Secure Wi-Fi MCU Provides IoT Connectivity Solution

Espressif Systems has announced the release of the ESP32-S2 Secure Wi-Fi MCU, a highly integrated, low-power, 2.4 GHz Wi-Fi SoC supporting Wi-Fi HT40 and 43 GPIOs. Based on the Xtensa single-core 32-bit LX7 processor, ESP32-S2 can be clocked at up to 240 MHz.

With state-of-the-art power management and RF performance, IO capabilities and security features, ESP32-S2 is well suited for a wide variety of IoT or connectivity-based applications, including smart home and wearables. With an integrated 240 MHz Xtensa core, ESP32-S2 is sufficient for building the most demanding connected devices without requiring external MCUs.

Features:

  • CPU and Memory
    • Xtensa single-core 32-bit LX7 microcontroller
    • 7-stage pipeline
    • Clock frequency of up to 240 MHz
    • Ultra-low-power co-processor
    • 320 kB SRAM, 128 kB ROM, 16 KB RTC memory
    • External SPIRAM (128 MB total) support
    • Up to 1 GB of external flash support
    • Separate instruction and data cache
  • Connectivity
    • Wi-Fi 802.11 b/g/n
    • 1×1 transmit and receive
    • HT40 support with data rate up to 150 Mbps
    • Support for TCP/IP networking, ESP-MESH networking, TLS 1.0, 1.1 and 1.2 and other networking protocols over Wi-Fi
    • Support Time-of-Flight (TOF) measurements with normal Wi-Fi packets
  • IO Peripherals
    • 43 programmable GPIOs
    • 14 capacitive touch sensing IOs
    • Standard peripherals including SPI, I2C, I2S, UART, ADC/DAC and PWM
    • LCD (8-bit parallel RGB/8080/6800) interface and also support for 16/24-bit parallel
    • Camera interface supports 8 or 16-bit DVP image sensor, with clock frequency of up to 40 MHz
    • Full speed USB OTG support
  • Security
    • RSA-3072-based trusted application boot
    • AES256-XTS-based flash encryption to protect sensitive data at rest
    • 4096-bit eFUSE memory with 2048 bits available for application
    • Digital signature peripheral for secure storage of private keys and generation of RSA signatures
  • Power Consumption
    • ESP32-S2 supports fine resolution power control through a selection of clock frequency, duty cycle, Wi-Fi operating modes and individual power control of its internal components.
    • When Wi-Fi is enabled, the chip automatically powers on or off the RF transceiver only when needed, thereby reducing the overall power consumption of the system.
    • ULP co-processor with less than 5 uA idle mode and 24 uA at 1% duty-cycle current consumption. Improved Wi-Fi-connected and MCU-idle-mode power consumption.
  • Software
    • ESP32-S2 supports Espressif’s software development framework (ESP-IDF), which is a mature and production-ready platform, already used by millions of devices deployed in the field. Availability of common cloud connectivity agents and common product features shortens the time to market.

Engineering samples of ESP32-S2 beta are available this month (June).

Espressif Systems | www.espressif.com

Next Newsletter: Embedded Boards

Coming to your inbox tomorrow: Circuit Cellar’s Embedded Boards newsletter. Tomorrow’s newsletter content focuses on both standard and non-standard embedded computer boards that ease prototyping efforts and let you smoothly scale up to production volumes.

Bonus: We’ve added Drawings for Free Stuff to our weekly newsletters. Make sure you’ve subscribed to the newsletter so you can participate.

Already a Circuit Cellar Newsletter subscriber? Great!
You’ll get your
Embedded Boards newsletter issue tomorrow.

Not a Circuit Cellar Newsletter subscriber?
Don’t be left out! Sign up now:

Our weekly Circuit Cellar Newsletter will switch its theme each week, so look for these in upcoming weeks:

Analog & Power. (7/2) This newsletter content zeros in on the latest developments in analog and power technologies including DC-DC converters, AC-DC converters, power supplies, op amps, batteries and more.

Microcontroller Watch (7/9) This newsletter keeps you up-to-date on latest microcontroller news. In this section, we examine the microcontrollers along with their associated tools and support products.

IoT Technology Focus. (7/16) Covers what’s happening with Internet-of-Things (IoT) technology–-from devices to gateway networks to cloud architectures. This newsletter tackles news and trends about the products and technologies needed to build IoT implementations and devices.

