IoT Edge Server Manages Distributed Devices

Advantech has announced its new generation of wireless connectivity: the Edge Intelligence Server EIS-D210 series. As smart cities and industry 4.0 deployment installs millions of IoT sensors and devices, wireless communications has become the fastest growing sector and wireless networks have been part of every application. As a result, the task of remotely managing distributed devices becomes more complex.

To echo market requirements, Advantech EIS-D210 series is powered by an Intel Celeron processor N3350 and has LoRa/Wi-Fi/Bluetooth and WISE-PaaS/EdgeSense edge intelligence and sensing software built-in. It is also pre-integrated with Microsoft Azure IoT Edge and AWS Greengrass to extend cloud intelligence to edge devices and enable real-time decisions at the edge. Advantech EIS-D210 is an integrated solution from the edge to the cloud and simplifies IoT application deployment. It’s well suited for applications in smart factory, smart energy and intelligent agriculture applications that need wireless sensor network management.

EIS-D210W has a built-in certificated Wi-Fi (IEEE802.11a/b/g/n/ac 2.4GHz/5GHz standard) and Bluetooth 4.1 module, and EIS-D210L incorporates a built-in private LoRa long-range modem. All EIS-D210 series have built-in dual GbE, COM (RS-232/422/485), VGA/HDMI, four USB 3.0 and mPCIe ports. The mPCIe ports can be extended to support 3G/4G LTE. EIS-D210 series provide several connection capabilities and peripheral support for multiple wireless/wired communications.

EIS-D210 series comes with Advantech’s WISE-PaaS/EdgeSense edge intelligence and sensing integration software, which provides an IoT SDK and documents for wireless sensor (LoRa, Wi-Fi, Bluetooth) data integration and supporting field protocols (MQTT/OPC/Modbus) for sensor/device data acquisition. With these, customers can quickly incorporate data integration, data pre-processing, and edge analytics to their applications.

EIS-D210 series is also pre-integrated with Azure IoT Edge and AWS Greengrass, ensuring that IoT devices can respond quickly to local events, interact with local resources, operate with intermittent connections, and minimize the cost of transmitting IoT data to the cloud. Furthermore, after data modeling and machine learning with data, results can be pushed back to edge (IoT Edge/ Greengrass) to provide data prediction for IoT applications.

EIS-D210W (Wi-Fi/Bluetooth) became available at end of April and EIS-D210L (LoRa) will become available in June.

Advantech | www.advantech.com

Edge-as-a-Service Solution Targets Commercial IoT

Rigado has announced Cascade, its new integrated Edge-as-a-Service solution. Designed for commercial IoT applications like Asset Tracking, Smart Workplaces and Connected Retail, Cascade helps companies save six months of time—or more—in bringing their solutions to market, without the need for upfront hardware investments.

Offered as an integrated monthly subscription starting at $9/month, Cascade gives you the wireless infrastructure, edge computing platform and managed security updates that allow IoT product and project teams to focus on driving maximum value from their IoT apps—and not on the underlying edge infrastructure, security and maintenance.

Rigado’s  Cascade Edge-as-a-Service does so with four main components:

Cascade-500 IoT Gateway: Rigado’s newest IoT gateway offers a range of connectivity options including Bluetooth 5, Zigbee, Thread, Wi-Fi & LTE; security features like file system encryption; and 800 MHz of edge computing power.

Edge Protect Service: A managed, automated security service, Edge Protect provides automatic OS and security updates when common vulnerabilities, exposures and exploits are discovered. The service also provides signature authentication to ensure that what your developers publish is exactly what runs.

Edge Direct Tools: Secure edge device orchestration and systems performance monitoring allow your operations teams to set alerts and diagnose issues; provision gateways with secure IDs and encrypted keys; and flexibly schedule, manage and apply application updates. Edge Direct integrates with existing DevOps processes and CI tools and uses a familiar app store deployment model. With Edge Direct, technicians are able to stay out of the field, remotely deploying—and rolling back if necessary—updates for reliable maintenance.

Edge Connect Platform: Gives developers a secure connectivity and computing platform with a fully containerized edge OS. Featuring Ubuntu Core by Canonical with secure boot and an encrypted file system, Edge Connect also leverages Snaps, a simple application packaging system that makes it easier for developers to build and maintain application containers at the edge. With Edge Connect, your developers can work in the programming language of their choice and can easily and securely add multiple apps and functionalities onto a single gateway. Last, EdgeConnect also offers easier connections to IoT sensors and beacons using API calls that do not require device or protocol expertise.

