July Circuit Cellar: Sneak Preview

The July issue of Circuit Cellar magazine is coming soon. And we’ve rustled up a great herd of embedded electronics articles for you to enjoy.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 

Here’s a sneak preview of July 2018 Circuit Cellar:

TECHNOLOGIES FOR THE INTERNET-OF-THINGS

Wireless Standards and Solutions for IoT  
One of the critical enabling technologies making the Internet-of-Things possible is the set of well-established wireless standards that allow movement of data to and from low-power edge devices. Here, Circuit Cellar’s Editor-in-Chief, Jeff Child, looks at key wireless standards and solutions playing a role in IoT.

Product Focus: IoT Device Modules
The rapidly growing IoT phenomenon is driving demand for highly integrated modules designed to interface with IoT devices. This Product Focus section updates readers on this technology trend and provides a product album of representative IoT interface modules.

TOOLS AND TECHNIQUES AT THE DESIGN PHASE

EMC Analysis During PCB Layout
If your electronic product design fails EMC compliance testing for its target market, that product can’t be sold. That’s why EMC analysis is such an important step. In his article, Mentor Graphics’ Craig Armenti shows how implementing EMC analysis during the design phase provides an opportunity to avoid failing EMC compliance testing after fabrication.

Extreme Low-Power Design
Wearable consumer devices, IoT sensors and handheld systems are just a few of the applications that strive for extreme low-power consumption. Beyond just battery-driven designs, today’s system developers want no-battery solutions and even energy harvesting. Circuit Cellar’s Editor-in-Chief, Jeff Child, dives into the latest technology trends and product developments in extreme low power.

Op Amp Design Techniques
Op amps can play useful roles in circuit designs linking the real analog world to microcontrollers. Stuart Ball shares techniques for using op amps and related devices like comparators to optimize your designs and improve precision.

Wire Wrapping Revisited
Wire wrapping may seem old fashioned, but this tried and true technology can solve some tricky problems that arise when you try to interconnect different kinds of modules like Arduino, Raspberry Pi and so on. Wolfgang Matthes steps through how to best employ wire wrapping for this purpose and provides application examples.

DEEP DIVES ON MOTOR CONTROL AND MONITORING

BLDC Fan Current
Today’s small fans and blowers depend on brushless DC (BLDC) motor technology for their operation. In this article, Ed Nisley explains how these seemingly simple devices are actually quite complex when you measure them in action. He makes some measurements on the motor inside a tangential blower and explores how the data relates to the basic physics of moving air.

Electronic Speed Control (Part 1)
An Electronic Speed Controller (ESC) is an important device in motor control designs, especially in the world of radio-controlled (RC) model vehicles. In Part 1, Jeff Bachiochi lays the groundwork by discussing the evolution of brushed motors to brushless motors. He then explores in detail the role ESC devices play in RC vehicle motors.

MCU-Based Motor Condition Monitoring
Thanks to advances in microcontrollers and sensors, it’s now possible to electronically monitor aspects of a motor’s condition, like current consumption, pressure and vibration. In this article, Texas Instrument’s Amit Ashara steps through how to best use the resources on an MCU to preform condition monitoring on motors. He looks at the signal chain, connectivity issues and A-D conversion.

AND MORE FROM OUR EXPERT COLUMNISTS

Verifying Code Readout Protection Claims
How do you verify the security of microcontrollers? MCU manufacturers often make big claims, but sometimes it is in your best interest to verify them yourself. In this article, Colin O’Flynn discusses a few threats against code readout and looks at verifying some of those claimed levels.

Thermoelectric Cooling (Part 1)
When his thermoelectric water color died prematurely, George Novacek was curious whether it was a defective unit or a design problem. With that in mind, he decided to create a test chamber using some electronics combined with components salvaged from the water cooler. His tests provide some interesting insights into thermoelectric cooling.

 

June Circuit Cellar: Sneak Preview

The June issue of Circuit Cellar magazine is coming soon. And we’ve planted a lovely crop of embedded electronics articles for you to enjoy.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 

Here’s a sneak preview of June 2018 Circuit Cellar:

PCB DESIGN AND POWER: MAKING SMART CHOICES

PCB Design and Verification
PCB design tools and methods continue to evolve as they race to keep pace with faster, highly integrated electronics. Automated, rules-based chip placement is getting more sophisticated and leveraging AI in interesting ways. And supply chains are linking tighter with PCB design processes. Circuit Cellar Chief Editor Jeff Child looks at the latest PCB design and verification tools and technologies.

PCB Ground Planes
Tricky design decisions crop up when you’re faced with crafting a printed circuit board (PCB) for any complex system—and many of them involve the ground plane. There is dealing with noisy components and deciding between a common ground plane or separate ones—and that’s just the tip of the iceberg. Robert Lacoste shares his insights on the topic, examining the physics, simulation tools and design examples of ground plane implementations.

Product Focus: AC-DC Converters
To their peril, embedded system developers often treat their choice of power supply as an afterthought. But choosing the right AC-DC converter is critical to the ensuring your system delivers power efficiently to all parts of your system. This Product Focus section updates readers on these trends and provides a product album of representative AC-DC converter products.

