Q&A with Arduino-Based Skube Codesigner

The Arduino-based Skube

The Arduino-based Skube

Andrew Spitz is a Copenhagen, Denmark-based sound designer, interaction designer, and programmer. Among his various innovative projects is the Arduino-based Skube music player, which is an innovative design that enables users to find and share music.

Spitz worked on the design with Andrew Nip, Ruben van der Vleuten, and Malthe Borch. Check out the video to see the Skube in action. On his blog SoundPlusDesign.com, Spitz writes: “It is a fully working prototype through the combination of using ArduinoMax/MSP and an XBee wireless network. We access the Last.fm API to populate the Skube with tracks and scrobble, and using their algorithms to find similar music when in Discover mode.”

Skube – A Last.fm & Spotify Radio from Andrew Nip on Vimeo.

The following is an abridged  version of an interview that appears in the December 2012 issue of audioXpress magazine, a sister publication of Circuit Cellar magazine..

SHANNON BECKER: Tell us a little about your background and where you live.

Andrew Spitz: I’m half French, half South African. I grew up in France, but my parents are South African so when I was 17, I moved to South Africa. Last year, I decided to go back to school, and I’m now based in Copenhagen, Denmark where I’m earning a master’s degree at the Copenhagen Institute of Interaction Design (CID).

SHANNON: How did you become interested in sound design? Tell us about some of your initial projects.

Andrew: From the age of 16, I was a skydiving cameraman and I was obsessed with filming. So when it was time to do my undergraduate work, I decided to study film. I went to film school thinking that I would be doing cinematography, but I’m color blind and it turned out to be a bigger problem than I had hoped. At the same time, we had a lecturer in sound design named Jahn Beukes who was incredibly inspiring, and I discovered a passion for sound that has stayed with me.

Shannon: What do your interaction design studies at CIID entail? What do you plan to do with the additional education?

Andrew: CIID is focused on a user-centered approach to design, which involves finding intuitive solutions for products, software, and services using mostly technology as our medium. What this means in reality is that we spend a lot of time playing, hacking, prototyping, and basically building interactive things and experiences of some sort.

I’ve really committed to the shift from sound design to interaction design and it’s now my main focus. That said, I feel like I look at design from the lens of a sound designer as this is my background and what has formed me. Many designers around me are very visual, and I feel like my background gives me not only a different approach to the work but also enables me to see opportunities using sound as the catalyst for interactive experiences. Lots of my recent projects have been set in the intersection among technology, sound, and people.

SHANNON: You have worked as a sound effects recordist and editor, location recordist and sound designer for commercials, feature films, and documentaries. Tell us about some of these experiences?

ANDREW: I love all aspects of sound for different reasons. Because I do a lot of things and don’t focus on one, I end up having more of a general set of skills than going deep with one—this fits my personality very well. By doing different jobs within sound, I was able to have lots of different experiences, which I loved! nLocation recording enabled me to see really interesting things—from blowing up armored vehicles with rocket-propelled grenades (RPGs) to interviewing famous artists and presidents. And, documentaries enabled me to travel to amazing places such as Rwanda, Liberia, Mexico, and Nigeria. As a sound effects recordist on Jock of the Bushvelt, a 3-D animation, I recorded animals such as lions, baboons, and leopards in the South African bush. With Bakgat 2, I spent my time recording and editing rugby sounds to create a sound effects library. This time in my life has been a huge highlight, but I couldn’t see myself doing this forever. I love technology and design, which is why I made the move...

SHANNON: Where did the idea for Skube originate?

Andrew: Skube came out of the Tangible User Interface (TUI) class at CIID where we were tasked to rethink audio in the home context. So understanding how and where people share music was the jumping-off point for creating Skube.

We realized that as we move more toward a digital and online music listening experience, current portable music players are not adapted for this environment. Sharing mSkube Videousic in communal spaces is neither convenient nor easy, especially when we all have such different taste in music.

The result of our exploration was Skube. It is a music player that enables you to discover and share music and facilitates the decision process of picking tracks when in a communal setting.

audioXpress is an Elektor International Media publication.

DIY IoT: Build a ‘Net-Connected System Today

It’s time to join the Internet of Things (IoT) revolution. Try building a ‘Net-enabled design with WIZnet’s W5500 “smart” Ethernet chip. It’s easier than you think.

In a thorough introduction to the technology, Tom Cantrell presented a garage door monitoring design. He explained:

The W5500 (see Figure 1) starts with a standard 10/100 Ethernet interface (i.e., MAC and PHY) but then goes further with large RAM buffers (16-KB transmit and 16-KB receive) and hardware TCP/IP protocol processing. I discovered WIZnet’s first chip, the  W3100, way back in 2001. Of course by now, as with all things  silicon, the new W5500 is better, faster, and  lower cost. But the concept is still exactly  the same: “Internet enable” applications by  handling the network chores in hardware so  the application microcontroller doesn’t have to do it in software.

Cantrell - WIZ550io

Figure 1: The WIZnet W5500 is an Ethernet chip with a difference—large RAM buffers and hardware TCP/IP processing that make it easy for any microcontroller to go online.

The large RAM buffers help decouple the  microcontroller from network activity. In a  recent project (see my article, “Weatherize  Your Embedded App,” Circuit Cellar 273,  2013), I used the RAM to receive an entire  10-KB+ webpage, completely eliminating the  need for the microcontroller to juggle data at  network speed. And any of the 32-KB on-chip  RAM that isn’t needed for network buffering  is free for general-purpose use, a big plus for  typically RAM-constrained microcontrollers. The other major WIZnet hardware assist  is TCP/IP processing using IP addresses, sockets, and familiar commands including OPEN, CONNECT, SEND, RECEIVE, DISCONNECT.  The high-level interface to the network frees  up microcontroller cycles and code space that  would otherwise be needed for a software TCP/IP stack.

Cantrell goes on to present his design for a ‘Net-connected garage door monitoring system.

For prototyping, check out the WIZnet  ioShield (see Photo 1), which is a baseboard  for the WIZ550io that includes an SD card  socket. There are ioShields for different  platforms (e.g., Arduino, LaunchPad,  mbed, etc.), and with 0.1” headers they are  breadboard friendly.

Photo 1: If you want a fancy server with lots of eye candy, a microSD card is the way to go. The WIZnet ioShields include the card socket and are available for various platforms. The Arduino version is shown here.

Photo 1: If you want a fancy server with lots of eye candy, a microSD card is the way to go. The WIZnet ioShields include the card socket and are available for various platforms. The Arduino version is shown here.

Cantrell prototyped a client version of what he calls his “garage  door ‘Thing’ using an Arduino  and a WIZ550io connected to Exosite (see Photo 2).

A prototype of the client version of my garage “Thing” is shown.

Photo 2: A prototype of the client version of my garage “Thing”

Wondering how to get two clients (e.g., ) to interact with each other? Cantrell used Exosite.

Over on the Exosite website, after signing up for a  free “Developer” account, it was a quick and easy mainly point-and-click exercise to configure my “Device,” “Data,”  “Events,” and “Alerts” (see Photo 3).  As a client, there’s no need to keep the “Thing’s”  Ethernet link powered all the time. Data only needs to  be sent when the garage door opens or closes, but I also  recommend sending a periodic heartbeat just in case. My  garage door monitor will only generate a minute or two  of network activity (i.e., door state changes and hourly  heartbeats) per day, so there’s opportunity for significant  energy savings compared to a 24/7 server.