Cascade benefits engineers by shaving months off of their IoT design and build efforts by helping them quickly develop and deploy edge applications. EdgeConnect APIs, with their ‘web-style’ access to devices, greatly simplifies architecture and saves thousands of lines of code and weeks of development and testing time.

Operational teams who are tasked with ongoing edge maintenance can use their same DevOps workflows, dashboards, and tools, such as CI, to monitor their IoT solutions. Edge performance monitoring helps Operations keep a close eye on device health and connectivity to manage successful scaling.

Cascade gives your IoT Support the solutions they need to effectively diagnose and fix client-specific issues. Able to easily integrate into existing support applications, IoT support needs little to no additional team or tools to effectively track device performance, diagnostics and update configurations.

 

Business teams benefit from the ability to easily scale IoT solutions across the commercial enterprise – all with a solution that mirrors their own SaaS Commercial IoT model. With increased security, a faster time to market and the ability to extend easily to the entire commercial enterprise, Cascade gives your business teams the ability to introduce innovation at the speed of the market.

You can get started with Rigado’s Cascade Evaluation Kit.

Rigado | www.rigado.com

Tiny, Rugged IoT Gateways Offer 10-Year Linux Support

By Eric Brown

Moxa has announced the UC-2100 Series of industrial IoT gateways along with its new UC 3100 and UC 5100 Series, but it offered details only on the UC-2100. All three series will offer ruggedization features, compact footprints, and on some models, 4G LTE support. They all run Moxa Industrial Linux and optional ThingsPro Gateway data acquisition software on Arm-based SoCs.

 

Moxa UC-2111 or UC-2112 (left) and UC-2101 (click image to enlarge)

Based on Debian 9 and a Linux 4.4 kernel, the new Moxa Industrial Linux (MIL) is a “high-performance, industrial-grade Linux distribution” that features a container-based virtual-machine-like middleware abstraction layer between the OS and applications,” says Moxa. Multiple isolated systems can run on a single control host “so that system integrators and engineers can easily change the behavior of an application without worrying about software compatibility,” says the company.

MIL provides 10-year long-term Linux support, and is aimed principally at industries that require long-term software, such as power, water, oil & gas, transportation and building automation industries. In December, Moxa joined the Linux Foundation’s Civil Infrastructure Platform (CIP) project, which is developing a 10-year SLTS Linux kernel for infrastructure industries. MIL appears to be in alignment with CIP standards.

Diagrams of ThingsPro Gateway (top) and the larger ThingsPro eco-system (bottom) (click images to enlarge)

Moxa’s ThingsPro Gateway software enables “fast integration of edge data into cloud services for large-scale IIoT deployments,” says Moxa. The software supports Modbus data acquisition, LTE connectivity, MQTT communication, and cloud client interfaces such as Amazon Web Services (AWS) and Microsoft Azure. C and Python APIs are also available.

 

Moxa’s UC-3100 (source: Hanser Konstruktion), and at right, the similarly Linux-driven, ThingsPro ready UC-8112 (click images to enlarge)

Although we saw no product pages on the UC-3100 and UC-5100, Hanser Konstruktion posted a short news item on the UC-3100 with a photo (above) and a few details. This larger, rugged system supports WiFi and LTE with two antenna pairs, and offers a USB port in addition to dual LAN and dual serial ports.

The new systems follow several other UC-branded IoT gateways that run Linux on Arm. The only other one to support ThingsPro is the UC-8112, a member of the UC-8100 family. This UC-8100 is similarly ruggedized, and runs Linux on a Cortex-A8 SoC.

UC-2100

The UC-2100 Series gateways runs MIL on an unnamed Cortex-A8 SoC clocked at 600MHz except for the UC-2112, which jumps to 1GHz. There are five different models, all with 9-48 VDC 3-pin terminal blocks and a maximum consumption of 4 Watts when not running cellular modules.

The five UC-2100 models have the following dimensions, weights, and maximum input currents:

  • UC-2101 — 50 x 80 x 28mm; 190 g; 200 mA
  • UC-2102 — 50 x 80 x 28mm; 190 g; 330 mA
  • UC-2104 — 57 x 80 x 30.8mm; 220 g; 800 mA
  • UC-2111 — 77 x 111 x 25.5mm; 290 g; 350 mA
  • UC-2112 — 77 x 111 x 25.5mm; 290 g; 450 mA

All five UC-2100 variants default to a -10 to 60°C operating range except for the UC-2104, which moves up to -10 to 70°C. In addition, they are all available in optional -40 to 75°C versions.

