COM Express Card Features Core i7-7600U Processor

ARBOR Technology has expanded its line of modules with the introduction of a 7th generation Intel Core processor platform (formerly codenamed ”Kaby Lake-U”), the EmETXe-i90U0, a Type 6 compact module. The single-chip processors feature a low power consumption of just 15W TDP. Built on Intel’s new 14nm process technology, the 7th generation Intel Core processor is designed to provide excellent graphics and performance.


The new Intel HD Graphics 620 in 7th generation Intel Core processors provide Ultra HD/4K display and additional codec support. Enhanced security and manageability features help to drive down total cost and risk, protecting data and preventing malware threats. The boards allow the connection of up to three independent display interfaces via HDMI 1.4, LVDS and embedded DisplayPort (eDP). When using DisplayPort 1.2, the individual displays can be daisy chained to take advantage of simple wiring. Native USB 3.0 support provides fast data transmission with low power consumption. The two SODIMM sockets can be equipped with up to 32 GB SO-DIMM DDR4 memory.

A total of twelve USB ports are provided, four of them support USB 3.0 SuperSpeed. Eight PCI Express 2.0 lanes, two SATA ports with 6 Gb/s SATA RAID and Gigabit Ethernet support via the Intel i219-LM GbE LAN controller (with AMT 11 support) which enables fast and flexible system extensions, completes the highly flexible design. Extra features included are TPM, up to 32 GB eMMC 5.0, two UART (RX/TX) ports, 8-bit Digital I/O and 5 V – 20 V wide range power input. The EmETXe-i90U0 board can work in temperatures from -40°C to 85°C.

ARBOR Technology |

Promoter Group Announces USB 3.2 Spec Update

The USB 3.0 Promoter Group has announced the pending release of the USB 3.2 specification, an incremental update that defines multi-lane operation for new USB 3.2 hosts and devices, effectively doubling the bandwidth to extend existing USB Type-C cable performance. During the upcoming USB Developer Days 2017 event, the promoters will provide detailed technical training covering USB 3.2, fast charging advancements in USB Power Delivery, and other topics.


While USB hosts and devices were originally designed as single-lane solutions, USB Type-C cables were designed to support multi-lane operation to ensure a path for scalable performance. New USB 3.2 hosts and devices can now be designed as multi-lane solutions, allowing for up to two lanes of 5 Gbps or two lanes of 10 Gbps operation. This enables platform developers to continue advancing USB products by effectively doubling the performance across existing cables. For example, a USB 3.2 host connected to a USB 3.2 storage device will now be capable of realizing over 2 GB/sec data transfer performance over an existing USB Type-C cable that is certified for SuperSpeed USB 10 Gbps.

Key characteristics of the USB 3.2 solution include:

– Two-lane operation using existing USB Type-C cables

– Continued use of existing SuperSpeed USB physical layer data rates and encoding techniques

– Minor update to hub specification to address increased performance and assure seamless transitions between single and two-lane operation

For users to obtain the full benefit of this performance increase, a new USB 3.2 host must be used with a new USB 3.2 device and the appropriate certified USB Type-C cable. This update is part of the USB performance roadmap and is specifically targeted to developers at this time. Branding and marketing guidelines will be established after the final specification is published. The USB 3.2 specification is now in a final draft review phase with a planned formal release in time for the USB Developer Days North America event in September 2017.

The USB 3.0 Promoter Group, comprised of Apple, Hewlett-Packard, Intel Corporation, Microsoft Corporation, Renesas Electronics, ST Microelectronics, and Texas Instruments, continues to develop the USB 3.x family of specifications to meet the market needs for increased functionality and performance in SuperSpeed USB solutions. Additionally, the USB 3.0 Promoter Group develops specification addendums (USB Power Delivery, USB Type-C, and others) to extend or adapt its specifications to support more platform types or use cases where adopting USB 3.x technology will be beneficial in delivering a more ubiquitous, richer user experience.

USB 3.0 Promoter Group |

Qseven Module Sports Apollo Lake Processor

Axiomtek has released the Q7M311, a new Qseven module with Intel Apollo Lake processor, dual display interfaces, 32 Gbytes of eMMC memory, and wide operating temperature supported. The Q7M311 has adopted the 14nm Intel Pentium N4200 and Celeron N3350 quad-core/dual-core processors (codename: Apollo Lake). The extremely small embedded module supports 4 Gbytes (or optionally up to 8 Gbytes) of DDR3L memory onboard. With a seismic design and for industrial-grade temperatures, both the CPU and the DDR3L RAM are soldered to deliver reliable and excellent computing performance. With rich features embedded in all the components built in a small form factor, the industrial-grade computer-on-module is aimed for industrial IoT applications, including industrial control, medical imaging, digital signage, gaming machines, military, and networking.

Axiomtek q7m311

Advanced connectivity includes four PCIe x1 ports, two USB 2.0 ports, four USB 3.0 ports, one Gigabit Ethernet (built-in Intel Ethernet controller i211AT), two SATA-600 interfaces, and eight inputs/outputs of general purpose for peripheral devices and data transfer. Also, the LPC bus is available for easy connection of legacy I/O interfaces. This powerful Qseven embedded board runs well with Windows 10 and Linux operating system and supports Axiomtek AXView 2.0 intelligent remote management software.