It only takes a few minutes to set up a simple Exosite dashboard including an e-mail alert. I can “see“ my  garage door without getting off the couch and now, via Exosite, from the farthest reaches of the web.

It only takes a few minutes to set up a simple Exosite dashboard including an e-mail alert. I can “see“ my garage door without getting off the couch and now, via Exosite, from the farthest reaches of the web.

You can download the entire article,  “Connect the Magic: An Introduction to the WIZnet W550,” for free to learn about Cantrell’s garage door control system built with a WIZnet and an Arduino Uno.

Editor’s note: If you have an idea for an innovative, ’Net-enabled electronics system, this is your opportunity to share your original design with the world. Enter the WIZnet Connect the Magic 2014 Design Challenge for a chance to win a share of $15,000 in prizes and gain recognition by Elektor International Media and Circuit Cellar. WIZnet is the sponsor. Eligible entries will be judged on their technical merit, originality, usefulness, cost-effectiveness, and design optimization. The Entry submission deadline is 12:00 PM EST August 3, 2014. How to enter: Implement WIZnet’s WIZ550io Ethernet module, or W5500 chip, in an innovative design; document your project; and then submit your entry. The complete rules and regulations are available on the Challenge webpage.

 

Raspberry Pi-Based Network Monitoring Device

In 2012, Al Anderson, IT director at Salish Kootenai College in Pablo, MT, and his team wired the dorms and student housing units at the small tribal college with fiber and outdoor CAT 5 cable to provide reliable Internet service to students. “Our prior setup was wireless and did not provide very good service,” Anderson says.

The 25 housing units, each with a small unmanaged Ethernet switch, were daisy chained in several different paths. Anderson needed a way to monitor the links from the system’s Simple Network Management Protocol (SNMP) network monitoring software, Help/Systems’s InterMapper. He also wanted to ensure the switches installed inside the sun-exposed utility boxes wouldn’t get too hot.

The Raspberry Pi is a small SBC based on an ARM processor. Its many I/O ports make it very useful for embedded devices that need a little more power than the typical 8-bit microcontroller.

Photo 1: The Raspberry Pi is a small SBC based on an ARM processor. Its many I/O ports make it very useful for embedded devices that need a little more power than the typical 8-bit microcontroller.

His Raspberry Pi-based solution is the subject of an article appearing in Circuit Cellar’s April issue. “We chose the Raspberry Pi because it was less expensive, we had several on hand, and I wanted to see what I could do with it,” Anderson says (see Photo 1).

The article walks readers through each phase of the project:

“I installed a Debian Linux distro, added an I2C TMP102 temperature sensor from SparkFun Electronics, wrote a small Python program to get the temperature via I2C and convert it to Fahrenheit, installed an SNMP server on Linux, added a custom SNMP rule to display the temperature from the script, and finally wrote a custom SNMP MIB to access the temperature information as a string and integer.”

Setting up the SBC and Linux was simple, Anderson says. “The prototype Raspberry Pi has now been running since September 2012 without any problems,” he says in his article. “It has been interesting to see how the temperature fluctuates with the time of day and the level of network activity. As budget and time permit, we will be installing more of these onto our network.”

In the following excerpt, Anderson discusses the project’s design, implementation, and OS installation and configuration. For more details on a project inspired, in part, by the desire to see what a low-cost SBC can do, read Anderson’s full article in the April issue.

DESIGN AND IMPLEMENTATION
Figure 1 shows the overall system design. The TMP102 is connected to the Raspberry Pi via I2C. The Raspberry Pi is connected to the network via its Ethernet port. The monitoring system uses TCP/IP over the Ethernet network to query the Raspberry Pi via SNMP. The system is encased in a small acrylic Adafruit Industries case, which we used because it is inexpensive and easy to customize for the sensor.

The system is designed around the Raspberry Pi SBC. The Raspberry Pi uses the I2C protocol to query the Texas Instruments TMP102 temperature sensor. The Raspberry Pi is queried via SNMP.

Figure 1: The system is designed around the Raspberry Pi SBC. The Raspberry Pi uses the I2C protocol to query the Texas Instruments TMP102 temperature sensor. The Raspberry Pi is queried via SNMP.

Our first step was to set up the Raspberry Pi. We started by installing the OS and the various software packages needed. Next, we wrote the Python script that queries the I2C temperature sensor. Then we configured the SNMP daemon to run the Python script when it is queried. With all that in place, we then set up the SNMP monitoring software that is configured with a custom MIB and a timed query. Finally, we modified the Raspberry Pi case to expose the temperature sensor to the air and installed the device in its permanent location.

OS INSTALLATION AND CONFIGURATION
The Raspberry Pi requires a Linux OS compiled to run on an ARM processor, which is the brain of the device, to be installed on an SD card. It does not have a hard drive. Setting up the SD card is straightforward, but you cannot simply copy the files onto the card. The OS has to be copied in such a way that the SD card has a boot sector and the Linux partitioning and file structure is properly maintained. Linux and Mac OS X users can use the dd command line utility to copy from the OS’s ISO image. Windows users can use a utility (e.g., Win32DiskImager) to accomplish the same thing. A couple of other utilities can be used to copy the OS onto the SD card, but I prefer using the command line.

A Debian-based distribution of Linux seems to be the most commonly used Linux distribution on the Raspberry Pi, with the Raspbian “wheezy” as the recommended distribution. However, for this project I chose Adafruit Learning Systems’s Occidentalis V0.2 Linux distribution because it had several hardware-hacker features rolled into the distribution, including the kernel modules for the temperature sensor. This saved me some work getting those installed and debugged.

Before you can copy the OS to the SD card, you need to download the ISO image. The Resources section of this article lists several sources including a link to the Adafruit Linux distribution. Once you have an ISO image downloaded, you can copy it to the SD card. The Resources section also includes a link to an Embedded Linux Wiki webpage, “RPi Easy SD Card Setup,” which details this copying process for several OSes.

The quick and dirty instructions are to somehow get the SD card hooked up to your computer, either using a built-in SD reader or a peripheral card reader. I used a USB attached reader. Then you need to format the card. The best format is FAT32, since it will get reformatted by the copy command anyway. Next, use your chosen method to copy the OS onto the card. On Linux or Mac OS X, the command:

dd bs=4M if=~/linux_distro.img of=/dev/sdd

will properly copy the OS onto the SD card.

You will need to change two important things in this command for your system. First, the
if parameter, which is the name the in file (i.e., your ISO image) needs to match the file you downloaded. Second, the of device (i.e., the out file or our SD drive in this case) needs to match the SD card. Everything, including devices, is a file in Linux, in case you are wondering why your SD drive is considered a file. We will see this again in a bit with the I2C device. You can toast your hard drive if you put the wrong device path in here. If you are unsure about this, you may want to use a GUI utility so you don’t overwrite your hard drive.

Once the OS is copied onto the SD card, it is time to boot up the Raspberry Pi. A default username and password are available from wherever you download the OS. With our OS, the defaults are “pi” and “raspberry.” Make it your first mission to change that password and maybe even add a new account if your project is going to be in production.

Another thing you may have to change is the IP address configuration on the Ethernet interface. By default, these distributions use DHCP to obtain an address. Unless you have a need otherwise, it is best to leave that be. If you need to use a static IP address, I have included a link in the Resources section with instructions on how to do this in Linux.

To access your Raspberry Pi, hook up a local keyboard and monitor to get to a command line. Once you have the network running and you know the IP address, you can use the SSH utility to gain access via the network.