Arm-Based Industrial Panel PC is Designed for IoT Applications

Advantech has announced the TPC-71W, the new generation of its industrial panel PCs aimed at machine automation and web-terminal applications. TPC-71W is a cost-efficient, Arm-based industrial panel PC that features a 7” true-flat display with P-CAP multi-touch control and an NXP Arm Cortex-A9 i.MX 6 dual/quad-core processor to deliver high-performance computing. The system also features a serial port with a termination resistor that supports the CAN 2.0B protocol and offers a programmable bit rate of up to 1 Mb/s.

Equipped with the Google Chromium embedded web browser and support for various operating systems, including Android, Linux Yocto and Linux Ubuntu with QT GUI toolkits, TPC-71W allows system integrators to easily develop and deploy a wide range of industrial applications. The provision of wireless communication technologies, such as Bluetooth, Wi-Fi and NFC, via a mini PCIe interface simplifies networking and ensures connectivity for data transfers.

TPC-71W also features Power over Ethernet (PoE) functionality for powering devices via Ethernet, thereby eliminating the need to build a power infrastructure. Furthermore, the TPC-71W panel PC supports VESA and panel mounting for flexible and convenient installation. Compared to other similar products, TPC-71W is one of the most competitively priced rugged industrial panel PCs currently available on the market. Overall, this powerful, reliable, and cost-effective computing platform provides the ideal solution for IoT implementation and expansion.

Aimed at the industrial market, TPC-71W is a rugged yet compact, fanless panel PC equipped with an NXP® Arm® Cortex-A9 i.MX 6 dual/quad-core processor, 2 GB DDR3L RAM, and 8 GB eMMC storage to provide high-performance computing and improved efficiency for high-tier industrial applications. The 7” true-flat display with 16:9 aspect ratio features P-CAP multi-touch control for easy and intuitive operation. Moreover, to ensure reliable operation in harsh industrial environments, TPC-71W supports a wide operating temperature range (-20 ~ 60 °C/-4 ~ 140 °F) and is IP66 rated for protection from dust, oil, and water ingress.

TPC-71W supports various OS, including Android 6, Linux Yocto 2.1, and Linux Ubuntu 16.04 with QT GUI toolkits. Linux is an open-source OS specifically designed to assist system integrators with developing unique applications. The ability to support both Android and Linux eliminates software porting efforts and ensures easy deployment. Moreover, TPC-71W features the Google Chromium embedded web browser that simplifies programming and further facilitates application development.

To ensure connectivity for web-based management, TPC-71W offers Bluetooth, Wi-Fi, and NFC wireless communication capabilities via a mini PCIe interface. The inclusion of a serial port that supports industrial communication interfaces, such as RS-232/485 and the CAN 2.0B protocol, and a LAN port that supports speeds of up to 1000 Mbps (10/100/1000 Mbps) accelerates data transfer rates, while also enabling Wake-on-LAN functions. Furthermore, the TPC-71W panel PC can be equipped with optional PoE functionality for powering devices via Ethernet; this greatly streamlines installations and reduces overall equipment costs.

Key Features:

  • 7” WSVGA LCD with 16:9 aspect ratio and P-CAP multi-touch control
  • NXP Arm Cortex®[C1] -A9 i.MX 6 dual/quad-core processor
  • Up to 2 GB DDR3L RAM and 8 GB of eMMC storage onboard
  • 10/100/1000 Mbps LAN Optional PoE functionality for powering devices via Ethernet
  • Supports Linux Yocto, Linux Ubuntu, and Android OS

Advantech’s TPC-71W 7” industrial panel PC is available for order now.

Advantech | www.advantech.com

 

Atom E3800 SoC-Based Fanless Computer Targets Industrial IoT

WinSystems has rolled out its SYS-ITX-N-3800 encased computing platform. Based on the Intel Atom E-3800 processor, this space-saving packaged CPU offers consistently reliable performance under extended operating temperatures of -25ºC to +60ºC. Inside its 150 mm x 150 mm x 53 mm rugged aluminum enclosure is an efficient mix of processor and practical input/output options.

This system is optimally engineered to satisfy diverse embedded system requirements and easily mount in tight spaces. Processing performance is a solid match for Windows 10 IoT and Linux operating systems, enabling long product life cycle solutions for Industrial IoT, energy management and medical designs.

The versatile SYS-ITX-N-3800 supplies a complete system in a small form factor box that can be easily expanded or configured for different application requirements. It provides superb connectivity with two USB 3.0 host channels, an RS-232/422/485 serial port, VGA and DisplayPort. A half-size Mini-Card connector further extends expansion capabilities. The package also features +12V input power, includes a mounting kit for a 2.5” SATA SSD, and supports fanless operation. And, it is built with the durability required to deliver high-reliability performance within harsh operating environments.