SENSORS TAKE MANY FORMS AND FUNCTIONS

Sensors and Measurement
While sensors have always played a key role in embedded systems, the exploding Internet of Things (IoT) phenomenon has pushed sensor technology to the forefront. Any IoT implementation depends on an array of sensors that relay input back to the cloud. Circuit Cellar Chief Editor Jeff Child dives into the latest technology trends and product developments in sensors and measurement.

Passive Infrared Sensors
One way to make sure that lights get turned off when you leave a room is to use Passive Infrared (PIR) sensors. Jeff Bachiochi examines the science and technology behind PIR sensors. He then details how to craft effective program code and control electronics to use PIR sensors is a useful way.

Gesture-Recognition in Boxing Glove
Learn how two Boston University graduate students built a gesture-detection wearable that acts as a building block for a larger fitness telemetry system. Using a Linux-based Gumstix Verdex, the wearable couples an inertial measurement unit with a pressure sensor embedded in a boxing glove to recognize the user’s hits and classify them according to predefined, user-recorded gestures.

SECURITY, RELIABILITY AND MORE

Internet of Things Security (Part 3)
In this next part of his article series on IoT security, Bob Japenga looks at the security features of a specific series of microprocessors: Microchip’s SAMA5D2. He examines these security features and discusses what protection they provide.

Aeronautical Communication Protocols
Unlike ground networks, where data throughout is the priority, avionics networks are all about reliability. As a result, the communications protocols used in for aircraft networking seem pretty obscure to the average engineer. In this article, George Novacek reviews some of the most common aircraft comms protocols including ARINC 429, ARINC 629 and MIL-STD-1553B

DEEP DIVES ON PROCESSOR DESIGN AND DIGITAL SIGNAL PROCESSING

Murphy’s Laws in the DSP World (Part 1)
A Pandora’s box of unexpected issues gets opened the moment you move from the real world of analog signals and enter the world of digital signal processing (DSP). In Part 1 of this new article series, Mike Smith defines six “Murphy’s Laws of DSP” and provides you with methods and techniques to navigate around them.

Processor Design Techniques and Optimizations
As electronics get smaller and more complex day by day, knowing the basic building blocks of processors is more important than ever. In this article, Nishant Mittal explores processor design from various perspectives—including architecture types, pipelining and ALU varieties.

Dual-Mode Bluetooth Module for the Industrial IoT

U‑blox has announced the new NINA‑B2 dual‑mode Bluetooth 4.2 stand‑alone module, enabling industrial IoT applications thanks to its built‑in secure boot and wide temperature ranges. It comes pre‑flashed with U‑blox connectivity software which supports many common use cases such as Beacon, GATT client, GATT server and serial port. NINA‑B2 is configured easily using AT commands over UART, without requiring deep knowledge of the Bluetooth protocol. Because it’s already tested and certified globally, it also reduces development costs and speeds time to market.

NINA‑B2’s built‑in secure boot guarantees that the software is authenticated by U‑blox and has therefore not been tampered with. This provides a secure operating environment for the Bluetooth module. NINA‑B2 is very compact, at 10 mm x 10.6 mm x 2.2mm (without antenna) and 10 mm x 14 mm x 3.8 mm (with antenna).

Most of the Bluetooth modules at this scale are single‑mode Bluetooth low energy or Bluetooth BR/EDR devices. NINA‑B2’s size makes it an easy fit in any IoT device. It is also pin‑compatible with the U‑blox NINA family, allowing it to be easily swapped in or out with other NINA modules, with their different radio technologies such as Bluetooth low energy and Wi‑Fi.

Apart from industrial automation such as machine control devices, industrial terminals and products for remote control, possible applications also include wireless‑connected and configurable equipment, point of sale, telematics and health devices. NINA‑B2 is expected to go into production in summer 2018.

U-Blox | www.u-blox.com

Linux and Coming Full Circle

Input Voltage

–Jeff Child, Editor-in-Chief

JeffHeadShot

In terms of technology, the line between embedded computing and IT/desktop computing has always been a moving target. Certainty the computing power in small embedded devices today have vastly more compute muscle than even a server of 15 years ago. While there’s many ways to look at that phenomena, it’s interesting to look at it through the lens of Linux. The quick rise in the popularity of Linux in the 90s happened on the server/IT side pretty much simultaneously with the embrace of Linux in the embedded market.

I’ve talked before in this column about the embedded Linux start-up bubble of the late 90s. That’s when a number of start-ups emerged as “embedded Linux” companies. It was a new business model for our industry, because Linux is a free, open-source OS. As a result, these companies didn’t sell Linux, but rather provided services to help customers create and support implementations of open-source Linux. This market disruption spurred the established embedded RTOS vendors to push back. Like most embedded technology journalists back then, I loved having a conflict to cover. There were spirited debates on the “Linux vs. RTOS topic” on conference panels and in articles of time—and I enjoyed participating in both.