To get SNMP working on the Raspberry Pi, you need to install two Debian packages: snmpd and snmp. The snmpd package is the actual SNMP server software that will enable other devices to query for SNMP on this device. The second package, snmp, is the client. It is nice to have this installed for local troubleshooting.

We used the Debian package manager, apt-get, to install these packages. The commands also must be run as the root or superuser.

The sudo apt-get install snmpd command installs the snmpd software. The sudo part runs the apt-get command as the superuser. The install and snmpd parts of the command are the arguments for the apt-get command.

Next we issued the
sudo apt-get install snmp command, which installed the SNMP client. Issue the ps -ax | grep snmpd command to see if the snmpd daemon is running after the install. You should see something like this:

1444 ? S 14:22 /usr/sbin/snmpd -Lsd -Lf /dev/null -u snmp -g snmp -I -smux -p /var/run/snmpd.pid

If you do not see a line similar to this, you can issue the sudo /etc/init.d/snmpd command start to start the service. Once it is running, it is time to turn your attention to the Python script that reads the temperature sensor. Configure the SNMP daemon after you get the Python script running.

The Raspberry Pi’s final installation is shown. The clear acrylic case can be seen along with the Texas Instruments TMP102 temperature sensor, which is glued below the air hole drilled into the case. We used a modified ribbon cable to connect the various TMP102 pins to the Raspberry Pi.

The Raspberry Pi’s final installation is shown. The clear acrylic case can be seen along with the Texas Instruments TMP102 temperature sensor, which is glued below the air hole drilled into the case. We used a modified ribbon cable to connect the various TMP102 pins to the Raspberry Pi.

A Low-Cost Connection to the IoT

In Circuit Cellar’s March issue, columnist Jeff Bachiochi tests the services of a company he says is “poised to make a big impact” on the Internet of Things (IoT).

This shows the I2C interface Bachiochi designed to enable available clamp-on current sensors to be monitored. He added four of these circuits to a PCB, which includes the circuitry for an imp card.

This shows the I2C interface Bachiochi designed to enable available clamp-on current sensors to be monitored. He added four of these circuits to a PCB, which includes the circuitry for an imp card.

Established in 2011, Electric Imp offers a flexible connectivity platform meant to enable any device to be connected to the IoT. The platform, called the “imp,” provides an SD-card sized module (including an 802.11b/g/n Wi-Fi radio package) that can be installed on any electronic device to go online. A powerful processor runs the imp OS.

“You only need to supply an SD card socket (and a few other components) to your product to give it connectivity,” Bachiochi says. “The imp’s processor has the power to run your entire product if you wish, or it can be connected via one of the supported serial protocols. The imp OS provides secure connectivity to the imp cloud. The imp cloud keeps your imp updated with the latest firmware, features online development tools, and provides cloud-side services for every imp in the field.”

“As with many cloud service organizations, development is generally free,” Bachiochi adds. “Once you’ve committed and have product rollout, the service will charge for its use. This could be a flat fee, a per-connection or data throughput fee, or a combination of fees. Basically you (or your customer) will have to pay to have access to the information, which pays for the support framework that keeps it all working.”

In his article, Bachiochi dives into a straightforward data-collection project to demonstrate how to use the imp in a product. The goal of his application was to log the activity of 220-V water pump and twin water softeners.  The project is the launching point for his comprehensive and detailed look at the imp’s hardware, software, and costs.

“It’s easy to design product hardware to use the imp,” he says. “There are two imp models, a card that can be inserted into an SD-type socket or an on-board module that is soldered into your product. Each version has advantages and disadvantages.”

Regarding software, Bachiochi says:

“Developing an imp application requires two parts to provide Wi-Fi access to your project: the device code (running in the imp) and the agent code (running on the imp cloud). The imp cloud, which is your connection to your device via the imp APIs, provides you with a development IDE. Web-based development means there is nothing else you need to purchase or install on your PC. Everything you need is available through your browser anytime and anywhere.”

Bachiochi also discusses the Electric Imp platform’s broader goals. While an individual can use the imp for device connectivity, a bigger purpose is to enable manufacturers to provide convenient Internet access as part of their product, Bachiochi says.

“The imp has two costs: The hardware is simple, it currently costs approximately $25 for an imp card or module. If you are using this in your own circuit within your own network, then you’re done,” he says. “If you want to roll out a product for sale to the world, you must take the next step and register for the BlinkUp SDK and Operations Console, which enable you to create and track factory-blessed products.”

BlinkUp, according to the Electric Imp website, integrates smoothly into apps and enables manufacturers and their customers to quickly connect products using a smartphone or tablet. The Operations Console enables tracking product activity and updating product firmware at any time, Bachiochi says.

The imp offers more than a low-cost way for DIYers and developers to connect devices to the Internet, Bachiochi says. A designer using the imp can save project costs by eliminating a microcontroller, he says. “Almost any peripheral can be easily connected to and serviced by the imp’s 32-bit Cortex M3 processor running the imp OS. All code is written in Squirrel.”

Bachiochi’s comprehensive article about his imp experience and insights can be found in the March issue, now available for membership download or single-issue purchase.

Bachiochi used the Electric IMP IDE to develop this code. Agent code on the top left runs on the imp cloud server. The device code on the top right is downloaded into the connected imp.

Bachiochi used the Electric IMP IDE to develop this code. Agent code on the top left runs on the imp cloud server. The device code on the top right is downloaded into the connected imp.

Remote Control and Monitoring of Household Devices

Raul Alvarez, a freelance electronic engineer from Bolivia, has long been interested in wireless device-to-device communication.

“So when the idea of the Internet of Things (IoT) came around, it was like rediscovering the Internet,” he says.

I’m guessing that his dual fascinations with wireless and the IoT inspired his Home Energy Gateway project, which won second place in the 2012 DesignSpark chipKIT challenge administered by Circuit Cellar.

“The system enables users to remotely monitor their home’s power consumption and control household devices (e.g., fans, lights, coffee machines, etc.),” Alvarez says. “The main system consists of an embedded gateway/web server that, aside from its ability to communicate over the Internet, is also capable of local communications over a home area wireless network.”

Alvarez catered to his interests by creating his own wireless communication protocol for the system.

“As a learning exercise, I specifically developed the communication protocol I used in the home area wireless network from scratch,” he says. “I used low-cost RF transceivers to implement the protocol. It is simple and provides just the core functionality necessary for the application.”

Figure1: The Home Energy Gateway includes a Hope Microelectronics RFM12B transceiver, a Digilent chipKIT Max32 board, and a Microchip Technology ENC28J60 Ethernet controller chip.

Figure 1: The Home Energy Gateway includes a Hope Microelectronics RFM12B transceiver, a Digilent chipKIT Max32 board, and a Microchip Technology ENC28J60 Ethernet controller chip.

Alvarez writes about his project in the February issue of Circuit Cellar. His article concentrates on the project’s TCI/IP communications aspects and explains how they interface.

Here is his article’s overview of how the system functions and its primary hardware components:

Figure 1 shows the system’s block diagram and functional configuration. The smart meter collects the entire house’s power consumption information and sends that data every time it is requested by the gateway. In turn, the smart plugs receive commands from the gateway to turn on/off the household devices attached to them. This happens every time the user turns on/off the controls in the web control panel.

Photo 1: These are the three smart node hardware prototypes: upper left,  smart plug;  upper right, a second smart plug in a breadboard; and at bottom,  the smart meter.