WinSystems | www.winsystems.com

Nordic Semi’s Modules Selected for IoT Positioning Platform

Nordic Semiconductor has announced that its nRF9160 System-in-Package (SiP) LTE-M/NB-IoT cellular IoT modules and nRF52840 Bluetooth 5/Bluetooth Low Energy (Bluetooth LE) SoCs are being used in the turnkey “GEPS” indoor and outdoor IoT positioning platform developed by Swedish industrial IoT startup, H&D Wireless.

GEPS is a turnkey, application-as-a-service solution that is designed to bridge the information gap between physical assets and business systems. It requires no upfront investment in hardware or software, and instead employs small 59 mm x 52 mm x 23 mm battery-powered, industrial-grade IoT tags embedded with either a Nordic nRF9160 SiP or nRF52840 SoC to track key assets and equipment via cellular, GPS or Bluetooth wireless technology in real-time.

Each tag (depending on application) can be configured with a rechargeable or AA-size battery, and achieve a minimum one year and maximum 10-year battery life. Operating either standalone or in conjunction with leading business and AI systems, the ultimate aim is to boost key operational metrics such as efficiency, safety, security, throughput, responsiveness, and ultimately profits. All this data is displayed via cloud-based visual dashboards accessible from desktop PCs, tablets or smartphones.

In asset management applications, for example, H&D Wireless is finding that its customers are saving between 20-40% in operational costs due to a combination of better utilization of their assets and the ability to get rid of 30% of the assets previously required to perform the same job. Key target industries for the GEPS platform include logistics (e.g. asset and fleet management), construction (for example tools, people and equipment), and manufacturing industries (such as sub-assemblies).

At just 10 mm x 16 mm x 1 mm in size, the nRF9160 includes everything a cellular connection and IoT application needs beyond requiring just an external battery, SIM and antenna. To achieve this ultra-high integration Nordic partnered with Qorvo to make a “System-in-Package” (SiP) that more closely resembles an integrated chip than a module.

The SiP includes a powerful application processor (Arm Cortex M-33), GPS support, standard microcontroller peripherals, and enough chip-integrated memory to execute IoT applications with edge computing. Yet this is not achieved by sacrificing on-air performance: the nRF91 is capable of delivering class-leading output power (+23 dBm) and sensitivity – vital for its GPS functionality

Nordic’s nRF52840 multiprotocol SoC is Nordic’s most advanced ultra low power wireless solution. The SoC supports complex Bluetooth LE and other low-power wireless applications that were previously not possible with a single-chip solution. The nRF52840 is Bluetooth 5-, Thread 1.1-, and Zigbee PRO (R21) and Green Power proxy specification-certified and its Dynamic Multiprotocol feature uniquely supports concurrent wireless connectivity of the protocols. The SoC combines the Arm processor with a 2.4GHz multiprotocol radio. The chip supports all the features of Bluetooth 5 (including 4x the range or 2x the raw data bandwidth (2Mbps) compared with Bluetooth 4.2). Designed to address the inherent security challenges brought by the IoT, the nRF52840 SoC incorporates the Arm CryptoCell-310 cryptographic accelerator.

Nordic Semiconductor | www.nordicsemi.com

 

Report Expects PoE Solutions Market to Exceed $2 Billion by 2025

The power-over-Ethernet (PoE) solutions market size is set to exceed $2 billion (USD) by 2025, according to a new research report by Global Market Insights. The PoE solutions market growth is driven by the increase in the number of connected devices generating demand for more power, light and data converged networks in IoT-enabled infrastructure, says the report. The enterprises are facing challenges while designing a network infrastructure that can support several IoT devices. They are continuously seeking new ways to address network capacity planning for high-speed performance.
PoE solutions enable companies to manufacture PoE-compatible network devices to provide a cost-effective solution for larger installations. The PoE solutions-enabled network infrastructure is helping companies to eliminate additional hardware and reduce costs required to provide connectivity and power to connected devices separately.

The PoE solutions offers flexibility to enterprises by eliminating the need to locate powered devices such as IP cameras, VoIP phones and access control systems close to the power source. The PoE solutions offers uninterrupted power supply to powered devices, which helps in continuous operations of physical security applications such as IP cameras and access controllers. The PoE technology reduces the total cost of ownership of enterprise network hardware by providing connectivity and power to wireless devices through a single ethernet cable.

