The Future of Inkjet-Printed Electronics

Silver nanoparticle ink is injected into an empty cartridge and used in conjunction with an off-the-shelf inkjet printer to enable ‘instant inkjet circuit’ prototyping. (Photo courtesy of Georgia Institute of Technology)

Silver nanoparticle ink is injected into an empty cartridge and used in conjunction with an off-the-shelf inkjet printer to enable ‘instant inkjet circuit’ prototyping. (Photo courtesy of Georgia Institute of Technology)

Over the past decade, major advances in additive printing technologies in the 2-D and 3-D electronics fabrication space have accelerated additive processing—printing in particular—into the mainstream for the fabrication of low-cost, conformal, and environmentally friendly electronic components and systems. Printed electronics technology is opening an entirely new world of simple and rapid fabrication to hobbyists, research labs, and even commercial electronics manufacturers.

Historically, PCBs and ICs have been fabricated using subtractive processing techniques such as photolithography and mechanical milling. These traditional techniques are costly and time-consuming. They produce large amounts of material and chemical waste and they are also difficult to perform on a small scale for rapid prototyping and experimentation.

This single-sided wiring pattern for an Arduino microcontroller was printed on a transparent sheet of coated PET film, (Photo courtesy of Georgia Technical Institute)

This single-sided wiring pattern for an Arduino microcontroller was printed on a transparent sheet of coated PET film, (Photo courtesy of Georgia Technical Institute)

To overcome the limitations of subtractive fabrication, over the past decade the ATHENA group at the Georgia Institute of Technology (Georgia Tech) has been developing an innovative inkjet-printing platform that can print complex, vertical ICs directly from a desktop inkjet printer.

To convert a standard desktop inkjet printer into an electronics fabrication platform, custom electronic inks developed by Georgia Tech replace the standard photo inks that are ejected out of the printer’s piezoelectric nozzles. Inks for depositing conductors, insulators/dielectrics, and sensors have all been developed. These inks can print not only single-layer flexible PCBs, but they can also print complex, vertically integrated electronic structures (e.g., multilayer wiring with interlayer vias, parallel-plate capacitors, batteries, and sensing topologies to sense gas, temperature, humidity, and touch).

To create highly efficient electronic inks, which are the key to the printing platform, Georgia Tech researchers exploit the nanoscale properties of electronic materials. Highly conductive metals (e.g., gold, silver, and copper) have very high melting temperatures of approximately 1,000°C when the materials are in their bulk or large-scale form. However, when these metals are decreased to nanometer-sized particles, their melting temperature dramatically decreases to below 100°C. These nanoscale particles can then be dispersed within a solvent (e.g., water or alcohol) and printed through an inkjet nozzle, which is large enough to pass the nanoparticles. After printing, the metal layer printed with nanoparticles is heated at a low temperature, which melts the particles back into a highly conductive metal to produce very low-resistance electrical structures.

Utilizing nanomaterials has enabled the creation of plastic, ceramic, piezoelectric, and carbon nanotube and graphene inks, which are the fundamental building blocks of a fully printed electronics platform. The inks are then tuned to have the correct viscosity and surface tension for a typical desktop inkjet printer.

By loading these nanomaterial-based conductive, dielectric, and sensing inks into the different-colored cartridges of a desktop inkjet printer, 3-D electronics topologies such as metal-insulator-metal (MIM) capacitors can then be created by printing the different inks on top of each other in a layer-by-layer deposition. Since printing is a non-contact additive deposition method, and the processing temperatures are below 100⁰C, these inks can be printed onto virtually any substrate, including standard photo paper, plastic, fabrics, and even silicon wafers to interface with standard ICs with printed feature sizes below 20 µm.

The Georgia Tech-developed printing platform is a major breakthrough. It makes the cost of additively fabricating circuits nearly the same as printing a photo on a home desktop inkjet printer—and with the same level of simplicity and accessibility.

These advancements in 2-D electronics printing combined with current research in low-cost 3-D printing are enabling commercial-grade fabrication of devices that typically required clean room environments and expensive manufacturing equipment. Such technology, when made accessible to the masses, has the potential to completely change the way we think about building, interacting with, and even purchasing electronics that can be digitally transmitted and printed.  While the printing technology is currently at a mature stage, we have only scratched the surface of potential applications that can benefit from printing low-cost, flexible electronic devices.