Axiomtek |

New Intel Core X-Series Processors and Thunderbolt 3

During the annual Computex 2017 event, Intel unveiled its new Intel Core X-series processor family with 4 to 18 cores, which now includes the new Intel Core i9 Extreme Edition processor, the first consumer desktop CPU with 18 cores and 36 threads. Intel announced plans to integrate Thunderbolt 3 into all future Intel CPUs and to release the Thunderbolt protocol specification to the industry.Intel i9 Web

With Intel focusing its attention on competing with ARM and now saying that they want to focus on something else than PC’s, the world of computing has been stalling and no significant gains on processor performance have been announced. The result was disastrous for Windows PC makers, which among other things also failed to evolve to newer standards on connectivity, like Thunderbolt 3 and USB-C. Apple was also affected, with almost three years without a single upgrade on its popular Mac Mini, iMac desktop and Mac Pro computers. The news from Intel that a new generation of processors is finally coming will bring some hope to the industry, including to many audio professionals that use computers and workstations, and need all the memory, storage and power they can get.

Intel introduced the new Intel Core X-series processor family, which they say is the most scalable, accessible and powerful desktop platform they have ever created. Good! The new Intel Core X-series processor family spans from 4 to 18 cores with price points to match, including Intel’s first teraflop desktop CPUs. The family also introduces the new Intel Core i9 processors, representing the highest performance for extreme performance and extreme mega-tasking. Good! The new Intel Core i9 Extreme Edition processor is the first consumer desktop CPU with 18 cores and 36 threads. An industry-first, its performance capabilities will finally enable data-intensive tasks like VR content creation and heavy data visualization.

Another announcement was the Intel Compute Card, a modular computing platform with all the elements of a full computer in a size just larger than a credit card. According to Intel, the Compute Card will start shipping in August 2017 and will allow devices outside of PCs to be connected, integrating compute into everything from smart screens to interactive appliances to VR headsets. Intel Partners who have products showing at Computex include Contec, ECS, Foxconn, LG Display, MoBits Electronics, NexDock, Sharp, Seneca, SMART Technologies, Suzhou Lehui Display and TabletKiosk. Other partners currently working on solutions include Dell, HP and Lenovo.

The Intel Compute Card will initially be available in four versions, with 7th Gen Intel Core i5 vPro or i3 processors, as well as Pentium N4200 and Celeron N3450 processors. All will feature 4-GB DDR3 memory, 128 GB of SSD or 64GB of eMMC storage, and all support Wi-Fi.11ac and Bluetooth 4.2. In addition, HTC announced a Compute Card-based VR device also using Intel WiGig technology.

Thunderbolt 3

On what is possibly the most interesting front for computing, outside of pure processing power, Intel announced plans to integrate Thunderbolt 3 into all future Intel CPUs and to release the Thunderbolt protocol specification to the industry.

Intel has a long history of leading the industry in I/O innovation. In the late 1990s, Intel developed USB, which made it easier and faster to connect external devices to computers, consolidating a multitude of existing connectors. Intel continued this effort with Thunderbolt 3, one of the most significant cable I/O updates since the advent of USB.

Intel’s vision for Thunderbolt was not just to make a faster computer port, but a simpler and more versatile port available to everyone, allowing for single-cable docks with 4K video support, unlimited and faster-than-ever storage, and external graphics accelerator engines. A world where one USB-C connector does it all – today, and for many years to come.

With this vision in mind, Intel now announced that it plans to drive large-scale mainstream adoption of Thunderbolt by integrating Thunderbolt 3 into future Intel CPUs and by releasing the Thunderbolt protocol specification to the industry next year, under a nonexclusive, royalty-free license. Releasing the Thunderbolt protocol specification in this manner is expected to greatly increase Thunderbolt adoption by encouraging third-party chip makers to build Thunderbolt-compatible chips.

Microsoft has also enhanced Thunderbolt 3 device plug-and-play support in the now available Windows 10 Creators Update. Intel and Microsoft plan to continue to work together to enhance the experience in future versions of the Windows operating system.

In addition to support from Apple and Microsoft, Thunderbolt 3 has already gained significant adoption with more than 120 PC designs on systems with 7th Generation Intel Core processors, the latest MacBook Pros and dozens of peripherals – expected to ramp to nearly 150 by the end of 2017.

Source: Intel


New Cyclone 10 FPGA Family

Intel recently launched the Intel Cyclone 10 family of FPGAs. Well suited for IoT applications, the new FPGAs are designed to deliver fast and power-efficient processing. They can collect and send data, and make real-time decisions based on the input from IoT devices. You can program the FPGAs  to deliver the specific level of computing and functions required by different IoT applications.Cyclone INTEL

Cyclone 10 GX supports 10G transceivers and hard floating point digital signal processing (DSP). Furthermore, it offers 2× the performance of the previous Cyclone generation. The architectural innovation in the implementation of IEEE 754 single-precision hardened floating-point DSP blocks can enable processing rates up to 134 giga floating-point operations per second (GFLOPs) for applications such as motion or motor control systems.

The Intel Cyclone 10 LP is the perfect solution for applications where cost and power are key factors in the design decision. These systems typically use FPGA densities that are sub 75K LE and chip-to-chip bridging functions between electronic components or I/O expansion for micro-processors. Cyclone 10 LP can also be used for automotive video processing used in rear-view cameras and in sensor fusion, where data gathered while the car is on the road is combined from multiple sensors in the car to provide a more complete view of what is happening.

The Cyclone 10 FPGA family will be available in the second half of 2017, along with evaluation kits, boards, and the latest version of Intel’s Quartus FPGA programming software.