Other ruggedization features are the same, including anti-vibration protection per IEC 60068-2-64 and anti-shock per IEC 60068-2-2. A variety of safety, EMC, EMI, EMS, and hazardous environment standards are also listed.

The first three models ship with 256MB DDR3, while the UC-2111 and UC-2112 offer 512MB. These two are also the only ones to offer micro-SD slots. All five systems ship with 8GB eMMC loaded with the MIL distribution.

The UC-2100 systems vary in the number and type of their auto-sensing, 1.5 kV isolated Ethernet ports. The UC-2101 and UC-2104 each have a single 10/100Mbps port, while the UC-2102 and UC-2111 have two. The UC-2112 has one 10/100 and one 10/100/1000 port. The UC-2104 is the only model with a mini-PCIe socket for 4G or WiFi.

The UC-2111 and UC-2112 offer 2x RS-232/422/48 ports while the UC-2101 has one. It would appear that the UC-2102 and UC-2104 lack serial ports altogether except for the RS-232 console port available on all five systems.

The UC-2100 provides push buttons and dip switches, an RTC, a watchdog, and LEDs, the number of which depend on the model. A wall kit is standard, and DIN-rail mounting is optional. TPM 2.0 is also optional. A 5-year hardware warranty is standard.

Further information

The UC-2100 Series gateways appear to be available for order, with pricing undisclosed. More information may be found on Moxa’s UC-2100 product page. More information about the UC-2100, as well as the related, upcoming UC-3100 and UC-5100 Series, will be on tap at Hannover Messe 2018, April 23-27, at the Arm Booth at Hall 6, Booth A46.

Moxa | www.moxa.com

This article originally appeared on LinuxGizmos.com on April 16.

Advantech Joins Amazon’s AWS Partner Network

Advantech has joined the Amazon Web Services (AWS) Partner Network (APN) as Standard Technology Partner. As an APN Standard Technology Partner, Advantech provides a comprehensive range of wireless sensors and edge intelligence computers with complete IoT software solutions on AWS. Embedded developers can connect devices to a range of services offered on AWS in order to build scalable, global, and secure IoT applications, bringing computing capabilities to edge devices to several domain-focused vertical markets such as smart city, smart manufacturing and smart energy markets.

Advantech’s WISE-1520 Wireless Sensor Node (shown) is on Amazon FreeRTOS so that customers can easily and securely connect small devices and sensors directly to AWS or to powerful edge devices running AWS Greengrass, thus allowing them to collect data for their IoT applications. As the first wireless sensor node for the M2.COM family, the WISE-1520 comes with an Arm Cortex-M4 processor and low-power Wi-Fi connectivity, providing full compatibility with existing Wi-Fi infrastructure.

Advantech also offers the EIS-D210 Edge Intelligence Server, which is equipped with an Intel Celeron Processor N3350 and is compatible with AWS Greengrass core, thus ensuring that IoT devices can respond quickly to local events, interact with local resources, operate with intermittent connections, and minimize the cost of transmitting IoT data to the cloud. In addition to supporting field protocols(MQTT/OPC/Modbus) for sensor/device data acquisition, the EIS-D210 can be used with the Advantech IoT SDK for wireless sensor (Wi-Fi, LoRa, Zigbee) data integration. Furthermore, the EIS-D210 comes pre-integrated with Advantech’s WISE-PaaS/EdgeSense software solution, allowing users to incorporate sensor data aggregation, edge analytics, and cloud applications for fast and easy real-time operational intelligence. This EIS provides a range of connectivity options with excellent data handling and networking connection capabilities for various IoT applications.

Advantech’s EPC-R4760 IoT gateway, powered by the Qualcomm Arm Cortex-A53 APQ8016 platform, provides a unique combination of power and performance. The system also integrates abundant wireless solutions including Wi-Fi, BT, GPS, and extended 3G/LTE connectivity. For OS support, the EPC-R4760 can run Debian Linux, Yocto Linux, Ubuntu Linux, Android, and Windows 10 IoT Core, and it also supports AWS Greengrass, which gives users tremendous flexibility by allowing them to create AWS Lambda functions that can be validated on AWS and then be easily deployed to devices.