The Powered Devices (PDs) segment is expected to grow at a CAGR of over 15% in the PoE solutions market during the forecast period due to the increase in the adoption of wireless devices such as VoIP phones, access control systems, lighting controls, alarms, barcode scanners, RFID, clocks, IP security cameras, digital signage displays, computer monitors and PoS terminals. The complexities and costs required to manage power and connectivity to these devices are enabling enterprises to shift to the PoE-enabled PDs. The PoE solutions is helping enterprises in reducing costs and complexities associated with the maintenance of these devices by eliminating additional network hardware.

In 2018, the VoIP phones held the major share in the PoE solutions market due to the need for a cost-effective and reliable solution for enterprise communication. The enterprises are using VoIP phones to reduce costs and complexities associated with the legacy telephony system. The PoE-enabled VoIP phones allow enterprises to reduce costs associated with the network hardware infrastructure by using a single cable for power and data transmission.

The PoE solutions providers are developing network devices, which can support the changing network demand of enterprise customers. For instance, in May 2019, IP-COM, a leading networking solution provider, introduced eight-port managed Gigabit PoE switch in India. This new product launch helped SMEs in India to reduce complexities and costs associated with the deployment of VoIP phones.

The infotainment segment in PoE solutions market is expected to grow at a CAGR of over 15% during the forecast period due to the increase in the demand for enhanced in-vehicle experience. The growing demand for smart vehicles is enabling vehicle manufacturers to develop vehicles with integrated infotainment systems. The existing infotainment system is complex and lacks the bandwidth and packet data capabilities required for network support system updates.

The automotive manufacturers are shifting to PoE-enabled infotainment systems for transforming the in-car experience through the delivery of features such as in-vehicle navigation, audio, video and internet connectivity. The increasing demand for autonomous driving is enabling technology companies to develop PoE-based infotainment systems to match the changing bandwidth and connectivity demands of driverless cars. For instance, in November 2018, Microchip Technology, a leading semiconductor company, introduced Intelligent Network Interface Controller networking (INICnet), an automotive infotainment networking solution for enhancing the in-car experience.

The commercial sector held a significant market share of over 30% in 2018 due to the increase in the adoption of smart and automated systems in commercial buildings. The growing demand for smart workplaces is supporting PoE solutions market growth in office spaces. The PoE solutions improves productivity in office spaces through connected and remotely controlled lighting. PoE infrastructure is a key asset for the implementation of the IoT technology in offices. PoE-enabled lighting improves the quality of the light with smoother intensity, dimming functions, and adjustable lighting color options to provide a comfortable and productive working environment.

Asia Pacific is expected to grow at the highest CAGR of around 20% in the PoE solutions market over the forecast period due to the rising automation across various industries in the region. The governments in India and China are supporting digital transformation initiatives such as ‘Make in India’, Smart City, and ‘Made in China 2025’, to promote the adoption of IoT across various industries. Many Chinese local governments are collaborating with foreign companies to implement smart infrastructure in their cities. In March 2019, China Shanghai Yangpu government collaborated with MXC Foundation to develop its IoT standards for smart cities to improve efficiency and life of citizens.

The companies in the PoE solutions market are focusing on extending their businesses through partnerships with distributors. For instance, in April 2018, Microsemi partnered with Future Electronics, a global leading distributor of electronic components, for distributing its highly-compact single port Gigabit Ethernet. This partnership helped the company in offering innovative capabilities to differentiate OEM end-products including lower power consumption, extended product design life cycle, and enhanced IEEE 1588v2 Precision Time Protocol (PTP) accuracy from a system-level solution for future 5G compliant designs.

The key players operating in the PoE solutions market are Advantech B+B SmartWorx, Analog Devices, Avaya, Belden, Broadcom, Cisco, CommScope, Dell, euromicron, HPE, Huawei, Kinetic Technologies, Maxim Integrated, Microchip, Monolithic Power Systems, NETGEAR, ON Semiconductor, Silicon Laboratories, STMicroelectronics and Texas Instruments.

The Power over Ethernet (PoE) solutions market research report includes in-depth coverage of the industry with estimates and forecast in terms of revenue in USD from 2014 to 2025.