Source: Intel

New Embedded Solution for Debugging FPGAs

Exostiv Labs recently announced that its EXOSTIV solution for Intel FPGAs will be available in December 2016. Providing up to 200,000 times more visibility on an FPGA than other solutions, EXOSTIV enables the debugging and verification of FPGA board prototypes at speed of operation. It provides extended visibility on internal nodes over long periods of time with minimal impact on the FPGA resources. Thus, you can discover issues related to complex interactions between numerous IPs when simulation is impracticable.

EXOSTIV for Intel FPGAs will be released in December 2016 with support for Arria 10 devices first. Pricing starts at $5,100.

Source: Exostiv Labs 

New Embedded Computing Solutions Designed with the Intel Atom x5-E8000 Processor

ADLINK Technology recently released four embedded computing solutions designed with the Intel Atom x5-E8000 processor. The newly-updated COM Express cExpress-BW, SMARC LEC-BW, Qseven Q7-BW modules, and the AmITX-BW-I thin Mini-ITX embedded board offer improved cost-performance ratios.

The latest Intel Atom SoC features 64-bit quad-core processing that is well suited for multitasking applications. The processor offers a configurable TDP (cTDP) of 5 W at 1.04 GHz, enabled by its 14-nm core transistors. With the new processor, ADLINK embedded boards and modules support up to 8 GB of dual-channel DDR3L 1600-MHz memory and up to three independent displays with Intel HD graphics.Adlink

The new COM modules and Mini-ITX board run graphics processing on a base frequency of 320 MHz with eDP/DP/HDMI interfaces for up to three display ports, which is an increase in the number of ports over previous COM Express modules. In addition to 4K resolution, Intel Gen9 Iris Graphics offer excellent 2D/3D hardware acceleration with decoding support for HEVC H.265, MPEG2, MVC, VC-1, WMV9, JPEG, and VP8, and encoding support for HEVC H.265 MVC, and JPEG. Graphics support also includes Open GL for graphics rendering, Intel Quick Sync Video for fast conversion to mobile format, and Intel clear Video HD Technology for better quality video.

ADLINK embedded boards and modules are equipped with ADLINK’s Smart Embedded Management Agent (SEMA), which provides detailed device-level system data including but not limited to temperature, voltage, and power consumption. With access to system activities, you can identify inefficiencies and malfunctions in real-time, thus preventing failures and minimizing downtime. ADLINK’s SEMA-equipped devices connect seamlessly to the SEMA Cloud for remote monitoring. Collected data, including sensor measurements and management commands, are accessible from anywhere at any time via an encrypted connection.

Source: ADLINK Technology

Innovative Tech at Embedded World 2016

Attendance at the recent Embedded World 2016 conference in Nuremberg, Germany, increased 17% (30,063 trade visitors) over 2015. Wisse Hettinga was in attendance and took notes on some of the more interesting technologies on display. He writes:

Controllino: Open-Source PLC

Say “ino” and most engineers and electronics enthusiasts will think, “Arduino.” That also goes for “Controllino,” which is a programmable logic controller (PLC) based on Arduino hardware and software. Marco Riedesser started developing this new product after he repaired a coffee machine with parts he designed. His Controllino is intended for the new generation of automation experts who grew up with the Arduino platform. The Controllino is 100% compatible with the Arduino platform and makes use of the SDK. And, perhaps most importantly, it is an open development system. For more information, visit


NXP Semiconductors knows that innovative new technologies don’t appearing out of the blue, which is why it created the Hexiwear wearable development platform. Along with MikroElektronika, NXP is promoting this new piece of hardware to the design community via a Kickstarter campaign. hexiwear

Due to its compact design, you can use the Hexiwear as a watch or, if you need more functionality, you can click it onto the developer’s main board. The open-source Hexiwear’s features and specs include:

  • NXP Kinetis K64 MCU (ARM Cortex-M4, 120 MHz, 1M Flash, 256K SRAM)
  • BLE NXP Kinetis KW40Z multimode radio SoC (ARM Cortex-M0+, Bluetooth Low Energy & 802.15.4 Wireless MCU)
  • NXP FXOS8700CQ 3-D accelerometer and 3-D magnetometer
  • NXP FXAS21002 three-axis digital gyroscope
  • NXP MPL3115A2R1 absolute digital pressure sensor
  • NXP MC34671 600-mA, single-cell li-ion/li-polymer battery charger
  • TAOS TSL2561 light-to-digital converter
  • MEAS HTU21D digital humidity and temperature sensor
  • Maxim MAX3010x heart-rate sensor
  • Haptic feedback engine
  • 190-mAh 2C li-po battery
  • Capacitive touch interface
  • 1.1″ full color OLED display
  • 8 MB of additional flash memory

Intel Edison, What Did You Make?

When the Edison board was launched in 2014, it drew quite some attention from the community of makers. The board was heavy specified, wearable, and IoT ready. It allowed quick prototyping and the close connections with the Arduino world promised a smooth introduction into the world of designers and entrepreneurs with great ideas for the future. The module also came with seriously high price tag.edison

In the first months after the launch, there was a lot of interest. Some projects made it to the headlines, but things eventually quieted down around the platform. Was it the price, or was it the fact that the world of the x86 is different from the world of AVR or ARM? Or perhaps you need Linux knowledge to dig deeper into the system?

Embedded World 2016 in Nuremberg was a good opportunity to learn about the board’s status. According to Intel’s Ken Caviasca (VP in the IoT Group and GM of platform engineering and development), it is clear that Intel is still serious about addressing the makers community with the Edison module. A new board was announced on the Intel Developers Conference and the initiative is alive and well. Intel’s main objective for the Edison board is to get designers involved and to pick up new interest in the x86. Caviasca  confirmed that the Edison project is on target and many makers are using the platform for their designs. With a confident Intel about the future of  Edison, a big question remains: What will you make with it?