Photo 1: These are the three smart node hardware prototypes: upper left, smart plug; upper right, a second smart plug in a breadboard; and at bottom, the smart meter.

I used the simple wireless protocol (SWP) I developed for this project for all of the home area wireless network’s wireless communications. I used low-cost Hope Microelectronics 433-/868-/915-MHz RFM12B transceivers to implement the smart nodes. (see Photo 1)
The wireless network is configured to work in a star topology. The gateway assumes the role of a central coordinator or master node and the smart devices act as end devices or slave nodes that react to requests sent by the master node.

The gateway/server is implemented in hardware around a Digilent chipKIT Max32 board (see Photo 2). It uses an RFM12B transceiver to connect to the home area wireless network and a Microchip Technology ENC28J60 chip module to connect to the LAN using Ethernet.

As the name implies, the gateway makes it possible to access the home area wireless network over the LAN or even remotely over the Internet. So, the smart devices are easily accessible from a PC, tablet, or smartphone using just a web browser. To achieve this, the gateway implements the SWP for wireless communications and simultaneously uses Microchip Technology’s TCP/IP Stack to work as a web server.

Photo 2: The Home Energy Gateway’s hardware includes a Digilent chipKIT Max32 board and a custom shield board.

Photo 2: The Home Energy Gateway’s hardware includes a Digilent chipKIT Max32 board and a custom shield board.

Thus, the Home Energy Gateway generates and serves the control panel web page over HTTP (this page contains the individual controls to turn on/off each smart plug and at the same time shows the power consumption in the house in real-time). It also uses the wireless network to pass control data from the user to the smart plugs and to read power consumption data from the smart meter.

The hardware module includes three main submodules: The chipKIT Max 32 board, the RFM12B wireless transceiver, and the ENC28J60 Ethernet module. The smart meter hardware module has an RFM12B transceiver for wireless communications and uses an 8-bit Microchip Technology PIC16F628A microcontroller as a main processor. The smart plug hardware module shows the smart plugs’ main hardware components and has the same microcontroller and radio transceiver as the smart meter. But the smart plugs also have a Sharp Microelectronics S212S01F solid-state relay to turn on/off the household devices.

On the software side, the gateway firmware is written in C for the Microchip Technology C32 Compiler. The smart meter’s PIC16F628A code is written in C for the Hi-TECH C compiler. The smart plug software is very similar.

Alvarez says DIY home-automation enthusiasts will find his prototype inexpensive and capable. He would like to add several features to the system, including the ability to e-mail notifications and reports to users.

For more details, check out the February issue now available for download by members or single-issue purchase.

Client Profile: Digi International, Inc

Contact: Elizabeth Presson
elizabeth.presson@digi.com

Featured Product: The XBee product family (www.digi.com/xbee) is a series of modular products that make adding wireless technology easy and cost-effective. Whether you need a ZigBee module or a fast multipoint solution, 2.4 GHz or long-range 900 MHz—there’s an XBee to meet your specific requirements.

XBee Cloud Kit

Digi International XBee Cloud Kit

Product information: Digi now offers the XBee Wi-Fi Cloud Kit (www.digi.com/xbeewificloudkit) for those who want to try the XBee Wi-Fi (XB2B-WFUT-001) with seamless cloud connectivity. The Cloud Kit brings the Internet of Things (IoT) to the popular XBee platform. Built around Digi’s new XBee Wi-Fi
module, which fully integrates into the Device Cloud by Etherios, the kit is a simple way for anyone with an interest in M2M and the IoT to build a hardware prototype and integrate it into an Internet-based application. This kit is suitable for electronics engineers, software designers, educators, and innovators.

Exclusive Offer: The XBee Wi-Fi Cloud Kit includes an XBee Wi-Fi module; a development board with a variety of sensors and actuators; loose electronic prototyping parts to make circuits of your own; a free subscription to Device Cloud; fully customizable widgets to monitor and control connected devices; an open-source application that enables two-way communication and control with the development board over the Internet; and cables, accessories, and everything needed to connect to the web. The Cloud Kit costs $149.

Two Campuses, Two Problems, Two Solutions

In some ways, Salish Kootenai College (SKC)  based in Pablo, MT, and Penn State Erie, The Behrend College in Erie, PA, couldn’t be more different

SKC, whose main campus is on the Flathead Reservation, is open to all students but primarily serves Native Americans of the Bitterroot Salish, Kootenai, and Pend d’Orellies tribes. It has an enrollment of approximately 1,400. Penn State Erie has roughly 4,300.

But one thing the schools have in common is enterprising employees and students who recognized a problem on their campuses and came up with technical solutions. Al Anderson, IT director at the SKC, and Chris Coulston, head of the Computer Science and Software Engineering department at Penn State Erie, and his team have written articles about their “campus solutions” to be published in upcoming issues of Circuit Cellar.

In the summer of 2012, Anderson and the IT department he supervises direct-wired the SKC dorms and student housing units with fiber and outdoor CAT-5 cable to provide students better  Ethernet service.

The system is designed around the Raspberry Pi device. The Raspberry Pi queries the TMP102 temperature sensor. The Raspberry Pi is queried via the SNMP protocol.

The system is designed around the Raspberry Pi device. The Raspberry Pi queries the TMP102 temperature sensor. The Raspberry Pi is queried via the SNMP protocol.

“Prior to this, students accessed the Internet via a wireless network that provided very poor service.” Anderson says. “We wired 25 housing units, each with a small unmanaged Ethernet switch. These switches are daisy chained in several different paths back to a central switch.”

To maintain the best service, the IT department needed to monitor the system’s links from Intermapper, a simple network management protocol (SNMP) software. Also, the department had to monitor the temperature inside the utility boxes, because their exposure to the sun could cause the switches to get too hot.

This is the final installation of the Raspberry Pi. The clear acrylic case can be seen along with the TMP102 glued below the air hole drilled into the case. A ribbon cable was modified to connect the various pins of the TMP102 to the Raspberry Pi.

This is the final installation of the Raspberry Pi in the SKC system. The clear acrylic case can be seen along with the TMP102 glued below the air hole drilled into the case. A ribbon cable was modified to connect the various pins of the TMP102 to the Raspberry Pi.

“We decided to build our own monitoring system using a Raspberry Pi to gather temperature data and monitor the network,” Anderson says. “We installed a Debian Linux distro on the Raspberry Pi, added an I2C Texas Instruments TMP102 temperature sensor…, wrote a small Python program to get the temperature via I2C and convert it to Fahrenheit, installed SNMP server software on the Raspberry Pi, added a custom SNMP rule to display the temperature from the script, and finally wrote a custom SNMP MIB to access the temperature information as a string and integer.”

Anderson, 49, who has a BS in Computer Science, did all this even as he earned his MS in Computer Science, Networking, and Telecommunications through the Johns Hopkins University Engineering Professionals program.

Anderson’s article covers the SNMP server installation; I2C TMP102 temperature integration; Python temperature monitoring script; SNMP extension rule; and accessing the SNMP Extension via a custom MIB.

“It has worked flawlessly, and made it through the hot summer fine,” Anderson said recently. “We designed it with robustness in mind.”

Meanwhile, Chris Coulston, head of the Computer Science and Software Engineering department at Penn State Erie, and his team noticed that the shuttle bus

The mobile unit to be installed in the bus. bus

The mobile unit to be installed in the bus.

introduced as his school expanded had low ridership. Part of cause was the unpredictable timing of the bus, which has seven regular stops but also picks up students who flag it down.