Global Market Insights | www.gminsights.com

Tuesday’s Newsletter: IoT Tech Focus

Coming to your inbox tomorrow: Circuit Cellar’s IoT Technology Focus newsletter. Tomorrow’s newsletter covers what’s happening with Internet-of-Things (IoT) technology–-from devices to gateway networks to cloud architectures. This newsletter tackles news and trends about the products and technologies needed to build IoT implementations and devices.

Bonus: We’ve added Drawings for Free Stuff to our weekly newsletters. Make sure you’ve subscribed to the newsletter so you can participate.

Already a Circuit Cellar Newsletter subscriber? Great!
You’ll get your IoT Technology Focus newsletter issue tomorrow.

Not a Circuit Cellar Newsletter subscriber?
Don’t be left out! Sign up now:

Our weekly Circuit Cellar Newsletter will switch its theme each week, so look for these in upcoming weeks:

Embedded Boards.(6/25) The focus here is on both standard and non-standard embedded computer boards that ease prototyping efforts and let you smoothly scale up to production volumes.

Analog & Power. (7/2) This newsletter content zeros in on the latest developments in analog and power technologies including DC-DC converters, AD-DC converters, power supplies, op amps, batteries and more.

Microcontroller Watch (7/9) This newsletter keeps you up-to-date on latest microcontroller news. In this section, we examine the microcontrollers along with their associated tools and support products.

Firms Team for IoT Effort that Nixes Need for Physical SIM Cards

Telit has announced that it is a key partner for Deutsche Telekom’s nuSIM initiative. This is the latest milestone in Telit’s longstanding partnership with Deutsche Telekom to grow the IoT market by providing breakthrough technologies and services, says Telit. The nuSIM initiative takes a fundamentally new approach to IoT system design by moving the subscriber identity module’s (SIM) functionality to the cellular chipset. The IoT device has the mobile operators’ credentials securely programmed during manufacturing, eliminating the need for the traditional physical SIM card.
As a result, the nuSIM architecture streamlines design and manufacturing processes by eliminating the need for contacts, circuit paths, card holders and other components associated with physical SIMs. It also enables ultra-compact device form factors that would not be possible with a physical SIM card, such as healthcare wearables and industrial sensors. nuSIM also maximizes battery life by leveraging advanced power saving methods that are achievable only when the modem and SIM share the same underlying hardware. Each module ships with a fully operational integrated SIM. The solution eliminates overhead costs related to SIM logistics, such as stock keeping and handling.

Telit is a longtime Deutsche Telekom partner and was the first module supplier to become an active contributor in the nuSIM initiative. Telit’s role includes contributing to the nuSIM design process and serving as a test bed for the technology.

Telit | www.telit.com

Mini-PCIe Modules Offer Cat-M1 and Iridium Modems for IoT

By Eric Brown

Gateworks announced a pair of mini-PCIe modems that have been tested — and offer tech support — only on the company’s Linux-based SBCs. Most recently, these include the Cavium Octeon-based Newport GW6100 and GW6200. The GW16126 with Cat-M1 and BLE 5.0 and the GW16130 satellite modem will likely work with other mini-PCIe equipped computers. The GW16126 requires a Linux host computer, while it appears the GW16130 may also work with other operating systems.

 
GW16126 Cat-M4 modem (left) and GW16130 satellite modem
(click images to enlarge)

GW16126

The GW16126 supports Bluetooth 5.0 LE (BLE), as well as Verizon’s new low-power wide-area (LPWA) Cat-M1 service, which we saw recently on Advantech’s ICR-3211Brouter. Cat-M1 offers 375 Kbps, half duplex up/down speeds for IoT or machine-to-machine (M2M) communications. It’s touted for its low power consumption and exceptional in-building range.

The Cat-M1 modem is based on a U-blox SARA-R410M module. A nano-SIM socket integrates a Hologram IoT starter SIM. The mini-PCIe interface uses USB 2.0 signals to communicate with the host.

The Bluetooth radio is a U-blox NINA-B301 module with a Nordic Semiconductor nRF52840 chipset running Zephyr and a Bluetooth HCI UART host interface. Dual u.Fl antenna connectors are also available.

 
GW16126 and block diagram
(click images to enlarge)
The GW16126 has a networking stack based on a Linux 4.17+ kernel and supports Ubuntu and OpenWrt. The 30 x 60.8 x 6mm card supports -40 to 85°C temperatures. The 3.3V card typically runs on 0.3A.

