salary premium for security experts could motivate employees to take responsibility for their own security education. In-house corporate training can be provided to employees whose job responsibilities necessitate an understanding of security. Employers can outsource and pay for education at local or online schools. When a project is particularly security-sensitive requiring more expertise than is available internally, a contractor with the appropriate security expertise can be brought in. All of these options incur different costs which would need to be justified by the need for security in the market where the IoT devices will be used.

Eventually, a mixture of these approaches should be employed to achieve the best, and most secure, results. Individual designers need to make every effort to learn about security issues, and employers need to motivate them with appropriate salaries and facilitate their efforts by providing opportunities for education. The lack of security of current IoT devices has been used as an argument against their adoption, but there seems to be no stopping the growing use of the IoT. At the same time, cyberattacks are also growing in number, sophistication, and financial impact. Security needs to be a first-class design consideration for IoT systems, on par with cost, power, and the other constraints that embedded designers have always dealt with.

Associate Professor Ian G. Harris earned a BS in Computer Science at MIT and MS and PhD degrees in Computer Science from the University of California San Diego. He is currently Vice Chair of Undergraduate Education in the Computer Science Department at the University of California Irvine. His research group focuses on the security and verification of Internet of Things systems. He also teaches an IoT specialization entitled “An Introduction to Programming the Internet of Things.”

New Low-Power Embedded Wi-Fi Solutions for the IoT

Microchip Technology recently launched four low-power, highly integrated solutions that enable Wi-Fi and networking capability to be embedded into a wide variety of devices, including Internet of Things (IoT) applications. These four modules provide complete solutions for 802.11b/g/n and are industry-certified in a variety of countries.Microcontroller  MRF24

The new RN1810 and RN1810E are stand-alone, surface-mount WiFly radio modules that include a TCP/IP stack, cryptographic accelerator, power management subsystem, 2.4-GHz 802.11b/g/n-compliant transceivers, and 2.4 RF power amplifier. You can pair them with any microcontroller and configure them using simple ASCII commands. WiFly provides a simple data pipe for sending data over a Wi-Fi network, requiring no prior Wi-Fi experience to get a product connected. Once configured, the device automatically accesses a Wi-Fi network and sends and receives serial data. The RN1810 features an integrated PCB antenna. The RN1810E supports an external antenna.

The new MRF24WN0MA and MRF24WN0MB are Wi-Fi modules that interface with Microchip’s PIC32 microcontrollers and support Microchip’s MPLAB Harmony integrated software framework with a TCP/IP stack that can be downloaded for free at www.microchip.com/harmony. The modules connect to the microcontroller via a four-wire SPI. They area an ideal solution for low-power, low-data-rate Wi-Fi sensor networks, home automation, building automation, and consumer applications. In addition, an MRF24WN0MA has an integrated PCB antenna, while the MRF24WN0MB supports an external antenna.

The RN1810/E and MRF24WN0MA/B are now available and start at $13.05 each in 1,000-unit quantities. Also available is the $34.95 MRF24WN0MA Wi-Fi PICtail/PICtail Plus Daughter Board, a demonstration board for evaluating Wi-Fi connectivity using PIC microcontrollers and the MRF24WN0MA module (part # AC164153). In addition, a $49.95 RN1810 Wi-Fi PICtail/PICtail Plus Daughter Board is available today with a fully integrated TCP/IP stack and USB interface for easy plug-and-play development with a PC (part # RN-1810-PICTAIL).

Source: Microchip Technology

The Future of Wireless: Imagination Drives Innovation

Wireless system design is one of the hottest fields in electrical engineering. We recently asked 10 engineers to prognosticate on the future of wireless technology. Alexander Popov, a Bulgaria-based engineer, writes:

These days, we are constantly connected to the Internet.5 Popov orange People expect quality service both at home and on the go. Cellular networks are meeting this demand with 4G and upcoming 5G technologies. A single person now uses as much bandwidth as an entire Internet provider 20 years ago. We are immersed in a pool of information, but are no longer its sole producers. The era of Internet of Things is upon us, and soon there will be more IoT devices than there are people. They require quite a different ecosystem than we people use. Тheir pattern of information flow is usually sporadic, with small chunks of data. Connecting to a generic Wi-Fi or cellular network is not efficient. IoT devices utilize well established protocols like Bluetooth LE and ZigBee, but dedicated ones like LPWAN and 6LoWPAN are also being developed and probably more will follow. We will see more sophisticated and intelligent wireless networks, probably sharing resources on different layers to form a larger WAN. An important aspect of IoT devices is their source of power. Energy harvesting and wireless power will evolve to become a standard part of the “smart” ecosystem. Improved technologies in chip manufacturing processes aid hardware not only by lowering power consumption and reducing size, but also with dedicated embedded communication stack and chip coils. The increased amount and different types of information will allow software technologies like cloud computing and big data analysis to thrive. With information so deep in our personal lives, we may see new security standards offering better protection for our privacy. All these new technologies alone will be valuable, but the possibilities they offer combined are only limited by our imaginations. Best be prepared to explore and sketch your ideas now! — Alexander Popov, Bulgaria (Director Product Management, Minerva Networks)

Low-Power 12 DOF Bluetooth Smart Sensor Development Platform

Dialog Semiconductor now offers a small, low-power 12 Degrees-of-Freedom (DOF) wireless smart sensor development kit for Internet of Things (IoT) applications, such as wearables, virtual reality, 3-D indoor mapping, and navigation. The DA14583 SmartBond Bluetooth Smart SoC is combined with Bosch Sensortec’s gyroscope, accelerometer, magnetometer, and environmental sensors. A 16 mm × 15 mm PCB is supplied as a dongle in a plastic housing. Current consumption is only 1.3 mA (typical) when streaming sensor data; it’s less than 110 µA in advertising mode and under 11 µA in power-save mode.Dialog DS025

The complementary software development kit (SDK) includes Dialog’s SmartFusion smart sensor library for data acquisition, auto-calibration, and sensor data fusion. It runs on the DA14583’s embedded Cortex M0 processor. The DA14583 has an ARM Cortex-M0 baseband processor with an integrated ultra-low power Bluetooth Smart radio. The development kit includes the following Bosch sensors: a BMI160 six-axis inertial measurement unit, a BMM150 three-axis geomagnetic field sensor, and a BME280 integrated environmental unit, which measures pressure, temperature, and humidity.

Source: Dialog Semiconductor

The Future of Wireless: Deployment Matters

Each day, wireless technology becomes more pervasive as new electronics systems hit the market and connect to the Internet. We recently asked 10 engineers to prognosticate on the future of wireless technology. Penn State Professor Chris Coulston writes:9 Coulston green

With the Internet of Things still the big thing, we should expect exciting developments in embedded wireless in 2016 and beyond. Incremental advances in speed and power consumption will allow manufactures to brag about having the latest and greatest chip. However, all this potential is lost unless you can deploy it easily. The Futurelec FT-232 serial-to-USB bridge is a success because it trades off some of the functionality of a complex protocol for a more familiar, less burdensome, protocol.  The demand for simplified protocols should drive manufacturers to develop solutions making complex protocols more accessible. Cutting the cord means different things to different people. While Bluetooth Low Energy (BLE) has allowed a wide swath of gadgets to go wireless, these devices still require the presence of some intermediary (like a smart phone) to manage data transfer to the cloud. Expect to see the development of intermediate technologies enabling BLE to “cut the cord” to smart phones. Security of wireless communication will continue to be an important element of any conversation involving new wireless technology. Fortunately, the theoretical tools need to secure communication are well understood. Expect to see these tools trickle down as standard subsystems in embedded processors. The automotive industry is set to transform itself with self-driving cars. This revolution in transportation must be accompanied by wireless technologies allowing our cars to talk to our devices, each other and perhaps the roadways. This is an area that is ripe for some surprising and exciting developments enabling developers to innovate in this new domain. We live in interesting times with embedded systems playing a large role in consumer and industrial systems. With better and more accessible technology in your grasp, I hope that you have great and innovative 2016! — Chris Coulston, United States (Associate Professor, Electrical & Computer Engineering, Penn State Erie)

Technical Preview of Windows 10 IoT Core on ARM Platform

Toradex recently announced the availability of a technical preview of the Windows 10 IoT Core on an ARM-based System on Module (SOM). The technical preview enables embedded developers to evaluate the new features of Windows 10 IoT Core on an industrial-grade embedded computing platform. According to Toradex, a starter kit—available for a limited time at a promotional price—is available with a Colibri T30 SOM and Iris carrier board with required accessories.

The technical preview is based on Colibri T30 powered by NVIDIA’s Tegra 3 ARM Cortex-A9 Quad Core embedded processor. Part of the Azure IoT Certified Program, the Colibri T30 supports accelerated DirectX graphics and provides low-level hardware access.

Although the technical preview’s has a limited number of features, Toradex announced that it intends to gather customer feedback and later extend features and add Windows 10 IoT Core support for its other ARM-based SOMs.