“In order to address the issues of low ridership, a team of engineering students and faculty constructed an automated vehicle locator (AVL), an application to track the campus shuttle and to provide accurate estimates when the shuttle will arrive at each stop,” Coulston says.

The system’s three main hardware components are a user’s smartphone; a base station on campus; and a mobile tracker that stays on the traveling bus.

The base station consists of an XTend 900 MHz wireless modem connected to a Raspberry Pi, Coulston says. The Pi runs a web server to handle requests from the user’s smart phones. The mobile tracker consists of a GPS receiver, a Microchip Technology PIC 18F26K22 and an XTend 900 MHz wireless modem.

Coulston and his team completed a functional prototype by the time classes started in August. As a result, a student can call up a bus locater web page on his smartphone. The browser can load a map of the campus via the Google Maps JavaScript API, and JavaScript code overlays the bus and bus stops. You can see the bus locater page between 7:40 a.m. to 7 p.m. EST Monday through Friday.

“The system works remarkably well, providing reliable, accurate information about our campus bus,” Coulston says. “Best of all, it does this autonomously, with very little supervision on our part.  It has worked so well, we have received additional funding to add another base station to campus to cover an extended route coming next year.”

The base station for the mobile tracker is a sandwich of Raspberry Pi, interface board, and wireless modem.

The base station for the mobile tracker is a sandwich of Raspberry Pi, interface board, and wireless modem.

And while the system has helped Penn State Erie students make it to class on time, what does Coulston and his team’s article about it offer Circuit Cellar readers?

“This article should appeal to readers because it’s a web-enabled embedded application,” Coulston says. “We plan on providing users with enough information so that they can create their own embedded web applications.”

Look for the article in an upcoming issue. In the meantime, if you have a DIY wireless project you’d like to share with Circuit Cellar, please e-mail editor@circuitcellar.com.

 

 

 

 

Internet of Things (IoT) Resources

Here we list several handy resources for engineers interested in the Internet of Things (IoT).IoT-WordCloud

  • The IoT Events site is an easy-to-use resource for find IoT events and meet-ups around the world.
  • The Internet of Things Conference is a resource for information relating to “IoT applications, IoT solutions, IoT example and m2m opportunities in smart cities, connected cars, smart grids, consumer electronics and mobile healthcare.”
  • The IoT Counsel website includes useful info such as bios and contact info for engineers, innovators, and thinkers working on IoT-related projects.
  • Michael Chui, Markus Loffler, and Roger Roberts present a comprehensive article on IoT in the McKinsey Quarterly. While this isn’t a design-centric document, you’ll find it’s an interesting in-depth overview of the technology and its applications.
  • The Business Leaders Network (BLN) has a page on the IoT. The most recent IoT even took place in June, but the site still has some interesting info about speakers, partners, and more.

Let us know about other good resources. Send your links via email or Twitter @circuitcellar.

Embedded Wireless Made Simple

Last week at the 2013 Sensors Expo in Chicago, Anaren had interesting wireless embedded control systems on display. The message was straightforward: add an Anaren Integrated Radio (AIR) module to an embedded system and you’re ready to go wireless.

Bob Frankel demos embedded mobile control

Bob Frankel of Emmoco provided a embedded mobile control demonstration. By adding an AIR module to a light control system, he was able to use a tablet as a user interface.

The Anaren 2530 module in a light control system (Source: Anaren)

In a separate demonstration, Anaren electrical engineer Mihir Dani showed me how to achieve effective light control with an Anaren 2530 module and TI technology. The module is embedded within the light and compact remote enables him to manipulate variables such as light color and saturation.

Visit Anaren’s website for more information.

Q&A: Andrew Spitz (Co-Designer of the Arduino-Based Skube)

Andrew Spitz is a Copenhagen, Denmark-based sound designer, interaction designer, programmer, and blogger studying toward a Master’s interaction design at the Copenhagen Institute of Interaction Design (CIID). Among his various innovative projects is the Arduino-based Skube music player, which is an innovative design that enables users to find and share music.

The Arduino-based Skube

Spitz worked on the design with Andrew Nip, Ruben van der Vleuten, and Malthe Borch. Check out the video to see the Skube in action.

On his blog SoundPlusDesign.com, Spitz writes:

It is a fully working prototype through the combination of using ArduinoMax/MSP and an XBee wireless network. We access the Last.fm API to populate the Skube with tracks and scrobble, and using their algorithms to find similar music when in Discover mode.

The following is an abridged  version of an interview that appears in the December 2012 issue of audioXpress magazine, a sister publication of Circuit Cellar magazine..

SHANNON BECKER: Tell us a little about your background and where you live.

Andrew Spitz: I’m half French, half South African. I grew up in France, but my parents are South African so when I was 17, I moved to South Africa. Last year, I decided to go back to school, and I’m now based in Copenhagen, Denmark where I’m earning a master’s degree at the Copenhagen Institute of Interaction Design (CID).

SHANNON: How did you become interested in sound design? Tell us about some of your initial projects.

Andrew: From the age of 16, I was a skydiving cameraman and I was obsessed with filming. So when it was time to do my undergraduate work, I decided to study film. I went to film school thinking that I would be doing cinematography, but I’m color blind and it turned out to be a bigger problem than I had hoped. At the same time, we had a lecturer in sound design named Jahn Beukes who was incredibly inspiring, and I discovered a passion for sound that has stayed with me.

Shannon: What do your interaction design studies at CIID entail? What do you plan to do with the additional education?

Andrew: CIID is focused on a user-centered approach to design, which involves finding intuitive solutions for products, software, and services using mostly technology as our medium. What this means in reality is that we spend a lot of time playing, hacking, prototyping, and basically building interactive things and experiences of some sort.

I’ve really committed to the shift from sound design to interaction design and it’s now my main focus. That said, I feel like I look at design from the lens of a sound designer as this is my background and what has formed me. Many designers around me are very visual, and I feel like my background gives me not only a different approach to the work but also enables me to see opportunities using sound as the catalyst for interactive experiences. Lots of my recent projects have been set in the intersection among technology, sound, and people.

SHANNON: You have worked as a sound effects recordist and editor, location recordist and sound designer for commercials, feature films, and documentaries. Tell us about some of these experiences?

ANDREW: I love all aspects of sound for different reasons. Because I do a lot of things and don’t focus on one, I end up having more of a general set of skills than going deep with one—this fits my personality very well. By doing different jobs within sound, I was able to have lots of different experiences, which I loved! nLocation recording enabled me to see really interesting things—from blowing up armored vehicles with rocket-propelled grenades (RPGs) to interviewing famous artists and presidents. And, documentaries enabled me to travel to amazing places such as Rwanda, Liberia, Mexico, and Nigeria. As a sound effects recordist on Jock of the Bushvelt, a 3-D animation, I recorded animals such as lions, baboons, and leopards in the South African bush. With Bakgat 2, I spent my time recording and editing rugby sounds to create a sound effects library. This time in my life has been a huge highlight, but I couldn’t see myself doing this forever. I love technology and design, which is why I made the move...

SHANNON: Where did the idea for Skube originate?

Andrew: Skube came out of the Tangible User Interface (TUI) class at CIID where we were tasked to rethink audio in the home context. So understanding how and where people share music was the jumping-off point for creating Skube.

We realized that as we move more toward a digital and online music listening experience, current portable music players are not adapted for this environment. Sharing mSkube Videousic in communal spaces is neither convenient nor easy, especially when we all have such different taste in music.