GW16130

For more remotely deployed IoT sites, Gateworks has also launched a GW16130 mini-PCIe satellite modem with an Iridium 9603N satellite transceiver for two-way communications over Iridium’s global, 66-satellite network. The device supports “cost-effective, short burst satellite connectivity for asset tracking, fleet management, telemetry, oceanographic data, grid monitoring, and IoT applications,” says Gateworks.


GW16130 block diagram
(click image to enlarge)
As with the GW16126, the device uses USB 2.0 signaling to the host. Serial communications are enabled via an FTDI USB-to-UART bridge. The modem operates at 1616 MHz to 1626.5 MHz with 1.6W average transmit power and -117 dBm receiver sensitivity. There’s a single u.Fl antenna connector.

The 30 mm x 50.95 mm x 11.6 mm, 3.3V card typically runs at 0.85W@25 C, with a 7.2W@25C peak transmit rate. It supports -40 to 85°C temperatures. The product requires an Iridium data plan, which typically cost $20 per month with 12 KB of data.

Further information

The GW16126 Cat-M4 modem and GW16130 satellite modem are available now at an undisclosed price, although they should eventually appear on Gateworks’ mini-PCIe shopping page. More information may be found on the GW16126 product page and GW16126 wiki, as well as the GW16130 product page and GW16130 wiki.

This article originally appeared on LinuxGizmos.com on May 10.

Gateworks | www.gateworks.com

July Circuit Cellar: Sneak Preview

The July issue of Circuit Cellar magazine is out next week! This 84-page publication will make a satisfying thud sound when it lands on your desk and it’s crammed full of excellent embedded electronics articles prepared for you.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 

Here’s a sneak preview of July 2019 Circuit Cellar:

CONNECTED SYSTEMS IN ACTION

Embedded Computing
in Railway Systems
Railway systems keep getting more advanced. On both the control side and passenger entertainment side, embedded computers and power supplies play critical roles. Railway systems need sophisticated networking, data collection and real-time control, all while meeting safety standards. Circuit Cellar Chief Editor Jeff Child looks at the latest technology trends and products relevant to railway applications.

Product Focus:
IoT Interface Modules
The fast growing IoT phenomenon is driving demand for highly integrated modules designed for the IoT edge. Feeding those needs, a new crop of IoT modules have emerged that offer pre-certified solutions that are ready to use. This Product Focus section updates readers on this technology trend and provides a product album of representative IoT modules.

TECHNOLOGIES AND TECHNIQUES FOR ENGINEERS

FPGA Signal Processing
Offering the dual benefits of powerful signal processing and system-level integration, FPGAs have become a key technology for embedded system developers. Makers of chip and board-level FPGA products are providing complete solutions to enable developers to meet their application needs. Circuit Cellar Chief Editor Jeff Child explores the latest technology trends and product developments in FPGA signal processing.

Macros for AVR Assembler Programming
The AVR microcontroller instruction set provides a simplicity that makes it good for learning the root principles of machine programming. There’s also a rich set of macros available for the AVR that ease assembler-level programming. In this article, Wolfgang Matthes steps you through these principles, with the goal of helping programmers “think low-level, write high-level” when they approach embedded systems software development.

Inrush Current Limiters in Action
At the moment a high-power system is switched on, high loads can result in serious damage—even when the extra load is only for short time. Inrush current limiters (ICLs) can help prevent these issues. In this article, TDK Electronics’ Matt Reynolds examines ICLs based on NTC and PTC thermistors, discussing the underlying technology and the device options.

A Look at Cores with TrustZone-M
It’s not so easy to keep up with all the new security features on the latest and greatest embedded processors—especially while you’re busy focusing on the more fundamental and unique aspects of your design. In this article, Colin O’Flynn helps out by examining the new processor cores using TrustZone-M, a feature that helps you secure even low-cost and lower power system designs.

PROJECTS THAT REUSE & RECYCLE

Energy Monitoring Part 2
In Part 1 of this article series, George Novacek began describing an MCU-based system he built to monitor his household energy. Here, he continues that discussion, this time focusing on the electrical power tracking module. As the story shows, he stuck to a design challenge of building the system with as many components he already had in his component bins.

Variable Frequency Drive Part 1
Modern appliances claim to be more efficient, but they’re certainly not designed to last as long as older models. In this project article, Brian Millier describes how he reused subsystems from a defunct modern washing machine to power his bandsaw. The effort provides valuable insights on how to make use of the complete 3-phase Variable Frequency Drive (VFD) borrowed from the washing machine.