Advantech’s UTX-3117 IoT gateway is compatible with AWS Greengrass and Wind River Pulsar and, in addition to having a small footprint, it offers real-time security and supports various protocols that are needed to run IoT applications seamlessly across both AWS and on local devices or sensor nodes. In addition, by equipping it with a LoRa solution, the UTX-3117 offers a wide range of wireless connection options for controlling and collecting data from devices and sensor nodes. With these solutions, the UTX-3117 IoT gateway is ideal for smart energy applications. For example, it can collect solar panel and solar radiation data in real time via LoRa, and with AWS Greengrass built in, it can analyze the data and adjust the angle of solar panels to follow the sun and thereby maximize the effectiveness of the solar panels. AWS Greengrass can also be employed to analyze weather data so that the panels can be adjusted to prevent damage from elements such as strong wind or hail.

Advantech | www.advantech.com

 

IoT: From Device to Gateway

Modules for the Edge

Connecting to the IoT edge requires highly integrated technology, blending wireless connectivity and intelligence. Feeding those needs, a variety of IoT modules have emerged that offer pre-certified solutions that are ready to use.

By Jeff Child, Editor-in-Chief

he Internet of Things (IoT) is one of the most dynamic areas of embedded systems design today. Opportunities are huge as organizations large and small work to develop IoT implementations. IoT implementations are generally comprised of three main parts: the devices in the field, the cloud and the network (gateways) linking them together. This article focuses on the “things” side—in other words, the smart, connected edge devices of the IoT. For more on IoT gateways, see “IoT Gateway Advances Take Diverse Paths“ (Circuit Cellar 328, November 2017).

Because this sub-segment of technology is growing and changing so fast, it’s impossible to get a handle on everything that’s happening. The scope that comprises IoT edge devices includes a combination of embedded processors and microcontrollers that provide intelligence. It also includes various wireless, cellular and other connectivity solutions to connect to the network. And it includes sensors to collect data and battery technologies to keep the devices running.

Connecting the various nodes of an IoT implementation can involve a number of wired and wireless network technologies. But it’s rare that an IoT system can be completely hardwired end to end. Most IoT systems of any large scale depend on a variety of wireless technologies including Wi-Fi, Bluetooth, Zigbee and even cellular networking.

What’s most interesting among all that, are not those individual pieces themselves, but rather an emerging crop of modular IoT products that combine intelligence and connectivity, while also taking on the vital certifications needed to get IoT implementations up and running. With all that in mind, the last 12 months have seen an interesting mix of module-based products aimed directly at IoT.

Certified IoT Modules

Exemplifying those trends, in September 2017, STMicroelectronics (ST)introduced the SPBTLE-1S, a ready-to-use Bluetooth Low Energy (BLE) module that integrates all the components needed to complete the radio subsystem (Photo 1). The BLE module integrates ST’s proven BlueNRG-1 application-processor SoC and balun, high-frequency oscillators and a chip antenna.

Photo 1
The SPBTLE-1S is a BLE module that integrates all the components needed to complete the radio subsystem. It’s BQE-approved, and FCC, IC and CE-RED certified to simplify end-product approval for North America and EU markets.

Developers can use this module to bypass hardware design and RF-circuit layout challenges. The SPBTLE-1S is BQE-approved, and FCC, IC and CE-RED (Radio Equipment Directive) certified to simplify end-product approval for North America and EU markets. ST’s Bluetooth 4.2 certified BLE protocol stack is included, and the supporting Software-Development Kit (SDK) contains a wide range of Bluetooth profiles and sample application code.

The device is packaged in a space-efficient 11.5 mm x 13.5 mm outline and has a wide supply-voltage range of 1.7 V to 3.6 V. The SPBTLE-1S module is well suited for small, battery-operated objects powered by various types of sources such as a primary button cell or rechargeable Li-ion battery. High RF output power of +5 dBm and good receiver sensitivity help to maximize communication range and reliability.

The BlueNRG-1 SoC at the heart of the SPBTLE-1S implements the complete BLE physical layer (PHY), link layer and network/application-processing engine comprising a low-power ARM Cortex-M0 core with 160 KB flash, 24 KB RAM with data retention and a security co-processor. The SoC also implements smart power management, with a DC/DC converter capable of powering the SPBTLE-1S module to ensure optimum energy efficiency. Users can leverage an extensive set of interfaces, including a UART, two I²C ports, SPI port, single-wire debug and 14 GPIOs, as well as peripherals including two multifunction timers, a 10-bit ADC, watchdog timer and real-time clock and a DMA controller. There is also a PDM stream processor interface, which is ideal for developing voice-controlled applications.