New COM Express Module Supports Intel 6th Generation Core i7/i5/i3 Processors

WIN Enterprises recently launched the MB-73430 COM Express module, which features Type 6 pin-outs and supports Intel’s 6th Generation Core i7/i5/i3 SoC processors. Intended for systems designed for future upgrades, the COM Express modules are well suited for medical, industrial automation, and gaming applications. The MB-73434 offers up to 32-GB dual-channel DDR4 memory. In addition, it enables a variety of voltage inputs for mobile, embedded, counter top, and desktop environments.WIN MB-73430

The MB-73434 delivers enhanced HD graphics. Featuring three DDI channels and a LVDS, it supports up to three independent displays and Intel Gen9 HD Graphics with HEVC (H.265). It can be used for high-density streaming applications and optimized 4K video conferencing with HEVC (8-bit), VP8, VP9, and VDENC encoding, decoding, and transcoding.

Source: WIN Enterprises

Qseven Module with Quad-core Pentium Processor with 4K Resolution

congatec AG recently announced an addition to its Qseven family. The conga-QA4 module includes the new Intel Pentium and Celeron processors based on 14-nm technology and offers increased energy savings and computing power. The optimized Intel Gen8 graphics, with up to 16 graphics execution units (EUs) and 4K (3,840 × 2,160 pixels) resolution, create a high-quality visual experience.conga-QA4_congatec

The module comes in three different processor versions (Intel Braswell) for high scalability. They range from the entry-level, dual-core Intel Celeron N3050 with 1.6/2.08 GHz to the quad-core Intel Pentium N3700 with 1.6/2.4 GHz, each with a power consumption of 4 W for standard applications (Scenario Design Power, SDP).

With the new conga-QA4 module, you can upgrade Qseven applications to the latest processor technology quickly and easily. The Qseven module comes with up to 8-GB, dual-channel DDR3L memory and up to 64-GB eMMC 5.0 for mass storage. The enhanced integrated Intel Gen8 graphics supports DirectX 11.1, OpenGL 4.2, and OpenCL 1.2. The new hardware-accelerated video decoding of H.265/HEVC requires a 50% lower data rate compared to H.264/AVC, so you can stream 4K videos in real time.

You can use the conga-QA4 module for a variety of retail, digital signage, and medical applications, or whenever you need high-performance graphics, outstanding computing power, and passive cooling. With native USB 3.0 support, the conga-QA4 module provides fast data transmission despite low power draw. Six USB 2.0 ports are available, one of which is executed as USB 3.0 SuperSpeed.

Three PCI Express 2.0 lanes and two SATA 3.0 ports with up to 6 Gb/s allow fast and flexible system extensions. The Intel I211 Gigabit Ethernet Controller offers the best software compatibility, while I2C bus, LPC bus for easy integration of legacy I/O interfaces, and Intel High Definition Audio with an 8-channel sound card round off the feature set.

Source: cognatec

Elektor Publishes the Ultimate Intel Edison Manual

Elektor’s latest publication on the Intel Edison is a must have for all those with an active interest in the Internet of Things. The book, Getting Started with the Intel Edison, focuses its attention on the Edison, a tiny computer, the size of a postage stamp, with a  lot of power and built-in wireless communication capabilities. In 128 pages, renowned author Bert van Dam helps readers get up to speed with the Edison by making it accessible and easy to use.  It is not a projects book, but a toolbox and guide that allows you to explore the wonderful world of the Intel Edison.

Source: Elektor

Source: Elektor

This book shows readers how to install the software on the Edison as well as on a Windows PC. The Edison Arduino breakout board is used because it is easy to work with. Linux, Arduino C++ and Python are also used and plenty of examples given as to how the Edison can interface with other software. Covering Wi-Fi and Bluetooth, the book also shows you a trick to program sketches over Wi-Fi. Once you have completed the book, not only will your Edison be up and running with the latest software version, but you will also have sufficient knowledge of both hardware and software to start making your own applications. You will even be able to program the Intel Edison over USB and wirelessly both in Arduino C++ and Python. This book is educational and interesting, and really helps to build your knowledge of all things Intel Edison.

Getting started with the Intel Edison is currently available for $35.

Source: Elektor

Windows-Compatible Dev Board

Intel, Microsoft, and Circuit Co. have teamed up to produce a development board designed for the production of software and drivers used on mobile devices such as phones, tablets and similar System on a Chip (SoC) platforms running Windows and Android operating systems with Intel processors.



The 6″ × 4″ Sharks Cove board and features a number of interfaces including GPIO, I2C, I2S, UART, SDIO, mini USB, USB, and MIPI for display and camera.

Its main features include:

  • Intel  ATOM Processor Z3735G , 2M Cache, 4 Core, 1.33 GHz up
    to 1.88 GHz
  • Intel HD Graphics
  • 1 GB 1×32 DDR3L-RS-1333, 16-GB EMMC storage, micro SD Card
  • HDMI full size connector, MIPI display connector
  • Twelve (5 × 2) Shrouded pin header connectors, 1 (2 × 10) sensor header, 2 × 60 pin MIPI connector for display, camera and 5 (2 × 2) headers for power
  • One USB 2.0 type A connector
  • One micro USB type A/B for debug
  • Audio Codec Realtek ALC5640, speaker output header and onboard digital mic
  • Ethernet or WiFi via USB
  • Intel UEFI BIOS
  • Power, volume up, volume down, home screen and rotation lock
  • One micro USB type A/B for Power
  • SPI debug programming header

You can preorder the board for $299. It includes a Windows 8.1 image together with all the necessary utilities for it to run on Sharks Cove.