It’s amusing to me to remember that Wind River at the time was the most vocal anti-Linux voice of the day. Fast forward to today and there’s a double irony. Most of those embedded Linux startups are long gone. And yet, most major OS vendors offer full-blown embedded Linux support alongside their RTOS offerings. In fact, in a research report released in January by VDC Research, Wind River was named as the market leader in the global embedded software market for both its RTOS and commercial Linux segments.

According the VDC report, global unit shipments of IoT and embedded OSs, including free/non-commercial OSs, will grow to reach 11.1 billion units by 2021, driven primarily by ECU-targeted RTOS shipments in the automotive market, and free Linux installs on higher-resource systems. After accounting for systems with no OS, bare-metal OS, or an in-house developed OS, the total yearly units shipped will grow beyond 17 billion units in 2021 according to the report. VDC research findings also predict that unit growth will be driven primarily by free and low-cost operating systems such as Amazon FreeRTOS, Express Logic ThreadX and Mentor Graphics Nucleus on constrained devices, along with free, open source Linux distributions for resource-rich embedded systems.

Shifting gears, let me indulge myself by talking about some recent Circuit Cellar news—though still on the Linux theme. Circuit Cellar has formed a strategic partnership with LinuxGizmos.com. LinuxGizmos is a well-establish, trusted website that provides up-to-the-minute, detailed and insightful coverage of the latest developer- and maker-friendly, embedded oriented chips, modules, boards, small systems and IoT devices—and the software technologies that make them tick. As its name in implies, LinuxGizmos features coverage of open source, high-level operating systems including Linux and its derivatives (such as Android), as well as lower-level software platforms such as OpenWRT and FreeRTOS.

LinuxGizmos.com was founded by Rick Lehrbaum—but that’s only the latest of his accolades. I know Rick from way back when I first started writing about embedded computing in 1990. Most people in the embedded computing industry remember him as the “Father of PC/104.” Rick co-founded Ampro Computers in 1983 (now part of ADLINK), authored the PC/104 standard and founded the PC/104 Consortium in 1991, created LinuxDevices.com in 1999 and guided the formation of the Embedded Linux Consortium in 2000. In 2003, he launched LinuxGizmos.com to fill the void created when LinuxDevices was retired by Quinstreet Media.

Bringing things full circle, Rick says he’s long been a fan of Circuit Cellar, and even wrote a series of articles about PC/104 technology for it in the late 90s. I’m thrilled to be teaming up with LinuxGizmos.com and am looking forward to combing our strengths to better serve you.

This appears in the April (333) issue of Circuit Cellar magazine

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

BLE-Wi-Fi Module Solution Enables Compact IoT Gateways

Nordic Semiconductor announced that InnoComm Mobile Technology has employed Nordic’s nRF52832 Bluetooth Low Energy (Bluetooth LE) System-on-Chip (SoC) for its CM05 BLE-Wi-Fi Module. The CM05 is a compact module that combines Nordic’s Bluetooth LE solution with Wi-Fi and is designed to ease the development of IoT gateways. By combining these wireless technologies into one device, the developer eliminates the cost and complexity of working with separate Bluetooth LE and Wi-Fi modules.

A CM05-powered IoT gateway enables Bluetooth LE-equipped wireless products to connect to the Internet (via the Wi-Fi technology’s TCP/IP functionality), a key advantage for smart home and smart industry applications. The compact module enables developers to reduce gateway size, decrease production costs and speed time to market.

The Nordic SoC’s powerful 64 MHz, 32-bit Arm Cortex M4F processor provides ample processing power to both the Nordic’s S132 SoftDevice (a Bluetooth 5-certifed RF software protocol (“stack”)) and the Wi-Fi TCP/IP stack, eliminating the cost, space requirements and power demands of an additional processor. In addition, the Nordic SoC’s unique software architecture, which cleanly separates the SoftDevice from the developer’s application code, eases the development process. And when the gateway is deployed in the field, the solution enables rapid, trouble-free Over-the-Air Device Firmware Updates (OTA-DFU).

Nordic’s nRF52832 Bluetooth LE SoC supports Bluetooth 5, ANT and proprietary 2.4GHz RF protocol software and delivers up to 60 per cent more generic processing power, offering 10 times the Floating Point performance and twice the DSP performance compared to competing solutions. The SoC is supplied with the S132 SoftDevice for advanced Bluetooth LE applications. The S132 SoftDevice features Central, Peripheral, Broadcaster and Observer Bluetooth LE roles, supports up to twenty connections, and enables concurrent role operation.

Nordic Semiconductor | www.nordicsemi.com

 

April Circuit Cellar: Sneak Preview

The April issue of Circuit Cellar magazine is coming soon. And we’ve got a healthy serving of embedded electronics articles for you. Here’s a sneak peak.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 

Here’s a sneak preview of April 2018 Circuit Cellar:

NAVIGATING THE INTERNET-OF-THINGS

IoT: From Gateway to Cloud
In this follow on to our March “IoT: Device to Gateway” feature, this time we look at technologies and solutions for the gateway to cloud side of IoT.  Circuit Cellar Chief Editor Jeff Child examines the tools and services available to get a cloud-connected IoT implementation up and running.