3-D Printing with Liquid Metals

by Collin Ladd and Michael Dickey

Our research group at North Carolina State University has been studying new ways to use simple processes to print liquid metals into 3-D shapes at room temperature. 3-D printing is gaining popularity because of the ability to quickly go from concept to reality to design, replicate, or create objects. For example, it is now possible to draw an object on a computer or scan a physical object into software and have a highly detailed replica within a few hours.

3-D printing with liquid metals: a line of dollsMost 3-D printers currently pattern plastics, but printing metal objects is of particular interest because of metal’s physical strength and electrical conductivity. Because of the difficulty involved with metal printing, it is considered one of the “frontiers” of 3-D printing.
There are several approaches for 3-D printing of metals, but they all have limitations, including high temperatures (making it harder to co-print with other materials) and prohibitively expensive equipment. The most popular approach to printing metals is to use lasers or electron beams to sinter fine metal powders together at elevated temperatures, one layer at a time, to form solid metal parts.

Our approach uses a simple method to enable direct printing of liquid metals at room temperature. We print liquid metal alloys primarily composed of gallium. These alloys have metallic conductivity and a viscosity similar to water. Unlike mercury, gallium is not considered toxic nor does it evaporate. We extrude this metal from a nozzle to create droplets that can be stacked to form 3-D structures. Normally, two droplets of liquid (e.g., water) merge together into a single drop if stacked on each other. However, these metal droplets do not succumb to surface-tension effects because the metal rapidly forms a solid oxide “skin” on its surface that mechanically stabilizes the printed structures. This skin also makes it possible to extrude wires or metal fibers.

This printing process is important for two reasons. First, it enables the printing of metallic structures at room temperature using a process that is compatible with other printed materials (e.g., plastics). Second, it results in metal structures that can be used for flexible and stretchable electronics.

 

Stretchable electronics are motivated by the new applications that emerge by building electronic functionality on deformable substrates. It may enable new wearable sensors and textiles that deform naturally with the human body, or even an elastic array of embedded sensors that could serve as a substitute for skin on a prosthetic or robot-controlled fingertip. Unlike the bendable polyimide-based circuits commonly seen on a ribbon cable or inside a digital camera, stretchable electronics require more mechanical robustness, which may involve the ability to deform like a rubber band. However, a stretchable device need not be 100% elastic. Solid components embedded in a substrate (e.g., silicone) can be incorporated into a stretchable device if the connections between them can adequately deform.

Using our approach, we can direct print freestanding wire bonds or circuit traces to directly connect components—without etching or solder—at room temperature. Encasing these structures in polymer enables these interconnects to be stretched tenfold without losing electrical conductivity. Liquid metal wires also have been shown to be self-healing, even after being completely severed. Our group has demonstrated several applications of the liquid metal in soft, stretchable components including deformable antennas, soft-memory devices, ultra-stretchable wires, and soft optical components.

Although our approach is promising, there are some notable limitations. Gallium alloys are expensive and the price is expected to rise due to gallium’s expanding industrial use. Nevertheless, it is possible to print microscale structures without using much volume, which helps keep the cost down per component. Liquid metal structures must also be encased in a polymer substrate because they are not strong enough to stand by themselves for rugged applications.

Our current work is focused on optimizing this process and exploring new material possibilities for 3-D printing. We hope advancements will enable users to print new embedded electronic components that were previously challenging or impossible to construct using a 3-D printer.

Collin Ladd (claddc4@gmail.com)  is pursuing a career in medicine at the Medical University of South Carolina in Charleston, SC. Since 2009, he has been the primary researcher for the 3-D printed liquid metals project at The Dickey Group, which is headed by Michael Dickey. Collin’s interests include circuit board design and robotics. He has been an avid electronics hobbyist since high school.

Collin Ladd (claddc4@gmail.com) is pursuing a career in medicine at the Medical University of South Carolina in Charleston, SC. Since 2009, he has been the primary researcher for the 3-D printed liquid metals project at The Dickey Group, which is headed by Michael Dickey. Collin’s interests include circuit board design and robotics. He has been an avid electronics hobbyist since high school.

Michael Dickey (mddickey@ncsu.edu) is an associate professor at the North Carolina State University Department of Chemical and Biomolecular Engineering. His research includes studying soft materials, thin films and interfaces, and unconventional nanofabrication techniques. His research group’s projects include stretchable electronics, patterning gels, and self-folding sheets.

Michael Dickey (mddickey@ncsu.edu) is an associate professor at the North Carolina State University Department of Chemical and Biomolecular Engineering. His research includes studying soft materials, thin films and interfaces, and unconventional nanofabrication techniques. His research group’s projects include stretchable electronics, patterning gels, and self-folding sheets.