Q&A: Scott Garman, Technical Evangelist

Scott Garman is more than just a Linux software engineer. He is also heavily involved with the Yocto Project, an open-source collaboration that provides tools for the embedded Linux industry. In 2013, Scott helped Intel launch the MinnowBoard, the company’s first open-hardware SBC. —Nan Price, Associate Editor

Scott Garman

Scott Garman

NAN: Describe your current position at Intel. What types of projects have you developed?

SCOTT: I’ve worked at Intel’s Open Source Technology Center for just about four years. I began as an embedded Linux software engineer working on the Yocto Project and within the last year, I moved into a technical evangelism role representing Intel’s involvement with the MinnowBoard.

Before working at Intel, my background was in developing audio products based on embedded Linux for both consumer and industrial markets. I also started my career as a Linux system administrator in academic computing for a particle physics group.

Scott was involved with an Intel MinnowBoard robotics and computer vision demo, which took place at LinuxCon Japan in May 2013.

Scott was involved with an Intel MinnowBoard robotics and computer vision demo, which took place at LinuxCon Japan in May 2013.

I’m definitely a generalist when it comes to working with Linux. I tend to bounce around between things that don’t always get the attention they need, whether it is security, developer training, or community outreach.

More specifically, I’ve developed and maintained parallel computing clusters, created sound-level management systems used at concert stadiums, worked on multi-room home audio media servers and touchscreen control systems, dug into the dark areas of the Autotools and embedded Linux build systems, and developed fun conference demos involving robotics and computer vision. I feel very fortunate to be involved with embedded Linux at this point in history—these are very exciting times!

Scott is shown working on an Intel MinnowBoard demo, which was built around an OWI Robotic Arm.

Scott is shown working on an Intel MinnowBoard demo, which was built around an OWI Robotic Arm.

NAN: Can you tell us a little more about your involvement with the Yocto Project (

SCOTT: The Yocto Project is an effort to reduce the amount of fragmentation in the embedded Linux industry. It is centered on the OpenEmbedded build system, which offers a tremendous amount of flexibility in how you can create embedded Linux distros. It gives you the ability to customize nearly every policy of your embedded Linux system, such as which compiler optimizations you want or which binary package format you need to use. Its killer feature is a layer-based architecture that makes it easy to reuse your code to develop embedded applications that can run on multiple hardware platforms by just swapping out the board support package (BSP) layer and issuing a rebuild command.

New releases of the build system come out twice a year, in April and October.

Here, the OWI Robotic Arm is being assembled.

Here, the OWI Robotic Arm is being assembled.

I’ve maintained various user space recipes (i.e., software components) within OpenEmbedded (e.g., sudo, openssh, etc.). I’ve also made various improvements to our emulation environment, which enables you to run QEMU and test your Linux images without having to install it on hardware.

I created the first version of a security tracking system to monitor Common Vulnerabilities and Exposures (CVE) reports that are relevant to recipes we maintain. I also developed training materials for new developers getting started with the Yocto Project, including a very popular introductory screencast “Getting Started with the Yocto Project—New Developer Screencast Tutorial

NAN: Intel recently introduced the MinnowBoard SBC. Describe the board’s components and uses.

SCOTT: The MinnowBoard is based on Intel’s Queens Bay platform, which pairs a Tunnel Creek Atom CPU (the E640 running at 1 GHz) with the Topcliff Platform controller hub. The board has 1 GB of RAM and includes PCI Express, which powers our SATA disk support and gigabit Ethernet. It’s an SBC that’s well suited for embedded applications that can use that extra CPU and especially I/O performance.

Scott doesn’t have a dedicated workbench or garage. He says he tends to just clear off his desk, lay down some cardboard, and work on things such as the Trippy RGB Waves Kit, which is shown.

Scott doesn’t have a dedicated workbench or garage. He says he tends to just clear off his desk, lay down some cardboard, and work on things such as the Trippy RGB Waves Kit, which is shown.

The MinnowBoard also has the embedded bus standards you’d expect, including GPIO, I2C, SPI, and even CAN (used in automotive applications) support. We have an expansion connector on the board where we route these buses, as well as two lanes of PCI Express for custom high-speed I/O expansion.

There are countless things you can do with MinnowBoard, but I’ve found it is especially well suited for projects where you want to combine embedded hardware with computing applications that benefit from higher performance (e.g., robots that use computer vision, as a central hub for home automation projects, networked video streaming appliances, etc.).

And of course it’s open hardware, which means the schematics, Gerber files, and other design files are available under a Creative Commons license. This makes it attractive for companies that want to customize the board for a commercial product; educational environments, where students can learn how boards like this are designed; or for those who want an open environment to interface their hardware projects.

I created a MinnowBoard embedded Linux board demo involving an OWI Robotic Arm. You can watch a YouTube video to see how it works.

NAN: What compelled Intel to make the MinnowBoard open hardware?

SCOTT: The main motivation for the MinnowBoard was to create an affordable Atom-based development platform for the Yocto Project. We also felt it was a great opportunity to try to release the board’s design as open hardware. It was exciting to be part of this, because the MinnowBoard is the first Atom-based embedded board to be released as open hardware and reach the market in volume.