Texting and IoT Embedded Devices (Part 2)
In Part 1, Jeff Bachiochi laid the groundwork for describing a project involving texting. He puts that into action this, showing how to create messages on his Espressif System’s ESP8266EX-based device to be sent to an email account and end up with those messages going as texts to a cell phone.

Internet of Things Security (Part 2)
In this next part of his article series on IoT security, Bob Japenga takes a look at side-channel attacks. What are they? How much of a threat are they? And how can we prevent them?

Product Focus: 32-Bit Microcontrollers
As the workhorse of today’s embedded systems, 32-bit microcontrollers serve a wide variety of embedded applications—including the IoT. This Product Focus section updates readers on these trends and provides a product album of representative 32-bit MCU products.

GRAPHICS, VISION AND DISPLAYS

Graphics, Video and Displays
Thanks to advances in displays and innovations in graphics ICs, embedded systems can now routinely feature sophisticated graphical user interfaces. Circuit Cellar Chief Editor Jeff Child dives into the latest technology trends and product developments in graphics, video and displays.

Color Recognition and Segmentation in Real-time
Vision systems used to require big, multi-board systems—but not anymore. Learn how two Cornell undergraduates designed a hardware/software system that accelerates vision-based object recognition and tracking using an FPGA SoC. They made a min manufacturing line to demonstrate how their system can accurately track and categorize manufactured candies carried along a conveyor belt.

SPECIFICATIONS, QUALIFICATIONS AND MORE

Component tolerance
We perhaps take for granted sometimes that the tolerances of our electronic components fit the needs of our designs. In this article, Robert Lacoste takes a deep look into the subject of tolerances, using the simple resistor as an example. He goes through the math to help you better understand accuracy and drift along with other factors.

Understanding the Temperature Coefficient of Resistance
Temperature coefficient of resistance (TCR) is the calculation of a relative change of resistance per degree of temperature change. Even though it’s an important spec, different resistor manufacturers use different methods for defining TCR. In this article, Molly Bakewell Chamberlin examines TCR and its “best practice” interpretations using Vishay Precision Group’s vast experience in high-precision resistors.

Designing of Complex Systems
While some commercial software gets away without much qualification during development, the situation is very different when safety in involved. For aircraft, vehicles or any complex system where failure unacceptable, this means adhering to established standards throughout the development life cycle. In this article, George Novacek tackles these issues and examines some of these standards namely ARP4754.

AND MORE IN-DEPTH PROJECT ARTICLES

Build a Marginal Oscillator Proximity Switch
A damped or marginal oscillator will switch off when energy is siphoned from its resonant LC tank circuit. In his article, Dev Gualtieri presents a simple marginal oscillator that detects proximity to a small steel screw or steel plate. It lights an LED, and the LED can be part of an optically-isolated solid-state relay.

Obsolescence-Proof Your UI (Part 1)
After years of frustration dealing with graphical interface technologies that go obsolete, Steve Hendrix decided there must be a better way. Knowing that web browser technology is likely to be with us for a long while, he chose to build a web server that could perform common operations that he needed on the IEEE-488 bus. He then built it as a product available for sale to others—and it is basically obsolescence-proof.

 

 

Circuit Cellar and LinuxGizmos.com Form Strategic Partnership

Partnership offers an expanded technical resource for embedded and IoT device developers and enthusiasts

Today Circuit Cellar is announcing a strategic partnership with LinuxGizmos.com to offer an expanded resource of information and know-how on embedded electronics technology for developers, makers, students and educators, early adopters, product strategists, and technical decision makers with a keen interest in emerging embedded and IoT technologies.

The new partnership combines Circuit Cellar’s uniquely in depth, “down-to-the-bits” technical articles with LinuxGizmos.com’s up-to-the-minute, detailed, and insightful coverage of the latest developer-  and maker-friendly, embedded oriented chips, modules, boards, small systems, and IoT devices, and the software technologies that make them tick. Additionally, as its name implies, LinuxGizmos.com’s coverage frequently highlights open source, high-level operating systems including Linux and its derivatives (e.g. Android), as well as lower-level software platforms such as OpenWRT and FreeRTOS.

Circuit Cellar is one of the electronics industry’s most highly technical information resources for professional engineers, academics, and other specialists involved in the design and development of embedded processor- and microcontroller-based systems across a broad range of applications. It gets right down to the bits and bytes and lines of code, at a level its readers revel in. Circuit Cellar is a trusted brand engaging readers every day on its website, each week with its newsletter, and each month through Circuit Cellar magazine’s print and digital formats.

LinuxGizmos.com is a free-to-use website that publishes daily news and analysis on the hardware, software, protocols, and standards used in new and innovative embedded, mobile, and Internet of Things (IoT) devices.  The site is lauded for its detailed and insightful, timely coverage of newly introduced single board computers (SBCs), computer-on-modules (COMs), system-on-chips (SoCs), and small form factor (SFF) systems, along with their software platforms.