IoT Module for Development

Riding the IoT wave, all the major microcontroller vendors have beefed up their module-based IoT solutions in order to make it easier for developers to design in their MCUs. One example along those lines is the LPC54018 IoT module, developed by NXP in partnership with Embedded Artists. …

Read the full article in the March 332 issue of Circuit Cellar

Don’t miss out on upcoming issues of Circuit Cellar. Subscribe today!
Note: We’ve made the October 2017 issue of Circuit Cellar available as a free sample issue. In it, you’ll find a rich variety of the kinds of articles and information that exemplify a typical issue of the current magazine.

Rugged IoT Gateway Facilitates Quick Deployment

Axiomtek has introduced its latest RISC-based, DIN-rail industrial IoT gateway, the IFB125. It is powered by the Freescale i.MX6UL processor with the ARM Cortex-A7 microarchitecture. This compact IoT gateway is designed for versatility of use and quick deployment. The IFB125 is suitable for a variety of applications including applications that require remote control and monitoring management functions such as unmanned control, industrial automation, automatic parking lot control, traffic light control and more.

The IFB125 comes with multiple I/O connections including one RS-232/422/485 port, two 10/100 Mbps LAN ports, one USB 2.0 port, one 2-IN/1-OUT DIO, one I2C and one SPI. This embedded IoT gateway platform is equipped with one PCI Express Mini Card slot and one SIM card slot for wireless connectivity. It has a 256 MB onboard memory that features a fast data transfer rate of DDR3-1600. The robust IFB125 has an extended operating temperature range from -40°C to 70°C and can withstand vibration up to 5G. Its wide voltage range of 9V  to 48 V DC power input with a lockable terminal block-type connector makes it suitable for use in harsh environments. The IFB125 comes with an embedded Linux operating system (Yocto) to provide an open standard OS for software program development.

Features:

  • Fanless and compact gateway with a RISC-based (i.MX6UltraLite) processor at 528 MHz
  • 256 MB DDR3 SDRAM and 8 GB eMMC Flash onboard
  • SPI and I2C function with 3.3 V power
  • Multiple I/O options include one wireless socket for Wi-Fi or 3G/4G, two digital inputs, one digital output and two LAN ports
  • Wide operating temperature range of -40°C to +70°C
  • Power input range of 9V to 48V DC with terminal block
  • Ready-to-run embedded Linux operating system (Yocto)

Axiomtek | www.us.axiomtek.com

IoT Gateway Sports Intel Atom E3800 SoC Processor

WIN Enterprises has announced the WIN IoT-380 Gateway, an entry-level embedded IoT device designed for device control and the streaming of data from sensors and components deployed on a manufacturing line. Communications are via wired or wireless links to back-end servers located at the network’s edge. The edge servers are used for more comprehensive analytics, data aggregation and filtering, and issuing M2M or human alerts and so on. These back-end servers, in turn, pass filtered data to a cloud-based server for additional analytics, reporting, and archiving. These four technology layers create an integrated IIoT system for more efficient manufacturing.

image002

The WIN IoT-380 is a production line gateway that interfaces with sensors and actuators on the manufacturing line and an edge gateway that is used to further refine data and pass it on to a cloud-based server for storage and further analytics.

Features:

  • Intel Atom Processor E3800 SoC
  • 1 x HDMI, 1 x VGA
  • 1 x SATA III, 1 x Half-size mSATA
  • 2 x Intel i210AT Gigabit Ethernet
  • 4 x COM, USB 2.0, USB 3.0
  • 1 x Full-size mini-PCIe, 1 x Half-size mini-PCIe (mSATA)
  • DC 5V-32V input

The WIN IoT-380 gateway is configured with CPU, memory and connectivity to flexibly address a host of IoT needs. The processor is the Intel Atom E3826 an energy-efficient CPU which supports virtualization and Enhanced Intel SpeedStep Technology. These gateways are designed to operate in environments such as manufacturing facilities, oil rigs, remote power stations, and transportation systems where wide operating temperature ranges and tolerance for high levels of shock and vibration are required. The IoT-380 gateways are complete solutions designed to be easy-to-use and quick-to deploy. A wide range DC power input (DC 5V-32V) and wall or VESA mounting allows for flexible installation.

WIN Enterprises | www.win-ent.com