The result of our exploration was Skube. It is a music player that enables you to discover and share music and facilitates the decision process of picking tracks when in a communal setting.

audioXpress is an Elektor International Media publication.

DIY Internet-Enabled Home Control System

Why shell out hundreds or thousands of dollars on various home control systems (HCS) when you have the skills and resources to build your own? You can design and implement sophisticated Internet-enabled systems with free tools and some careful planning.

John Breitenbach did just that. He used a microcontroller, free software, and a cloud-based data platform to construct a remote monitoring system for his home’s water heater. The innovative design can email or text status messages and emergency alerts to a smartphone. You can build a similar system to monitor any number of appliances, rooms, or buildings.

An abridged version of Breitenbach’s article, “Internet-Enabled Home Control” (Circuit Cellar 264, July 2012), appears below. (A link to the entire article and an access password are noted at the end of this post.) Breitenbach writes:

Moving from the Northeast to North Carolina, my wife and I were surprised to find that most homes don’t have basements. In the north, the frost line is 36˝–48 ˝ below the surface. To prevent frost heave, foundations must be dug at least that deep. So, digging down an extra few feet to create a basement makes sense. Because the frost line is only 15 ˝ in the Raleigh area, builders rarely excavate the additional 8’ to create basements.

The lack of basements means builders must find unique locations for a home’s mechanical systems including the furnace, AC unit, and water heater. I was shocked to find that my home’s water heater is located in the attic, right above one of the bedrooms (see Photo 1).

Photo 1: My home’s water heater is located in our attic. (Photo courtesy of Michael Thomas)

During my high school summers I worked for my uncle’s plumbing business (“Breitenbach Plumbing—We’re the Best, Don’t Call the Rest”) and saw firsthand the damage water can do to a home. Water heaters can cause some dramatic end-of-life plumbing failures, dumping 40 or more gallons of water at once followed by the steady flow of the supply line.

Having cleaned up the mess of a failed water heater in my own basement up north, I haven’t had a good night’s sleep since I discovered the water heater in my North Carolina attic. For peace of mind, especially when traveling, I instrumented my attic so I could be notified immediately if water started to leak. My goal was to use a microcontroller so I could receive push notifications via e-mails or text messages. In addition to emergency messages, status messages sent on a regular basis reassure me the system is running. I also wanted to use a web browser to check the current status at any time.

MCU & SENSOR

The attic monitor is based on Renesas Electronics’s YRDKRX62N demonstration kit, which features the RX62N 32-bit microcontroller (see Photo 2). Renesas has given away thousands of these boards to promote the RX, and the boards are also widely available through distributors. The YRDK board has a rich feature set including a graphics display, push buttons, and an SD-card slot, plus Ethernet, USB, and serial ports. An Analog Devices ADT7420 digital I2C temperature sensor also enables you to keep an eye on the attic temperature. I plan to use this for a future addition to the project that compares this temperature to the outside air temperature to control an attic fan.

Photo 2: The completed board, which is based on a Renesas Electronics YRDKRX62N demonstration kit. (Photo courtesy of Michael Thomas)

SENSING WATER

Commercial water-detection sensors are typically made from two exposed conductive surfaces in close proximity to each other on a nonconductive surface. Think of a single-sided PCB with no solder mask and tinned traces (see Photo 3).

Photo 3: A leak sensor (Photo courtesy of Michael Thomas)

These sensors rely on the water conductivity to close the circuit between the two conductors. I chose a sensor based on this type of design for its low cost. But, once I received the sensors, I realized I could have saved myself a few bucks by making my own sensor from a couple of wires or a piece of proto-board.

When standing water on the sensor shorts the two contacts, the resistance across the sensor drops to between 400 kΩ and 600 kΩ. The sensor is used as the bottom resistor in a voltage divider with a 1-MΩ resistor up top. The output of the divider is routed to the 12-bit analog inputs on the RX62N microcontroller. Figure 1 shows the sensor interface circuit. When the voltage read by the analog-to-digital converter (ADC) drops below 2 V, it’s time to start bailing. Two sensors are connected: one in the catch pan under the water heater, and a second one just outside the catch pan to detect failures in the small expansion tank.

Figure 1: The sensor interface to the YRDK RX62N board

COMMUNICATIONS CHOICES

One of my project goals was to push notifications to my cell phone because Murphy’s Law says water heaters are likely to fail while you’re away for the weekend. Because I wanted to keep the project costs low, I used my home’s broadband connection as the gateway for the attic monitor. The Renesas RX62N microcontroller includes a 100-Mbps Ethernet controller, so I simply plugged in the cable to connect the board to my home network. The open-source µIP stack supplied by Renesas with the YRDK provides the protocol engine needed to talk to the Internet.

There were a couple of complications with using my home network as the attic monitor’s gateway to the world. It is behind a firewall built into my router and, for security reasons, I don’t want to open up ports to the outside world.

My Internet service provider (ISP) occasionally changes the Internet protocol (IP) address associated with my cable modem. So I would never know what address to point my web browser. I needed a solution that would address both of these problems. Enter Exosite, a company that provides solutions for cloud-based, machine-to-machine (M2M) communications.

TALKING TO THE CLOUD

Exosite provides a number of software components and services that enable M2M communications via the cloud. This is a different philosophy from supervisory control and data acquisition (SCADA) systems I’ve used in the past. The control systems I’ve worked on over the years typically involve a local host polling the hundreds or thousands of connected sensors and actuators that make up a commercial SCADA system. These systems are generally designed to be monitored locally at a single location. In the case of the attic monitor, my goal was to access a limited number of data points from anywhere, and have the system notify me rather than having to continuously poll. Ideally, I’d only hear from the device when there was a problem.

Exosite is the perfect solution: the company publishes a set of simple application programming interfaces (APIs) using standard web protocols that enable smart devices to push data to their servers in the cloud in real time. Once the data is in the cloud, events, alerts, and scripts can be created to do different things with the data—in my case, to send me an e-mail and SMS text alert if there is anything wrong with my water heater. Connected devices can share data with each other or pull data from public data sources, such as public weather stations. Exosite has an industrial-strength platform for large-scale commercial applications. It provides free access to it for the open-source community. I can create a free account that enables me to connect one or two devices to the Exosite platform.

Embedded devices using Exosite are responsible for pushing data to the server and pulling data from it. Devices use simple HTTP requests to accomplish this. This works great in my home setup because the attic monitor can work through my firewall, even when my Internet provider occasionally changes the IP address of my cable modem. Figure 2 shows the network diagram.

Figure 2: The cloud-based network

VIRTUAL USER INTERFACE

Web-based dashboards hosted on Exosite’s servers can be built and configured to show real-time and historical data from connected devices. Controls, such as switches, can be added to the dashboards to push data back down to the device, enabling remote control of embedded devices. Because the user interface is “in the cloud,” there is no need to store all the user interface (UI) widgets and data in the embedded device, which greatly reduces the storage requirements. Photo 4 shows the dashboard for the attic monitor.

Photo 4: Exosite dashboard for the attic monitor

Events and alerts can be added to the dashboard. These are logical evaluations Exosite’s server performs on the incoming data. Events can be triggered based on simple comparisons (e.g., a data value is too high or too low) or complex combinations of a comparison plus a duration (e.g., a data value remains too high for a period of time). Setting up a leak event for one of the sensors is shown in Photo 5.