FUN PROJECT ARTICLES WITH ALL THE DETAILS

Windless Wind Chimes (Part 2)
In part 1 of this article series, Jeff Bachiochi built a system to simulate breezes randomly playing the sounds of suspended wind chimes. In part 2 the effort evolves into a less random, more orchestrated project. Jeff decided this time to craft a string of chromatically tuned chimes, similar to what an orchestra might use so the project could be used to play music. The project relies on MIDI, an industry standard music technology protocol designed to create and share music and artistic works.

Building a Smart Frying Pan
There’s almost no limit to what an MCU can be used for—-including objects that previously had no electronics at all. In this article, learn how Cornell University graduate Joseph Dwyer build a Microchip PIC32 MCU-based system that wirelessly measures and controls the temperature of a pan on a stove. The system improves both the safety and reliability of cooking on the stove, and has potentially interesting commercial applications.

EOG-Controlled Video Game
There’s much be to learned about how electronics can interact with biological signals—not only to record, but also to see how they can be used as inputs for control applications. With ongoing research in fields such as virtual reality and prosthetics, new systems are being developed to interpret different types of signals for practical applications. Learn how Cornell graduates  Eric Cole, Evan Mok and Alex Huang use electrooculography (EOG) to control a simple video game by measuring eye movement.

Study Predicts 5G Will Reach the IoT Market in Late 2020

According to a new report from the IoT analyst firm Berg Insight, 5G will make its first appearance in the IoT market in late 2020. The first 5G cellular IoT modules will become available to developers this year, enabling early adopters to create the first IoT devices based on the standard. Based on the experience of previous introductions of new standards, 5G will however not be an instant hit. By 2023, Berg Insight forecasts that 5G will account for just under 3 percent of the total installed base of cellular IoT devices.
“5G still has some way to go before it can become a mainstream technology for cellular IoT”, says Tobias Ryberg, Principal Analyst and author of the report. “Just like 4G when it was first introduced, the initial version of 5G is mostly about improving network performance and data capacity. This is only relevant for a smaller subset of high-bandwidth cellular IoT applications like connected cars, security cameras and industrial routers.” Ryberg predicts that he real commercial breakthrough won’t happen until the massive machine type communication (mMTC) use case has been implemented in the standard.

mMTC is intended as an evolution of the LTE-M/NB-IoT enhancements to the 4G standard. Since NB-IoT has only just started to appear in commercial products, there is no immediate demand for a successor. Over time, fifth generation mobile networks will however become necessary to cope with the expected exponential growth of IoT connections and data traffic. The report identifies homeland security as an area where 5G cellular IoT can have a major impact already in the early 2020s. “5G enables the deployment of high-density networks of AI-supported security cameras to monitor anything form security-classified facilities to national borders or entire cities”, says Mr. Ryberg. “How this technology is used and by whom is likely to become one of the most controversial issues in the next decade.”

Berg Insight | www.berginsight.com

Arm Cortex M23-Based MCUs Feature FreeRTOS Kernel Support

Nuvoton Technology has announced that it is demonstrating the capability of FreeRTOS kernel support with the NuMicro M2351 Series. According to the company, the M2351 is one of the first Arm Cortex-M23 based MCUs that has a preconfigured example that embedded developers can use to run FreeRTOS on the officially supported Armv8-M architecture. Amazon Web Services (AWS) released the latest FreeRTOS kernel that includes a preconfigured example project for the Nuvoton NuMaker-PFM-M2351 evaluation board (shown).
At the beginning of 2019, the M2351 Series had achieved with Arm PSA (Platform System Architecture) Level 1 Certified and PSA Functional Certification. PSA Certified enables device makers to achieve the security required for their use cases through three progressive levels of security assurance, each requiring increasingly rigorous hardware and software evaluation, which are assigned by analyzing the use case threat vectors.

In achieving Arm PSA Functional API Certification, Nuvoton better enables ecosystem software compatibility to PSA standards, independent of hardware platforms. It’s highly configurable to suit target applications on constrained devices. As a very early Armv8-M architecture-based microcontroller vendor, Nuvoton has accumulated several IoT use cases covering a lot of devices connected to the internet with the M2351 Series.

Nuvoton Technology | www.nuvoton.com

Tuesday’s Newsletter: Microcontroller Watch

Coming to your inbox tomorrow: Circuit Cellar’s Microcontroller Watch newsletter. Tomorrow’s newsletter keeps you up-to-date on latest microcontroller news. In this section, we examine the microcontrollers along with their associated tools and support products.

Bonus: We’ve added Drawings for Free Stuff to our weekly newsletters. Make sure you’ve subscribed to the newsletter so you can participate.

Already a Circuit Cellar Newsletter subscriber? Great!
You’ll get your Microcontroller Watch newsletter issue tomorrow.

Not a Circuit Cellar Newsletter subscriber?
Don’t be left out! Sign up now:

Our weekly Circuit Cellar Newsletter will switch its theme each week, so look for these in upcoming weeks:

IoT Technology Focus. (6/18) Covers what’s happening with Internet-of-Things (IoT) technology–-from devices to gateway networks to cloud architectures. This newsletter tackles news and trends about the products and technologies needed to build IoT implementations and devices.

Embedded Boards.(6/25) The focus here is on both standard and non-standard embedded computer boards that ease prototyping efforts and let you smoothly scale up to production volumes.

Analog & Power. (7/2) This newsletter content zeros in on the latest developments in analog and power technologies including DC-DC converters, AC-DC converters, power supplies, op amps, batteries and more.

Software/Hardware Solution Facilitates IoT System Development

Recon Industrial Controls has announced LabRecon, a software and hardware product that enables users to create rich graphical interfaces for “remote” IoT or “local” measurement and control applications. A drag-and-drop panel builder and graphical programming environment allows one to easily build an interface and create the operating logic for any project. A USB connected “Breadboard Experimentor” circuit board provides the measurement and control link.
The product features a “Measurement Wizard” that lets you choose from a built-in database of over 500 commercially available sensors to automatically configure sensor configurations. The wizard also provides circuits with component values for voltage and current measurements. LabRecon’s “Breadboard Experimentor” incorporates a solder-less breadboard to quickly build interface circuitry to sensors or output devices. The on-board LabRecon chip provides many I/O options including 8 12-bit analog, frequency and digital inputs. Outputs comprise PWM, servo, frequency and stepper motor signals. Pins can also be configured to support 24-bit ADCs, 12 or 16-bit DACs and port expanders. As an alternative to the Breadboard Experimentor, LabRecon chips are available in DIP packages, which provide the same I/O functionality.

The software’s graphical programming feature uses Drag-and-drop functions, which can be wired together, to add analysis and control functionality to a project. Algorithms can be further expanded using the “code link” interface to text-based languages such as Python, Java, C#, Visual Basic and so on. LabRecon also comprises a server to allow access of the created GUI by computers or mobile devices. Furthermore, emails and text messages can be sent periodically or upon events. The server also includes a MQTT broker to allow MQTT clients to share data with the software. Even without Breadboard Experimentor or the LabRecon chip, the software has powerful features that can be used for free. Such features include simulation, the Measurement Wizard and a serial monitor/terminal.

A Kickstarter campaign is underway for the LebRecon product. The Kickstarter link is posted on www.LabRecon.com

Recon Industrial Controls | www.labrecon.com

 

Fanless Industrial IoT Gateway Boasts Small Form Factor

WIN Enterprises has announced the PL-80580, a fanless, small form factor for use as an Industrial IoT (IIoT) Gateway, and for networking applications requiring the small footprint and temperature tolerance of industrial applications. The small footprint of the PL-80580 (216 mm x 142 mm x 37.5 mm) also provides a good fit for robotics, cart-based medical and digital signage applications.

The unit features a choice of three Intel Atom E3800 3-D processors with Tri-gate design in single-, dual, and quad-core versions with 2x GbE LAN ports. The Intel processor is high performance, low-power consuming at 5 W, 7 w or 10 W. The E3845 SoC provides up to 1.91 GHz performance with its quad-core design. CPUs are partnered with the Intel i210AT GbE LAN controller. System I/O includes 1x USB 3.0, 2x USB 2.0, 2x Intel PCIe GbE, and 1x RS-232/422/485 & 3x RS232, plus expansion capabilities. The unit is RoHS, FCC, and CE compliant.

Features:

  • Intel Atom Processor E3800 SoC (up to 1.91 GHz)
  • Supports -10°C~60°C operating temperature range
  • 1 x HDMI, 1 x VGA1 x SATA III, 1 x Half-size mSATA
  • 2 x Intel i210AT Gigabit Ethernet
  • 4 x COM, USB 2.0, USB 3.0
  • 1 x Full-size mini-PCIe, 1 x Half-size mini-PCIe (mSATA)
  • DC 8V-32V input

WIN Enterprises will customize the PL-80580 based on customer’s specific market requirements.

WIN Enterprises | www.win-ent.com