“The synergies between LinuxGizmos and Circuit Cellar are great and I’m excited to see the benefits of this partnership passed on to our combined audience,” said Jeff Child, Editor-in-Chief, Circuit Cellar. “LinuxGizmos.com has the kind of rich, detail-oriented structure that I’m a fan of. Over the many years I’ve been following the site, I’ve relied on it as an important information resource, and its integrity has always impressed me.”

“I’ve been a fan of Circuit Cellar magazine since it was first launched, and wrote a series of articles for it in the late 90s about PC/104 embedded modules,” added Rick Lehrbaum, founder and Editor-in-Chief of LinuxGizmos.com. “I’m thrilled to see LinuxGizmos become associated with one of the computing industry’s pioneering publications.”

“I see this partnership as a perfect way to enhance both the Circuit Cellar and LinuxGizmos brands as key information platforms,” stated KC Prescott, President, KCK Media Corp. “In this era where there’s so much compelling technology innovation happening in the industry, our combined strengths will help inform and inspire embedded systems developers.”

Read Announcement on LinuxGizmos.com here:

Circuit Cellar and LinuxGizmos.com join forces

March Circuit Cellar: Sneak Preview

The March issue of Circuit Cellar magazine is coming soon. And we’ve got a healthy serving of embedded electronics articles for you. Here’s a sneak peak.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 

Here’s a sneak preview of March 2018 Circuit Cellar:

TECHNOLOGY FOR THE INTERNET-OF-THINGS

IoT: From Device to Gateway
The Internet of Things (IoT) is one of the most dynamic areas of embedded systems design today. This feature focuses on the technologies and products from edge IoT devices up to IoT gateways. Circuit Cellar Chief Editor Jeff Child examines the wireless technologies, sensors, edge devices and IoT gateway technologies at the center of this phenomenon.

Texting and IoT Embedded Devices
Texting has become a huge part of our daily lives. But can texting be leveraged for use in IoT Wi-Fi devices? Jeff Bachiochi lays the groundwork for describing a project that will involve texting. In this part, he gets into out the details for getting started with a look at Espressif System’s ESP8266EX SoC.

Exploring the ESP32’s Peripheral Blocks
What makes an embedded processor suitable as an IoT or home control device? Wi-Fi support is just part of the picture. Brian Millier has done some Wi-Fi projects using the ESP32, so here he shares his insights about the peripherals on the ESP32 and why they’re so powerful.

MICROCONTROLLERS HERE, THERE & EVERYWHERE

Designing a Home Cleaning Robot (Part 4)
In this final part of his four-part article series about building a home cleaning robot, Nishant Mittal discusses the firmware part of the system and gets into the system’s actual operation. The robot is based on Cypress Semiconductor’s PSoC microcontroller.

Apartment Entry System Uses PIC32
Learn how a Cornell undergraduate built a system that enables an apartment resident to enter when keys are lost or to grant access to a guest when there’s no one home. The system consists of a microphone connected to a Microchip PIC32 MCU that controls a push solenoid to actuate the unlock button.

Posture Corrector Leverages Bluetooth
Learn how these Cornell students built a posture corrector that helps remind you to sit up straight. Using vibration and visual cues, this wearable device is paired with a phone app and makes use of Bluetooth and Microchip PIC32 technology.

INTERACTING WITH THE ANALOG WORLD

Product Focus: ADCs and DACs
Makers of analog ICs are constantly evolving their DAC and ADC chips pushing the barriers of resolution and speeds. This new Product Focus section updates readers on this technology and provides a product album of representative ADC and DAC products.

Stepper Motor Waveforms
Using inexpensive microcontrollers, motor drivers, stepper motors and other hardware, columnist Ed Nisley built himself a Computer Numeric Control (CNC) machines. In this article Ed examines how the CNC’s stepper motors perform, then pushes one well beyond its normal limits.

Measuring Acceleration
Sensors are a fundamental part of what make smart machines smart. And accelerometers are one of the most important of these. In this article, George Novacek examines the principles behind accelerometers and how the technology works.

SOFTWARE TOOLS AND PROTOTYPING

Trace and Code Coverage Tools
Today it’s not uncommon for embedded devices to have millions of lines of software code. Trace and code coverage tools have kept pace with these demands making it easier for embedded developers to analyze, debug and verify complex embedded software. Circuit Cellar Chief Editor Jeff Child explores the latest technology trends and product developments in trace and code coverage tools.

Manual Pick-n-Place Assembly Helper
Prototyping embedded systems is an important part of the development cycle. In this article, Colin O’Flynn presents an open-source tool that helps you assemble prototype devices by making the placement process even easier.

Dotdot Spec to Run on Thread’s IP Network

The Zigbee Alliance and Thread Group have announced the availability of the Dotdot specification over Thread’s IP network. This enables developers to confidently use an established, open and interoperable IoT language over a low-power wireless IP network. This is expected to help unify the fragmented connected device industry and unlock new markets.