Photo 5: Creating an event in Exosite

In this case, the event is triggered when the reported ADC voltage is less than 2 V. An event can also be triggered if Exosite doesn’t receive an update from the device for a set period of time. This last feature can be used as a watchdog to ensure the device is still working.

When an event is triggered, an alert can optionally be sent via e-mail. This is the final link that enables an embedded device in my attic to contact me anywhere, anytime, to alert me to a problem. Though I have a smartphone that enables me to access my e-mail account, I can also route the alarm message to my wife’s simpler phone through her cellular provider’s e-mail-to-text-message gateway. Most cellular providers offer this service, which works by sending an e-mail to a special address containing the cell phone number. On the Verizon network, the e-mail address is <yourcellularnumber>@vtext.com. Other providers have similar gateways.

The attic monitor periodically sends heartbeat messages to Exosite to let me know it’s still working. It also sends the status of the water sensors and the current temperature in the attic. I can log in to Exosite at any time to see my attic’s real-time status. I have also configured events and alarms that will notify me if a leak is detected or if the temperature gets too hot…

The complete article includes details such about the Internet engine, reading the cloud, tips for updating the design, and more.  You can read the entire article by typing netenabledcontrol to open the password-protected PDF.

Build a Microcontroller-Based Mail Client

Does the sheer amount of junk mail that fills your Inbox make you hate everything about e-mail? If so, it’s time to have a little fun with electronic mail by building a compact microcontroller-based mail client system. Alexander Mann designed a system that uses an Atmel ATmega32 and a Microchip Technology ENC28J60 Ethernet controller to check continuously for e-mail. When a message arrives, he can immediately read it on the system’s LCD and respond with a standard keyboard.

Mann writes:

My MiniEmail system is a compact microcontroller-based mail client (see Photo 1). The silent, easy-to-use system doesn’t require a lot of power and it is immune to mail worms. Another advantage is the system’s short start-up time. If you want to write a quick e-mail but your PC is off, you can simply switch on the miniature e-mail client and start writing without having to wait for your PC to boot up and load the necessary applications. All you need is an Ethernet connection and the MiniEmail system.

Photo 1: The complete MiniEmail system includes an LCD, a keyboard, and several connections. (A. Mann, Circuit Cellar 204)

HARDWARE

The hardware for the MiniEmail system is inexpensive. It cost me about $50. The LCD is the most expensive part. To keep things simple, I left the system’s power supply, 5- to 3.3-V conversion crystals, and latch out of Figure 1.

Figure 1: This is a block diagram of MiniEmail’s hardware. The arrows indicate the directions of data flow between the devices. The rounded boxes indicate parts that do not sit on the circuit board.

The main components are an Atmel ATmega32 microcontroller and a Microchip Technology ENC28J60 Ethernet controller. Because a mail client is a piece of complex software, you need a fast microcontroller that has a considerable amount of program space. The MiniEmail system uses almost all of the ATmega32’s features, including the SPI, internal EEPROM and SRAM, counters, USART interface, sleep modes, all 32 I/O lines, and most of the 32 KB of program memory. The ENC28J60 is a stand-alone Ethernet controller that provides basic functionality for transmitting frames over an Ethernet connection. It has 8 KB of built-in SRAM, which can be divided into transmit and receive buffers as desired, and it provides several interrupt sources (e.g., when new packets have arrived). The ATmega32 also has 128 KB of external SRAM connected as well as an LCD, which is a standard module with a resolution of 128 × 64 pixels.

Take a look at the ATmega32’s pin connections in Figure 2. Ports A and C are used as 8-bit-wide general I/O ports, one of which is latched using an NXP Semiconductors 74HC573.

Figure 2: Here’s the complete schematic for the MiniEmail. The LF1S022 is the RJ-45 connector for the Ethernet connection.

The two ports provide data connections to the LCD and SRAM (U3). For the SRAM, you need three additional wires: write (*RAM_WR), read strobe (*RAM_RD), and the seventeenth bit of the address (ADDR16). The LCD connector (CON1) uses five additional wires (for the signals CS1, CS2, DI, EN, and RW). CS1 and CS2 are taken from the general I/O port A (DATA6 and DATA7) and determine which of the two halves of the LCD is selected (i.e., the two controllers on the LCD module you are talking to). RW (where you can use ADDR16 again) sets the direction of the LCD access (read or write). DI describes the type of instruction sent to the LCD. EN is the enable signal for read and write cycles. For the keyboard, you need only two pins: KEY_DATA and KEY_CLOCK. The clock signal must be connected to an external interrupt pin, INT1. One additional wire is needed to switch the latch (LE).

You are left with eight I/O pins on the ATmega32’s ports B and D. RXD and TXD are connected to a MAX232, an RS-232 level converter that also provides the negative supply voltage needed for the LCD (LCD_VOUT in Figure 2). The ATmega32’s USART functionality is used as a debugging interface. It isn’t needed for normal operation.

SOFTWARE

The firmware for this project is posted on the Circuit Cellar FTP site. I wrote the firmware in C language with a few small parts of inline assembler. I used the open-source software suite WinAVR, which includes the GNU GCC compiler with special libraries for AVR devices and avrdude, a tool for the in-system programming of AVR microcontrollers…

USER INTERFACE

The user interface consists of three control elements: menus, edit fields, and an elaborate text editor. A special screen (the Mail Menu) enables you to quickly browse through your mailbox. After power-up, the system displays a greeting message. After a short while, the Main menu appears (see Photo 2).

Photo 2: This is a screenshot of MiniEmail’s main menu. In the upper-right corner, a clock shows the current time, which is retrieved from the Internet. An arrow to the left of the menu items indicates the selected item. (A. Mann, Circuit Cellar 204)

The Compose Mail, Check Mailbox, and Configuration submenus form a hierarchical menu structure. When the other items listed beneath the respective menu titles in the diagram are activated (e.g., start the text editor), they enable you to input data, such as a username and password, or retrieve mail from the mail server. “Standby” is the only action that is accessible directly from the main menu. All other actions are grouped by function in the submenus.

WRITING MAIL

With respect to the firmware, sending mail is much easier than reading it, so let’s first focus on the Compose Mail menu. The first item in the menu starts the text editor so you can enter the body of your letter. You then enter the recipient’s mailing address and the subject of your e-mail, just like you would do when sending e-mail from your PC. Additional fields, such as CC or BCC are not included, but since this requires only one more line in the header of the mail, it is not difficult. Your e-mail also needs a reply address, so the recipient knows who sent the mail. The reply address is normally the same for all of the messages you write. The text you enter in this edit field is stored in the ATmega32’s EEPROM, so you don’t have to type it every time you write a letter. After you select the last menu item, “Send” initiates the dispatch of the mail and displays a message that indicates whether or not it was successful.

CHECKING FOR MAIL

What makes this part more sophisticated is the ability to handle not only one e-mail at a time, but also fetch mail from the server. The system can determine which messages are new and which messages have been read. It can also extract data such as the sender, subject, or sent date from the header of the mail and then display the information.

The amount of mail the firmware can handle is limited by the size of the external SRAM. The maximum number of e-mails is currently 1,024. (If you’ve got more mail, you will be so busy answering it that you won’t have time to build your own MiniEmail client—or you should delete some old mail). Note that 1,024 is the number of unique identifiers that the system can remember. The server assigns a unique identifier to each piece of mail. The system uses the identifiers to keep track of which letters are new on the server, which have already been read, and which have been marked for deletion.

All of the header data for all of the 1,024 messages cannot be held in SRAM at once; only the most recent (about 50) mail headers are held. When you want to browse through older e-mails, the firmware automatically reconnects to the server and fetches the headers of the next 50 e-mails.

When you select Check Mailbox in the main menu, you get to a submenu where you can retrieve and read mail. Before you can collect your mail, you must enter your username and password, which can be stored in EEPROM for your convenience. The firmware then retrieves the headers and displays the Mail Menu, where you can browse through your e-mail. Apart from the size and the date, the first 42 characters of the subject and the mail sender are shown. In the first row, additional icons indicate (from left to right) whether a message is new, has been marked for deletion, or has been read. You can view the content of the selected message by pressing Return. When the mail is fetched from the server, it is prepared for viewing. The header and HTML tags, as well as long runs of the same character, are stripped from the mail and base64 decoding (used to encode 8-bit characters) is performed, so the content of the message is as readable as plain text. Binary attachments (e.g., images) can’t be handled. Following this, the mail is viewed in the text editor (with editing disabled).

A similar action is performed when you press “r” in the Mail Menu. In that case, you can edit the text so you can add your reply. Leaving the text editor will bring you back to the Send Mail menu, where the reply address and subject will be filled in so your mail will be clear for take-off. To delete a message, simply press D to mark it for deletion….

OUTLOOK

I hadn’t imagined how many details would need to be considered when I started this project more than a year ago. It has been a very interesting and challenging project. It has also been a lot of fun.

The MiniEmail system provides all of the basics for communicating via email, but such a project is never really finished. There are still dozens of items on my to-do list. Fortunately, the ATmega32 can be replaced with a new member of the AVR family, the Atmel ATmega644, which is pin-compatible to the ATmega32 and has twice the flash memory (and internal SRAM). That will provide enough space for many of my new ideas. I want to get rid of the static IP address, add CC and BCC fields, use a bigger display or a smaller (variable-width) font, improve the filtering and display of mail content and attachments, and add an address book (it would be best in combination with an additional external EEPROM with an SPI, such as the AT25256).

This project proves, rather impressively, that the ATmega32 and the ENC28J60 are a powerful combination. They can be used for many useful Internet applications. My e-mail client system is surely one of the most exciting. I can think of many other interesting possibilities. At the moment, my MiniEmail assembly serves as an online thermometer so I can check my room’s temperature from anywhere in the world…

Mann’s entire article appears in Circuit Cellar 204, 2007. Type “miniemailopen”  to access the password-protected article.

CC264: Plan, Construct, and Secure

Circuit Cellar July 2012 features innovative ideas for embedded design projects, handy design tips with real-world examples, and essential information on embedded design planning and security. A particularly interesting topic covered in this issue is the microcontroller-based home control systems (HCS). Interest in building and HCSes never wanes. In fact, articles about such projects have appeared in this magazine since 1988.

Circuit Cellar 264 (July 2012) is now available.

Turn to page 18 for the first HCS-related article. John Breitenbach details how he built an Internet-enabled, cloud-based attic monitoring system. Turn to page 36 for another HCS article. Tommy Tyler explains how to build a handy MCU-based digital thermometer. You can construct a similar system for your home, or you can apply what you learn to a variety of other temperature-sensing applications. Are you currently working on a home automation design or industrial control system? Check out Richard Wotiz’s “EtherCAT Orchestra” (p. 52). He describes an innovative industrial control network built around seven embedded controllers.

John Breitenbach's DIY leak-monitoring system

The wiring diagram for Tommy Tyler's MCU-based digital thermometer

The rest of the articles in the issue cover essential electrical engineering concepts and design techniques. Engineers of every skill level will find the information immediately applicable to the projects on their workbenches.

Tom Struzik’s article on USB is a good introduction to the technology, and it details how to effectively customize an I/O and data transfer solution (p. 28). On page 44, Patrick Schaumont introduces the topic of electronic signatures and then details how to use them to sign firmware updates. George Novacek provides a project development road map for professionals and novices alike (p. 58). Flip to page 62 for George Martin’s insight on switch debouncing and interfacing to a simple device. On page 68, Jeff Bachiochi tackles the concepts of wireless data delivery and time stamping.

Jeff Bachiochi's hand-wired modules

I encourage you to read the interview with Boston University professor Ayse Kivilcim Coskun on page 26. Her research on 3-D stacked systems has gained notoriety in academia, and it could change the way electrical engineers and chip manufacturers think about energy efficiency for years to come. If you’re an engineer fascinated by “green computing,” you’ll find Coskun’s work particularly intriguing.

Special note: The Circuit Cellar staff dedicates this issue to Richard Alan Wotiz who passed away on May 30, 2012. We appreciate having had the opportunity to publish articles about his inventive projects and innovative engineering ideas and solutions. We extend our condolences to his family and friends.

Circuit Cellar Issue 264 (July 2012) is now available on newsstands. Go to Circuit Cellar Digital and then select “Free Preview” to take a look at the first several pages.

Wireless Data Control for Remote Sensor Monitoring

Circuit Cellar has published dozens of interesting articles about handy wireless applications over the years. And now we have another innovative project to report about. Circuit Cellar author Robert Bowen contacted us recently with a link to information about his iFarm-II controller data acquisition system.

The iFarm-II controller data acquisition system (Source: R. Bowen)

The design features two main components. Bowen’s “iFarm-Remote” and the “iFarm-Base controller” work together to as an accurate remote wireless data acquisition system. The former has six digital inputs (for monitoring relay or switch contacts) and six digital outputs (for energizing a relay’s coil). The latter is a stand-alone wireless and internet ready controller. Its LCD screen displays sensor readings from the iFarm-Remote controller. When you connect the base to the Internet, you can monitor data reading via a browser. In addition, you can have the base email you notifications pertaining to the sensor input channels.

You can connect the system to the Internet for remote monitoring. The Network Settings Page enables you to configure the iFarm-Base controller for your network. (Source: R. Bowen)

Bowen writes:

The iFarm-II Controller is a wireless data acquisition system used to remotely monitor temperature and humidity conditions in a remote location. The iFarm consists of two controllers, the iFarm-Remote and iFarm-Base controller. The iFarm-Remote is located in remote location with various sensors (supports sensors that output +/-10VDC ) connected. The iFarm-Remote also provides the user with 6-digital inputs and 6-digital outputs. The digital inputs may be used to detect switch closures while the digital outputs may be used to energize a relay coil. The iFarm-Base supports either a 2.4GHz or 900Mhz RF Module.

The iFarm-Base controller is responsible for sending commands to the iFarm-Remote controller to acquire the sensor and digital input status readings. These readings may be viewed locally on the iFarm-Base controllers LCD display or remotely via an Internet connection using your favorite web-browser. Alarm conditions can be set on the iFarm-Base controller. An active upper or lower limit condition will notify the user either through an e-mail or a text message sent directly to the user. Alternatively, the user may view and control the iFarm-Remote controller via web-browser. The iFarm-Base controllers web-server is designed to support viewing pages from a PC, Laptop, iPhone, iTouch, Blackberry or any mobile device/telephone which has a WiFi Internet connection.—Robert Bowen, http://wireless.xtreemhost.com/

iFarm-Host/Remote PCB Prototype (Source: R. Bowen)

Robert Bowen is a senior field service engineer for MTS Systems Corp., where he designs automated calibration equipment and develops testing methods for customers involved in the material and simulation testing fields. Circuit Cellar has published three of his articles since 2001: