WIZnet Announces WIZ550io & W5500 Discounts at EELive

Today at EELive! in San Jose, CA, WIZnet announced a special promotion tied to the WIZnet Connect the Magic 2014 Design Challenge, which it is sponsoring. For a limited time, WIZnet is offering discounted WIZ550io Ethernet controller modules and W5500 chips via its webshopWiznet-Challenge-EELive

Disclosure: Elektor International Media and Circuit Cellar comprise the challenge administration team.

At this time, WIZnet’s WIZ550io is on sale for $9.95 (original price, $17.00) and the W550 cost $1.49 (original price, $2.87).

WIZnet’s WIZ550io is a module for rapidly developing ’Net-enabled systems. It is an auto-configurable Ethernet controller module that includes the W5500 (TCP/IP-hard-wired chip and PHY embedded), a transformer, and an RJ-45 connector. The module has a unique, embedded real MAC address and auto network configuration capability.

WIZnet's WIZ550io auto configurable Ethernet controller module includes a W5500, transformer, & RJ-45.

WIZnet’s WIZ550io auto configurable Ethernet controller module includes a W5500, transformer, & RJ-45.

The W5500 is a hardwired TCP/IP embedded Ethernet controller that enables Internet connection for embedded systems using Serial Peripheral Interface (SPI).

W5500

W5500

Visit the WIZnet Connect the Magic 2014 Design Challenge webpage for more information about participation and eligibility.

The Future of Small Radar Technology

Directing the limited resources of Fighter Command to intercept a fleet of Luftwaffe bombers en route to London or accurately engaging the Imperial Navy at 18,000 yards in the dead of night. This was our grandfather’s radar, the technology that evened the odds in World War II.

This is the combat information center aboard a World War II destroyer with two radar displays.

This is the combat information center aboard a World War II destroyer with two radar displays.

Today there is an insatiable demand for short-range sensors (i.e., small radar technology)—from autonomous vehicles to gaming consoles and consumer devices. State-of-the-art sensors that can provide full 3-D mapping of a small-target scenes include laser radar and time-of-flight (ToF) cameras. Less expensive and less accurate acoustic and infrared devices sense proximity and coarse angle of arrival. The one sensor often overlooked by the both the DIY and professional designer is radar.

However, some are beginning to apply small radar technology to solve the world’s problems. Here are specific examples:

Autonomous vehicles: In 2007, the General Motors and Carnegie Mellon University Tartan Racing team won the Defense Advanced Research Projects Agency (DARPA) Urban Challenge, where autonomous vehicles had to drive through a city in the shortest possible time period. Numerous small radar devices aided in their real-time decision making. Small radar devices will be a key enabling technology for autonomous vehicles—from self-driving automobiles to unmanned aerial drones.

Consumer products: Recently, Massachusetts Institute of Technology (MIT) researchers developed a radar sensor for gaming systems, shown to be capable of detecting gestures and other complex movements inside a room and through interior walls. Expect small radar devices to play a key role in enabling user interface on gaming consoles to smartphones.

The Internet of Things (IoT): Fybr is a technology company that uses small radar sensors to detect the presence of parked automobiles, creating the most accurate parking detection system in the world for smart cities to manage parking and traffic congestion in real time. Small radar sensors will enable the IoT by providing accurate intelligence to data aggregators.

Automotive: Small radar devices are found in mid- to high-priced automobiles in automated cruise control, blind-spot detection, and parking aids. Small radar devices will soon play a key role in automatic braking, obstacle-avoidance systems, and eventually self-driving automobiles, greatly increasing passenger safety.

Through-Wall Imaging: Advances in small radar have numerous possible military applications, including recent MIT work on through-wall imaging of human targets through solid concrete walls. Expect more military uses of small radar technology.

What is taking so long? A tremendous knowledge gap exists between writing the application and emitting, then detecting, scattered microwave fields and understanding the result. Radar was originally developed by physicists who had a deep understanding of electromagnetics and were interested in the theory of microwave propagation and scattering. They created everything from scratch, from antennas to specialized vacuum tubes.

Microwave tube development, for example, required a working knowledge of particle physics. Due to this legacy, radar textbooks are often intensely theoretical. Furthermore, microwave components were very expensive—handmade and gold-plated. Radar was primarily developed by governments and the military, which made high-dollar investments for national security.

Small radar devices such as the RFBeam Microwave K-LC1a radio transceiver cost less than $10 when purchased in quantity.

Small radar devices such as the RFBeam Microwave K-LC1a radio transceiver cost less than $10 when purchased in quantity.

It’s time we make radar a viable option for DIY projects and consumer devices by developing low-cost, easy-to-use, capable technology and bridging the knowledge gap!
Today you can buy small radar sensors for less than $10. Couple this with learning practical radar processing methods, and you can solve a critical sensing problem for your project.

Learn by doing. I created the MIT short-course “Build a Small Radar Sensor,” where students learn about radar by building a device from scratch. Those interested can take the online course for free through MIT Opencourseware or enroll in the five-day MIT Professional Education course.

Dive deeper. My soon-to-be published multimedia book, Small and Short-Range Radar Systems, explains the principles and building of numerous small radar devices and then demonstrates them so readers at all levels can create their own radar devices or learn how to use data from off-the-shelf radar sensors.

This is just the beginning. Soon small radar sensors will be everywhere.

ARM mbed Platform for Bluetooth Smart Applications

OLYMPUS DIGITAL CAMERAThe nRF51822-mKIT simplifies and accelerates the prototyping process for Bluetooth Smart sensors connecting to the Internet of Things (IoT). The platform is designed for fast, easy, and flexible development of Bluetooth Smart applications.

The nRF51822 system-on-chip (SoC) combines a Bluetooth v4.1-compliant 2.4-GHz multiprotocol radio with an ARM Cortex-M0 CPU core on a single chip optimized for ultra-low-power operation. The SoC simplifies and accelerates the prototyping process for Bluetooth Smart sensors connecting to the IoT.

The nRF51822-mKIT’s features include a Bluetooth Smart API, 31 pin-assignable general-purpose input/output (GPIO), a CMSIS-DAP debugger, Programmable Peripheral Interconnect (PPI), and the ability to run from a single 2032 coin-cell battery.

Through mbed, the kit is supported by a cloud-based approach to writing code, adding libraries, and compiling firmware. A lightweight online IDE operates on all popular browsers running on Windows, Mac OSX, iOS, Android, and Linux OSes. Developers can use the kit to access a cloud-based ARM RVDS 4.1 compiler that optimizes code size and performance.

The nRF51822-mKIT costs $59.95.

Nordic Semiconductor ASA
www.nordicsemi.com

Internet of Things Challenge: WIZ55io Modules Moved Fast

As soon as the WIZNet Connect the Magic 2014 Design Challenge launched on March 3, 2014, Internet of Things (IoT) innovators—from professional electrical engineers to creative electronics DIYers—around world began requesting free WIZnet WIZ550io Ethernet controller modules. And due to the popular demand for the modules, the supply of free units ran out on March 11.

Although free modules are no longer available, anyone with a WIZ550io Ethernet module, or W5500 chip, may participate in the competition.

Participants can purchase eligible parts at shopwiznet.com or shop.wiznet.eu.

The WIZ550io is an auto-configurable Ethernet controller module that includes the W5500 (TCP/IP-hard-wired chip and PHY embedded), transformer, and an RJ-45 connector. The module has a unique, embedded real MAC address and auto network configuration capability.

WIZnet's WIZ550io auto configurable Ethernet controller module includes a W5500, transformer, & RJ-45.

WIZnet’s WIZ550io auto configurable Ethernet controller module includes a W5500, transformer, & RJ-45.

The W5500 chip is a Hardwired TCP/IP embedded Ethernet controller that enables Internet connection for embedded systems using Serial Peripheral Interface (SPI).

W5500

W5500

The challenge is straightforward. Participants must implement a WIZ550io Ethernet module, or W5500 chip, in an innovative electronics design for a chance to win a share of $15,000 in prizes. The project submission deadline is August 3, 2014. For more information about the challenge, visit http://circuitcellar.com/wiznet2014/.

Sponsor: WIZnet

A Low-Cost Connection to the IoT

In Circuit Cellar’s March issue, columnist Jeff Bachiochi tests the services of a company he says is “poised to make a big impact” on the Internet of Things (IoT).

This shows the I2C interface Bachiochi designed to enable available clamp-on current sensors to be monitored. He added four of these circuits to a PCB, which includes the circuitry for an imp card.

This shows the I2C interface Bachiochi designed to enable available clamp-on current sensors to be monitored. He added four of these circuits to a PCB, which includes the circuitry for an imp card.

Established in 2011, Electric Imp offers a flexible connectivity platform meant to enable any device to be connected to the IoT. The platform, called the “imp,” provides an SD-card sized module (including an 802.11b/g/n Wi-Fi radio package) that can be installed on any electronic device to go online. A powerful processor runs the imp OS.

“You only need to supply an SD card socket (and a few other components) to your product to give it connectivity,” Bachiochi says. “The imp’s processor has the power to run your entire product if you wish, or it can be connected via one of the supported serial protocols. The imp OS provides secure connectivity to the imp cloud. The imp cloud keeps your imp updated with the latest firmware, features online development tools, and provides cloud-side services for every imp in the field.”

“As with many cloud service organizations, development is generally free,” Bachiochi adds. “Once you’ve committed and have product rollout, the service will charge for its use. This could be a flat fee, a per-connection or data throughput fee, or a combination of fees. Basically you (or your customer) will have to pay to have access to the information, which pays for the support framework that keeps it all working.”

In his article, Bachiochi dives into a straightforward data-collection project to demonstrate how to use the imp in a product. The goal of his application was to log the activity of 220-V water pump and twin water softeners.  The project is the launching point for his comprehensive and detailed look at the imp’s hardware, software, and costs.

“It’s easy to design product hardware to use the imp,” he says. “There are two imp models, a card that can be inserted into an SD-type socket or an on-board module that is soldered into your product. Each version has advantages and disadvantages.”

Regarding software, Bachiochi says:

“Developing an imp application requires two parts to provide Wi-Fi access to your project: the device code (running in the imp) and the agent code (running on the imp cloud). The imp cloud, which is your connection to your device via the imp APIs, provides you with a development IDE. Web-based development means there is nothing else you need to purchase or install on your PC. Everything you need is available through your browser anytime and anywhere.”

Bachiochi also discusses the Electric Imp platform’s broader goals. While an individual can use the imp for device connectivity, a bigger purpose is to enable manufacturers to provide convenient Internet access as part of their product, Bachiochi says.

“The imp has two costs: The hardware is simple, it currently costs approximately $25 for an imp card or module. If you are using this in your own circuit within your own network, then you’re done,” he says. “If you want to roll out a product for sale to the world, you must take the next step and register for the BlinkUp SDK and Operations Console, which enable you to create and track factory-blessed products.”

BlinkUp, according to the Electric Imp website, integrates smoothly into apps and enables manufacturers and their customers to quickly connect products using a smartphone or tablet. The Operations Console enables tracking product activity and updating product firmware at any time, Bachiochi says.

The imp offers more than a low-cost way for DIYers and developers to connect devices to the Internet, Bachiochi says. A designer using the imp can save project costs by eliminating a microcontroller, he says. “Almost any peripheral can be easily connected to and serviced by the imp’s 32-bit Cortex M3 processor running the imp OS. All code is written in Squirrel.”

Bachiochi’s comprehensive article about his imp experience and insights can be found in the March issue, now available for membership download or single-issue purchase.

Bachiochi used the Electric IMP IDE to develop this code. Agent code on the top left runs on the imp cloud server. The device code on the top right is downloaded into the connected imp.

Bachiochi used the Electric IMP IDE to develop this code. Agent code on the top left runs on the imp cloud server. The device code on the top right is downloaded into the connected imp.