Dotdot is the Zigbee Alliance’s universal language for the IoT, making it possible for smart objects to work together on any network. Thread is the Thread Group’s open, IPv6-based, low-power, secure and future-proof mesh networking technology for IoT products. These two organizations have come together to deliver a mature, scalable solution for IoT interoperability that isn’t confined to single-vendor ecosystems or technologies.

Dotdot-over-Thread-no-sub-01The early Internet faced the same challenges as today’s IoT. Currently, connected devices can struggle to deliver a seamless experience because they speak different languages (or in technical terms, use different “application layers”). For the internet, the industry solved this problem with open, universal protocols over IP. Dotdot’s common device language over Thread’s IP network extends this same proven approach to the Internet of Things. With Dotdot over Thread, product and platform vendors can ensure the high-quality, interoperable user experiences needed to drive growth, while IP allows vendors to maintain a direct connection to their device.

It’s important to note that Dotdot over Thread is not another new standard. Dotdot enables the open, mature, and already widely adopted application layer at the heart of Zigbee to work across Thread’s IP network. It uses the same network technology fundamental to the internet. For product managers, new standards represent risk. Dotdot and Thread are backed by global, industry-leading companies and represent two of the most robust, widely deployed, and well-supported connectivity and interoperability technologies, driving billions of products and networks already in homes and offices.

The Dotdot specification is available today to Zigbee Alliance members. Additional resources, including the Dotdot Commissioning Application, will be available in Summer 2018, along with the opening of the Dotdot Certification program from the Zigbee Alliance. Thread launched its 1.1 specification and opened its certification program in February 2017. The Zigbee Alliance and Thread Group now share a number of common authorized test service providers, and are working with them to ensure an efficient, seamless certification process for Dotdot over Thread adopters. More information on this program will be announced soon.

The Zigbee Alliance | www.zigbee.org

Thread Group | www.threadgroup.org

Automotive-Grade IoT Gateways

Eurotech has expanded its range of Multi-service IoT Gateways with the launch of the DynaGATE 10-12 and the announcement of the DynaGATE 10-06. Both systems are carrier pre-certified, with an integrated LTE Cat 1 cellular, GPS, Wi-Fi, BLE, E-Mark and SAE/J1455 certifications and a -40 ºC to +85 ºC operating temperature.

The DynaGATE 10-12 is a low-power gateway based on the TI AM335X Cortex-A8 (Sitara) processor family, with 1 GB RAM and 4 GB eMMC. It features a 6 to 36VDC power supply with transient protection and vehicle ignition sense, 2x protected RS-232/RS-485 serial ports, 2x CAN bus interfaces, 3x noise and surge protected USB ports and 4x isolated digital I/Os. The DynaGATE 10-12 is suitable for on-board applications, with a metal enclosure, high retention connectors and screw-flange terminal blocks.

The connectivity capabilities of the DynaGATE 10-12 include an internal LTE Cat 1 modem with dual Micro-SIM support, Wi-Fi, Bluetooth Low Energy, 2x Fast Ethernet ports, and an internal GPS (optionally with Dead Reckoning) for precise geolocation.

DynaGATE 10-06.jpgThe DynaGATE 10-06 (shown) is an IP67, heavy-duty IoT gateway for Automotive applications. It features an internal battery that provides minutes of uninterrupted operation in case of power failure. Based on the NXP i.MX 6UltraLite Cortex-A7 processor, with 512MB RAM and 4GB eMMC, the DynaGATE 10-06 features a 6 to 36V power supply with protections and vehicle ignition sense, 3x protected RS-232/RS-485 serial ports, 2x CAN bus interfaces, 1x noise and surge protected USB port and 2x protected digital I/O. All these interfaces are available through a rugged AMPSEAL connector.

The DynaGATE 10-06 connectivity capabilities range from an internal LTE Cat 1 modem with dual Micro-SIM support, Wi-Fi, Bluetooth Low Energy, to a dedicated GPS with optional Dead Reckoning and 2x Fast Ethernet ports on rugged M12 connectors.

In addition, the DynaGATE 10-12 and DynaGATE 10-06 connectivity capabilities can be expanded through the ReliaCELL 10-20 family, that includes several 2G/3G/LTE global, rugged cellular modules certified by leading carriers. The DynaGATE 10-12 is also expandable with Eurotech ReliaLORA 10-12, a LoRa LPWAN Gateway unit, and the ReliaIO 10-12, a DAQ unit that provides analog inputs, more digital I/O interfaces and other functionalities.

The DynaGATE 10-12 and the DynaGATE 10-06 come with a genuine Oracle Java SE Embedded 8 Virtual Machine and Everyware Software Framework (ESF), a commercial, enterprise version of Eclipse Kura, the Java/OSGi edge computing platform for IoT gateways. Distributed and supported by Eurotech, ESF adds advanced security, diagnostics, provisioning, remote access and full integration with Everyware Cloud (EC), the Eurotech IoT integration platform (separately available).

Eurotech | www.eurotech.com

NXP and Alibaba Cloud Team up for IoT Deal

NXP Semiconductors has announced a strategic partnership with Alibaba Cloud, the cloud computing and business unit of Alibaba Group. The two companies are working together to enable development of secure smart devices for edge computing applications and have plans to further develop solutions for the IoT.