Source: Toradex

Industry 4.0: The Industrial IoT and the Future

The Internet of Things (IoT) is everywhere. Industry 4.0 is becoming serious and many companies develop hardware and software solutions. Relayr is a company with an interesting focus on the IoT and bringing industry to the cloud. Wissa Hettinga interviewed Jaime Gonzalez-Arintero Berciano, a Relayr developer and product evangelist, about the company, its technology, and future of innovation in the IoT space.

The Future of Wireless: IoT “Connect Anywhere” Solutions

Wireless communications have revolutionized virtually every industry, from healthcare to defense to consumer electronics. We recently asked 10 engineers to prognosticate on the future of wireless technology. France-based engineer Robert Lacoste writes:3 Lacoste purple

I don’t know if the forecasts about the Internet of Things (IoT) are realistic (some analysts predict from 20 to 100 billion devices in the next five years), but I’m sure it will be a huge market. And 99% of IoT products are and will be wireless. Currently, the vast majority of “things” connect to the Internet through a user’s smartphone, used as a gateway typically through a Bluetooth Smart link. Other devices (e.g., home control or smart metering) require the installation of a dedicated fixed RF-to-Internet gateway, using ZigBee, 6lowPan, or something similar. But the next big thing will be the availability of “connect anywhere” solutions, through low-power wide area networks, nicknamed LPWA. Even if the underlying technology is not actually new (i.e., using very low bit rates to achieve long range at low powers), the contenders are numerous: LORA Alliance, INGENU, SIGFOX, WEIGHTLESS, and a couple of others. At the same time, the traditional telcos are developing very similar solutions using cellular bands and variants of the 3GPP protocols. EC-GSM, LTE-MTC, and NB-IOT are the most discussed alternatives. So, the first big question is this: Which one (or ones, as a one-size-fits-all solution is unlikely) will be the winner? The second big question has to do with whether or not IoT products will be useful for society. But that’s another story! — Robert Lacoste, France (Founder, Alciom; Columnist, Circuit Cellar)

New MCUs Combine Hardware Cryptography with Advanced Energy Management

Silicon Labs recently introduced two new EFM32 Gecko microcontroller (MCU) families that feature advanced security and energy-management technologies. The Jade Gecko and Pearl Gecko MCUs combine a hardware cryptography engine, flexible low-energy modes, an on-chip DC-DC converter, and scalable memory options backed by Silicon Labs’s Simplicity Studio tools. The MCUs target an array of energy-sensitive and battery-powered devices, such as wearables and IoT node applications.Silicon Labs jade pearl

Jade and Pearl Gecko MCUs are meant to equip IoT-connected devices with the latest security technologies to thwart hackers. They feature a hardware cryptography engine providing fast, energy-efficient, autonomous encryption and decryption for Internet security protocols (e.g., TLS/SSL) with minimal CPU intervention. The on-chip crypto-accelerator supports advanced algorithms such as AES with 128- or 256-bit keys, elliptical curve cryptography (ECC), SHA-1, and SHA-224/256. Hardware cryptography enables developers to meet evolving IoT security requirements more efficiently than with conventional software-only techniques often required by competing MCUs.

Based respectively on ARM Cortex-M3 and M4 cores, Jade and Pearl Gecko MCUs provide ample performance for connected devices while enabling developers to optimize battery life or use smaller batteries for space-constrained designs. The new MCUs feature an enhanced peripheral reflex system (PRS) that lets low-power peripherals operate autonomously while the MCU core sleeps, allowing connected devices to sleep longer, thus extending battery life. Energy-saving low active-mode current (63 µA/MHz) enables computationally intensive tasks to execute faster. Low sleep-mode current (1.4 µA down to 30 nA) and ultra-fast wake-up/sleep transitions further minimize energy consumption.

Jade and Pearl Gecko MCUs also integrate a high-efficiency DC-DC buck converter. Offering a total current capacity of 200 mA, the on-chip converter can provide a power rail for other system components in addition to powering the MCU. This power management innovation reduces BOM cost and board area by eliminating the need for an external DC-DC converter.

Engineering samples of EFM32JG Jade Gecko and EFM32PG Pearl Gecko MCUs are available now in 5 mm × 5 mm QFN32 and 7 mm × 7 mm QFN48 packages. Production quantities are planned for Q2 2016. Jade Gecko pricing begins at $1.24 in 10,000-unit quantities. The Pearl Gecko pricing begins at $1.65 in 10,000-unit quantities. The SLSTK3401A EFM32PG Pearl Gecko Starter Kit costs $29.99.

Source: Silicon Labs