Open hardware enables our customers to take the design and build on it in ways we couldn’t anticipate. It’s a concept that is gaining traction within Intel, as can be seen with the announcement of Intel’s open-hardware Galileo project.

NAN: What types of personal projects are you working on?

SCOTT: I’ve recently gone on an electronics kit-building binge. Just getting some practice again with my soldering iron with a well-paced project is a meditative and restorative activity for me.

Scott’s Blinky POV Kit is shown. “I don’t know what I’d do without my PanaVise Jr. [vise] and some alligator clips,” he said.

Scott’s Blinky POV Kit is shown. “I don’t know what I’d do without my PanaVise Jr. [vise] and some alligator clips,” he said.

I worked on one project, the Trippy RGB Waves Kit, which includes an RGB LED and is controlled by a microcontroller. It also has an IR sensor that is intended to detect when you wave your hand over it. This can be used to trigger some behavior of the RGB LED (e.g., cycling the colors). Another project, the Blinky POV Kit, is a row of LEDs that can be programmed to create simple text or logos when you wave the device around, using image persistence.

Below is a completed JeeNode v6 Kit Scott built one weekend.

Below is a completed JeeNode v6 Kit Scott built one weekend.

My current project is to add some wireless sensors around my home, including temperature sensors and a homebrew security system to monitor when doors get opened using 915-MHz JeeNodes. The JeeNode is a microcontroller paired with a low-power RF transceiver, which is useful for home-automation projects and sensor networks. Of course the central server for collating and reporting sensor data will be a MinnowBoard.

NAN: Tell us about your involvement in the Portland, OR, open-source developer community.

SCOTT: Portland has an amazing community of open-source developers. There is an especially strong community of web application developers, but more people are hacking on hardware nowadays, too. It’s a very social community and we have multiple nights per week where you can show up at a bar and hack on things with people.

This photo was taken in the Open Source Bridge hacker lounge, where people socialize and collaborate on projects. Here someone brought a brainwave-control game. The players are wearing electroencephalography (EEG) readers, which are strapped to their heads. The goal of the game is to use biofeedback to move the floating ball to your opponent’s side of the board.

This photo was taken in the Open Source Bridge hacker lounge, where people socialize and collaborate on projects. Here someone brought a brainwave-control game. The players are wearing electroencephalography (EEG) readers, which are strapped to their heads. The goal of the game is to use biofeedback to move the floating ball to your opponent’s side of the board.

I’d say it’s a novelty if I wasn’t so used to it already—walking into a bar or coffee shop and joining a cluster of friendly people, all with their laptops open. We have coworking spaces, such as Collective Agency, and hackerspaces, such as BrainSilo and Flux (a hackerspace focused on creating a welcoming space for women).

Take a look at Calagator to catch a glimpse of all the open-source and entrepreneurial activity going on in Portland. There are often multiple events going on every night of the week. Calagator itself is a Ruby on Rails application that was frequently developed at the bar gatherings I referred to earlier. We also have technical conferences ranging from the professional OSCON to the more grassroots and intimate Open Source Bridge.

I would unequivocally state that moving to Portland was one of the best things I did for developing a career working with open-source technologies, and in my case, on open-source projects.

Seven-Controller EtherCAT Orchestra

When I first saw the Intel Industrial Control in Concert demonstration at Design West 2012 in San Jose, CA, I immediately thought of Kurt Vonnegut ‘s 1952 novel Player Piano. The connection, of course, is that the player piano in the novel and Intel’s Atom-based robotic orchestra both play preprogrammed music without human involvement. But the similarities end there. Vonnegut used the self-playing autopiano as a metaphor for a mechanized society in which wealthy industrialists replaced human workers with automated machines. In contrast, Intel’s innovative system demonstrated engineering excellence and created a buzz in the in the already positive atmosphere at the conference.

In “EtherCAT Orchestra” (Circuit Cellar 264, July 2012), Richard Wotiz carefully details the awe-inspiring music machine that’s built around seven embedded systems, each of which is based on Intel’s Atom D525 dual-core microprocessor. He provides information about the system you can’t find on YouTube or hobby tech blogs. Here is the article in its entirety.

EtherCAT Orchestra

I have long been interested in automatically controlled musical instruments. When I was little, I remember being fascinated whenever I ran across a coin-operated electromechanical calliope or a carnival hurdy-gurdy. I could spend all day watching the many levers, wheels, shafts, and other moving parts as it played its tunes over and over. Unfortunately, the mechanical complexity and expertise needed to maintain these machines makes them increasingly rare. But, in our modern world of pocket-sized MP3 players, there’s still nothing like seeing music created in front of you.

I recently attended the Design West conference (formerly the Embedded Systems Conference) in San Jose, CA, and ran across an amazing contraption that reminded me of old carnival music machines. The system was created for Intel as a demonstration of its Atom processor family, and was quite successful at capturing the attention of anyone walking by Intel’s booth (see Photo 1).

Photo 1—This is Intel’s computer-controlled orchestra. It may not look like any musical instrument you’ve ever seen, but it’s quite a thing to watch. The inspiration came from Animusic’s “Pipe Dream,” which appears on the video screen at the top. (Source: R. Wotiz)

The concept is based on Animusic’s music video “Pipe Dream,” which is a captivating computer graphics representation of a futuristic orchestra. The instruments in the video play when virtual balls strike against them. Each ball is launched at a precise time so it will land on an instrument the moment each note is played.

The demonstration, officially known as Intel’s Industrial Control in Concert, uses high-speed pneumatic valves to fire practice paintballs at plastic targets of various shapes and sizes. The balls are made of 0.68”-diameter soft rubber. They put on quite a show bouncing around while a song played. Photo 2 shows one of the pneumatic firing arrays.

Photo 2—This is one of several sets of pneumatic valves. Air is supplied by the many tees below the valves and is sent to the ball-firing nozzles near the top of the photo. The corrugated hoses at the top supply balls to the nozzles. (Source: R. Wotiz)

The valves are the gray boxes lined up along the center. When each one opens, a burst of air is sent up one of the clear hoses to a nozzle to fire a ball. The corrugated black hoses at the top supply the balls to the nozzles. They’re fed by paintball hoppers that are refilled after each performance. Each nozzle fires at a particular target (see Photo 3).

Photo 3—These are the targets at which the nozzles from Photo 2 are aimed. If you look closely, you can see a ball just after it bounced off the illuminated target at the top right. (Source: R. Wotiz)

Each target has an array of LEDs that shows when it’s activated and a piezoelectric sensor that detects a ball’s impact. Unfortunately, slight variations in the pneumatics and the balls themselves mean that not every ball makes it to its intended target. To avoid sounding choppy and incomplete, the musical notes are triggered by a fixed timing sequence rather than the ball impact sensors. Think of it as a form of mechanical lip syncing. There’s a noticeable pop when a ball is fired, so the system sounds something like a cross between a pinball machine and a popcorn popper. You may expect that to detract from the music, but I felt it added to the novelty of the experience.

The control system consists of seven separate embedded systems, all based on Intel’s Atom D525 dual-core microprocessor, on an Ethernet network (see Figure 1).

Figure 1—Each block across the top is an embedded system providing some aspect of the user interface. The real-time interface is handled by the modules at the bottom. They’re controlled by the EtherCAT master at the center. (Source. R. Wotiz)

One of the systems is responsible for the real-time control of the mechanism. It communicates over an Ethernet control automation technology (EtherCAT) bus to several slave units, which provide the I/O interface to the sensors and actuators.


EtherCAT is a fieldbus providing high-speed, real-time control over a conventional 100 Mb/s Ethernet hardware infrastructure. It’s a relatively recent technology, originally developed by Beckhoff Automation GmbH, and currently managed by the EtherCAT Technology Group (ETG), which was formed in 2003. You need to be an ETG member to access most of their specification documents, but information is publicly available. According to information on the ETG website, membership is currently free to qualified companies. EtherCAT was also made a part of international standard IEC 61158 “Industrial Communication Networks—Fieldbus Specifications” in 2007.

EtherCAT uses standard Ethernet data frames, but instead of each device decoding and processing an individual frame, the devices are arranged in a daisy chain, where a single frame is circulated through all devices in sequence. Any device with an Ethernet port can function as the master, which initiates the frame transmission. The slaves need specialized EtherCAT ports. A two-port slave device receives and starts processing a frame while simultaneously sending it out to the next device (see Figure 2).

Figure 2—Each EtherCAT slave processes incoming data as it sends it out the downstream port. (Source: R. Wotiz))

The last slave in the chain detects that there isn’t a downstream device and sends its frame back to the previous device, where it eventually returns to the originating master. This forms a logical ring by taking advantage of both the outgoing and return paths in the full-duplex network. The last slave can also be directly connected to a second Ethernet port on the master, if one is available, creating a physical ring. This creates redundancy in case there is a break in the network. A slave with three or more ports can be used to form more complex topologies than a simple daisy chain. However, this wouldn’t speed up network operation, since a frame still has to travel through each slave, one at a time, in both directions.

The EtherCAT frame, known as a telegram, can be transmitted in one of two different ways depending on the network configuration. When all devices are on the same subnet, the data is sent as the entire payload of an Ethernet frame, using an EtherType value of 0x88A4 (see Figure 3a).

Figure 3a—An EtherCAT frame uses the standard Ethernet framing format with very little overhead. The payload size shown includes both the EtherCAT telegram and any padding bytes needed to bring the total frame size up to 64 bytes, the minimum size for an Ethernet frame. b—The payload can be encapsulated inside a UDP frame if it needs to pass through a router or switch. (Source: R. Wotiz)

If the telegrams must pass through a router or switch onto a different physical network, they may be encapsulated within a UDP datagram using a destination port number of 0x88A4 (see Figure 3b), though this will affect network performance. Slaves do not have their own Ethernet or IP addresses, so all telegrams will be processed by all slaves on a subnet regardless of which transmission method was used. Each telegram contains one or more EtherCAT datagrams (see Figure 4).

Each datagram includes a block of data and a command indicating what to do with the data. The commands fall into three categories. Write commands copy the data into a slave’s memory, while read commands copy slave data into the datagram as it passes through. Read/write commands do both operations in sequence, first copying data from memory into the outgoing datagram, then moving data that was originally in the datagram into memory. Depending on the addressing mode, the read and write operations of a read/write command can both access the same or different devices. This enables fast propagation of data between slaves.

Each datagram contains addressing information that specifies which slave device should be accessed and the memory address offset within the slave to be read or written. A 16-bit value for each enables up to 65,535 slaves to be addressed, with a 65,536-byte address space for each one. The command code specifies which of four different addressing modes to use. Position addressing specifies a slave by its physical location on the network. A slave is selected only if the address value is zero. It increments the address as it passes the datagram on to the next device. This enables the master to select a device by setting the address value to the negative of the number of devices in the network preceding the desired device. This addressing mode is useful during system startup before the slaves are configured with unique addresses. Node addressing specifies a slave by its configured address, which the master will set during the startup process. This mode enables direct access to a particular device’s memory or control registers. Logical addressing takes advantage of one or more fieldbus memory management units (FMMUs) on a slave device. Once configured, a FMMU will translate a logical address to any desired physical memory address. This may include the ability to specify individual bits in a data byte, which provides an efficient way to control specific I/O ports or register bits without having to send any more data than needed. Finally, broadcast addressing selects all slaves on the network. For broadcast reads, slaves send out the logical OR of their data with the data from the incoming datagram.

Each time a slave successfully reads or writes data contained in a datagram, it increments the working counter value (see Figure 4).

Figure 4—An EtherCAT telegram consists of a header and one or more datagrams. Each datagram can be addressed to one slave, a particular block of data within a slave, or multiple slaves. A slave can modify the datagram’s Address, C, IRQ, Process data, and WKC fields as it passes the data on to the next device. (Source: R. Wotiz)

This enables the master to confirm that all the slaves it was expecting to communicate with actually handled the data sent to them. If a slave is disconnected, or its configuration changes so it is no longer being addressed as expected, then it will no longer increment the counter. This alerts the master to rescan the network to confirm the presence of all devices and reconfigure them, if necessary. If a slave wants to alert the master of a high-priority event, it can set one or more bits in the IRQ field to request the master to take some predetermined action.


Frames are processed in each slave by a specialized EtherCAT slave controller (ESC), which extracts incoming data and inserts outgoing data into the frame as it passes through. The ESC operates at a high speed, resulting in a typical data delay from the incoming to the outgoing network port of less than 1 μs. The operating speed is often dominated by how fast the master can process the data, rather than the speed of the network itself. For a system that runs a process feedback loop, the master has to receive data from the previous cycle and process it before sending out data for the next cycle. The minimum cycle time TCYC is given by: TCYC = TMP + TFR + N × TDLY  + 2 × TCBL + TJ. TMP = master’s processing time, TFR = frame transmission time on the network (80 ns per data byte + 5 μs frame overhead), N = total number of slaves, TDLY  = sum of the forward and return delay times through each slave (typically 600 ns), TCBL = cable propagation delay (5 ns per meter for Category 5 Ethernet cable), and TJ = network jitter (determined by master).[1]

A slave’s internal processing time may overlap some or all of these time windows, depending on how its I/O is synchronized. The network may be slowed if the slave needs more time than the total cycle time computed above. A maximum-length telegram containing 1,486 bytes of process data can be communicated to a network of 1,000 slaves in less than 1 ms, not including processing time.

Synchronization is an important aspect of any fieldbus. EtherCAT uses a distributed clock (DC) with a resolution of 1 ns located in the ESC on each slave. The master can configure the slaves to take a snapshot of their individual DC values when a particular frame is sent. Each slave captures the value when the frame is received by the ESC in both the outbound and returning directions. The master then reads these values and computes the propagation delays between each device. It also computes the clock offsets between the slaves and its reference clock, then uses these values to update each slave’s DC to match the reference. The process can be repeated at regular intervals to compensate for clock drift. This results in an absolute clock error of less than 1 μs between devices.


The orchestra’s EtherCAT network is built around a set of modules from National Instruments. The virtual conductor is an application running under LabVIEW Real-Time on a CompactRIO controller, which functions as the master device. It communicates with four slaves containing a mix of digital and analog I/O and three slaves consisting of servo motor drives. Both the master and the I/O slaves contain a FPGA to implement any custom local processing that’s necessary to keep the data flowing. The system runs at a cycle time of 1 ms, which provides enough timing resolution to keep the balls properly flying.

I hope you’ve enjoyed learning about EtherCAT—as well as the fascinating musical device it’s used in—as much as I have.

Author’s note: I would like to thank Marc Christenson of SISU Devices, creator of this amazing device, for his help in providing information on the design.


[1] National Instruments Corp., “Benchmarks for the NI 9144 EtherCAT Slave Chassis,”


Animusic, LLC,

Beckhoff Automation GmbH, “ET1100 EtherCAT Slave Controller Hardware Data Sheet, Version 1.8”, 2010,

EtherCAT Technology Group, “The Ethernet Fieldbus”, 2009,

Intel, Atom microprocessor, www/us/en/processors/atom/atom-processor.html.


Atom D525 dual-core microprocessor

Intel Corp.

LabVIEW Real-Time modules, CompactRIO controller, and EtherCAT devices

National Instruments Corp.

Circuit Cellar 264 is now on newsstands, and it’s available at the CC-Webshop.

Design West Update: Intel’s Computer-Controlled Orchestra

It wasn’t the Blue Man Group making music by shooting small rubber balls at pipes, xylophones, vibraphones, cymbals, and various other sound-making instruments at Design West in San Jose, CA, this week. It was Intel and its collaborator Sisu Devices.

Intel's "Industrial Controller in Concert" at Design West, San Jose

The innovative Industrial Controller in Concert system on display featured seven Atom processors, four operating systems, 36 paint ball hoppers, and 2300 rubber balls, a video camera for motion sensing, a digital synthesizer, a multi-touch display, and more. PVC tubes connect the various instruments.

Intel's "Industrial Controller in Concert" features seven Atom processors 2300

Once running, the $160,000 system played a 2,372-note song and captivated the Design West audience. The nearby photo shows the system on the conference floor.

Click here learn more and watch a video of the computer-controlled orchestra in action.