NXP_logo_RGB_webAs part of the partnership, AliOS Things, the Alibaba IoT operating system has been integrated onto NXP applications processors, microcontroller chips, and Layerscape multicore processors. Both NXP’s i.MX and Layerscape processors are currently the only embedded systems on the market using the Alibaba Cloud TEE OS platform. The new solution benefits various markets including automotive, smart retail and smart home. And it is currently being applied in applications such as automotive entertainment and infotainment systems, QR code payment scanning applications and smart home speakers.

With the partnership between NXP and Alibaba Cloud Link in the field of IoT security, NXP has become a council member of the ICA IoT Connectivity Alliance. In the future, the two companies plan to jointly develop solutions to support application development in different fields including smart manufacturing and smart city.

The ‘Annual Report of China IoT Development 2015-2016’ predicts that the amount of equipment connected to IoT globally will reach 20-50 billion by 2020, with 80 percent of that equipment in China. NXP’s robust product portfolio covers offering from the edge node to gateway and comprehensive cloud IoT solutions. NXP’s products are widely used in smart homes, smart cities, smart transportation and secure connectivity.

NXP Semiconductors | www.nxp.com

Microsoft IoT Central Gets Public Preview

Microsoft has launched the public preview of Microsoft IoT Central. The company clains Microsoft IoT Central is the first true highly scalable IoT software-as-a-service (SaaS) solution that offers built-in support for IoT best practices and world-class security. Microsoft IoT Central enables companies to build production-grade IoT applications in hours—without having to manage all the necessary back-end infrastructure or learn new skills.

14According to the company, Microsoft IoT Central takes the hassle out of creating an IoT solution by eliminating the complexities of initial setup as well as the management burden and operational overhead of a typical IoT project. That means users can bring their connected product vision to life faster while staying focused on their customers and products. The complete IoT solution lets users seamlessly scale from a few to millions of connected devices as IoT needs grow. Moreover, it removes guesswork thanks to simple and comprehensive pricing that makes it easier to plan IoT investments.

On the security front, Microsoft IoT Central leverages privacy standards and technologies to help ensure data is only accessible to the right people in an organization. With IoT privacy features such as role-based access and integration with Azure Active Directory permissions, users stay in control of their information. In the coming months, Microsoft IoT Central will also be able to integrate with customers’ existing business systems—such as Microsoft Dynamics 365, SAP and Salesforce.

Microsoft is also announcing the availability of Azure IoT Hub Device Provisioning Service. Azure IoT Hub Device Provisioning Service enables zero-touch device provisioning and configuration of millions of devices to Azure IoT Hub in a secure and scalable manner. Device Provisioning Service adds important capabilities that, together with Azure IoT Hub device management, help customers easily manage all stages of the IoT device lifecycle.

For a deeper look into the features of Microsoft IoT Central, go to its new website.

Mircosoft | www.microsoft.com

IoTSF Updates IoT Security Compliance Framework

The Internet of Things Security Foundation (IoTSF) announced today that it has updated its industry leading IoT Security Compliance Framework to Release 1.1. The Framework was created by security practitioners and aimed at product developers, manufacturers and supply chain managers. This release details 204 controls across 14 themes that businesses can use to ensure their consumer category products are IoT ready. A companion questionnaire is also supplied and provides a simple mechanism for documenting requirement responses.

Compliance-Framework-and-Questionnaire-1-1-1-400x400IoTSF also extended its best practice guidance for connected consumer products to include logging and software update policy as part of its review. The framework, questionnaire and best practice guidelines are available to download for free from the IoTSF website. Users are also invited to use the Best Practice User Mark to inform their public that they observe security best practices in their organizations.

Richard Marshall, IoTSF Executive Steering Board member, said “since we published the first version of the Framework it has been downloaded, used and referenced by a wide number of stakeholders. These updates build on the first release and further strengthen the security mechanisms that organizations need to provide. We’ve also added a companion questionnaire to assist businesses in their security risk assessments. As IoT covers a vast number of use cases, the Framework is written in a manner that makes it extensible, and we will add categories beyond its consumer based origins in future releases.”

John Moor, IoTSF Managing Director also commented that “the era of IoT is characterized by hyper-connectivity and software defined products. Ensuring fit for purpose security is recognized as a wicked challenge which requires many stakeholders, and more than technical solutions alone. We are encouraging all organizations that provide or use IoT-class technology to be proactive, and think about their duty of care to their customers and wider society. We’re here to help in that endeavor, and we’re delighted to announce these updates to our publications today. Further, we encourage industry to provide feedback so that we can ensure they are easy to use and stay relevant in the fast-paced world of connected and digital technology.”

The publications can be downloaded direct from the IoTSF website: www.iotsecurityfoundation.org/best-practice-guidelines

Internet of Things Security Foundation | www.iotsecurityfoundation.org

IoT Tool Suite Supports Bluetooth 5

Rigado has announced its Edge Connectivity Suite with full support for Bluetooth 5. Designed for large-scale commercial IoT deployments, Rigado’s Edge Connectivity solution is comprised of Bluetooth 5 end-device modules and the Vesta IoT Gateway, which includes cloud-based tools for secure deployment and updating.

The Edge Connectivity Suite actively addresses a growing need for low-power wireless within commercial IoT applications like asset tracking, smart lighting and connected retail and hospitality. The company’s Bluetooth 5-enabled solutions support the flexibility, interoperability and security demands of large-scale commercial IoT deployments. Moreover, the suite addresses the market need for Edge Computing at scale, paving a secure and cost-effective road for data from device-to-cloud.

Specifically designed for companies who need to develop, deploy and manage a large number of connected devices and gateways, the Rigado Edge Connectivity Suite provides seamless integration between IoT devices and the Cloud. It includes:

  • BMD-340 angleCertified end device modules – Rigado modules (see photo) save connected product teams six months and $200K+ in design, test and certification. Fully Bluetooth 5 enabled, Rigado modules also feature mesh networking capabilities, ideal for applications like smart lighting, asset tracking, and connected retail.
  • Edge computing gateways – Rigado Vesta gateways manage connectivity to end devices and ensure data reaches public and private cloud services. They also support custom edge applications to process data and offer local device control. Flexible wireless options and customizability mean that companies can optimize their gateway for cost-effective enterprise deployment.
  • Cloud-based tools for secure deployment and updating– Companies require a scalable solution to securely manage updates to devices in the field. With that in mind, every Rigado gateway ships with Rigado’s provisioning and release management system that integrates with existing development tools for secure updating at scale.

Rigado | www.rigado.com

A Year in the Drone Age

Input Voltage

–Jeff Child, Editor-in-Chief

JeffHeadShot

When you’re trying to keep tabs on any young, fast-growing technology, it’s tempting to say “this is the big year” for that technology. Problem is that odds are the following year could be just as significant. Such is the case with commercial drones. Drone technology fascinates me partly because it represents one of the clearest examples of an application that wouldn’t exist without today’s level of chip integration driven by Moore’s law. That integration has enabled 4k HD video capture, image stabilization, new levels of autonomy and even highly compact supercomputing to fly aboard today’s commercial and consumer drones.

Beyond the technology side, drones make for a rich topic of discussion because of the many safety, privacy and regulatory issues surrounding them. And then there are the wide-open questions on what new applications will drones be used for?

For its part, the Federal Aviation Administration has had its hands full this year regarding drones. In the spring, for example, the FAA completed its fifth and final field evaluation of potential drone detection systems at Dallas/Fort Worth International Airport. The evaluation was the latest in a series of detection system evaluations that began in February 2016 at several airports. For the DFW test, the FAA teamed with Gryphon Sensors as its industry partner. The company’s drone detection technologies include radar, radio frequency and electro-optical systems. The FAA intends to use the information gathered during these kinds of evaluations to craft performance standards for any drone detection technology that may be deployed in or around U.S. airports.

In early summer, the FAA set up a new Aviation Rulemaking Committee tasked to help the agency create standards for remotely identifying and tracking unmanned aircraft during operations. The rulemaking committee will examine what technology is available or needs to be created to identify and track unmanned aircraft in flight.

This year as also saw vivid examples of the transformative role drones are playing. A perfect example was the role drones played in August during the flooding in Texas after Hurricane Harvey. In his keynote speech at this year’s InterDrone show, FAA Administrator Michael Huerta described how drones made an incredible impact. “After the floodwaters had inundated homes, businesses, roadways and industries, a wide variety of agencies sought FAA authorization to fly drones in airspace covered by Temporary Flight Restrictions,” said Huerta. “We recognized that we needed to move fast—faster than we have ever moved before. In most cases, we were able to approve individual operations within minutes of receiving a request.”

Huerta went on to described some of the ways drones were used. A railroad company used drones to survey damage to a rail line that cuts through Houston. Oil and energy companies flew drones to spot damage to their flooded infrastructure. Drones helped a fire department and county emergency management officials check for damage to roads, bridges, underpasses and water treatment plants that could require immediate repair. Meanwhile, cell tower companies flew them to assess damage to their towers and associated ground equipment and insurance companies began assessing damage to neighborhoods. In many of those situations, drones were able to conduct low-level operations more efficiently—and more safely—than could have been done with manned aircraft.

“I don’t think it’s an exaggeration to say that the hurricane response will be looked back upon as a landmark in the evolution of drone usage in this country,” said Huerta. “And I believe the drone industry itself deserves a lot of credit for enabling this to happen. That’s because the pace of innovation in the drone industry is like nothing we have seen before. If people can dream up a new use for drones, they’re transforming it into reality.”

Clearly, it’s been significant year for drone technology. And I’m excited for Circuit Cellar to go deeper with our drone embedded technology coverage in 2018. But I don’t think I’ll dare say that “this was the big year” for drones. I have a feeling it’s just one of many to come.

This appears in the December (329) issue of Circuit Cellar magazine

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today: