A Workspace for Microwave Imaging, Small Radar Systems, and More

Gregory L. Charvat stays very busy as an author, a visiting research scientist at the Massachusetts Institute of Technology (MIT) Media Lab, and the hardware team leader at the Butterfly Network, which brings together experts in computer science, physics, and electrical engineering to create new approaches to medical diagnostic imaging and treatment.

If that wasn’t enough, he also works as a start-up business consultant and pursues personal projects out of the basement-garage workspace of his Westbrook, CT, home (see Photo 1). Recently, he sent Circuit Cellar photos and a description of his lab layout and projects.

Photo 1

Photo 1: Charvat, seated at his workbench, keeps his equipment atop sturdy World War II-era surplus lab tables.

Charvat’s home setup not only provides his ideal working conditions, but also considers  frequent moves required by his work.

Key is lots of table space using WW II surplus lab tables (they built things better back then), lots of lighting, and good power distribution.

I’m involved in start-ups, so my wife and I move a lot. So, we rent houses. When renting, you cannot install the outlets and things needed for a lab like this. For this reason, I built my own line voltage distribution panel; it’s the big thing with red lights in the middle upper left of the photos of the lab space (see Photo 2).  It has 16 outlets, each with its own breaker, pilot lamp (not LED).  The entire thing has a volt and amp meter to monitor power consumption and all power is fed through a large EMI filter.

Photo 2: This is another view of the lab, where strong lighting and two oscilloscopes are the minimum requirements.

Photo 2: This is another view of the lab, where strong lighting and two oscilloscopes are the minimum requirements.

Projects in the basement-area workplace reflect Charvat’s passion for everything from microwave imaging systems and small radar sensor technology to working with vacuum tubes and restoring antique electronics.

My primary focus is the development of microwave imaging systems, including near-field phased array, quasi-optical, and synthetic-aperture radar (SAR). Additionally, I develop small radar sensors as part of these systems or in addition to. Furthermore, I build amateur radio transceivers from scratch. I developed the only all-tube home theater system (published in the May-June 2012 issues of audioXpress magazine) and like to restore antique radio gear, watches, and clocks.

Charvat says he finds efficient, albeit aging, gear for his “fully equipped microwave, analog, and digital lab—just two generations too late.”

We’re fortunate to have access to excellent test gear that is old. I procure all of this gear at ham fests, and maintain and repair it myself. I prefer analog oscilloscopes, analog everything. These instruments work extremely well in the modern era. The key is you have to think before you measure.

Adequate storage is also important in a lab housing many pieces for Charvat’s many interests.

I have over 700 small drawers full of new inventory.  All standard analog parts, transistors, resistors, capacitors of all types, logic, IF cans, various radio parts, RF power transistors, etc., etc.

And it is critical to keep an orderly workbench, so he can move quickly from one project to the next.

No, it cannot be a mess. It must be clean and organized. It can become a mess during a project, but between projects it must be cleaned up and reset. This is the way to go fast.  When you work full time and like to dabble in your “free time” you must have it together, you must be organized, efficient, and fast.

Photos 3–7 below show many of the radar and imaging systems Charvat says he is testing in his lab, including linear rail SAR imaging systems (X and X-band), a near-field S-band phased-array radar, a UWB impulse X-band imaging system, and his “quasi-optical imaging system (with the big parabolic dish).”

Photo 3: This shows impulse rail synthetic aperture radar (SAR) in action, one of many SAR imaging systems developed in Charvat’s basement-garage lab.

Photo 3: This photo shows the impulse rail synthetic aperture radar (SAR) in action, one of many SAR imaging systems developed in Charvat’s basement-garage lab.

Photo 4: Charvat built this S-band, range-gated frequency-modulated continuous-wave (FMCW) rail SAR imaging system

Photo 4: Charvat built this S-band, range-gated frequency-modulated continuous-wave (FMCW) rail SAR imaging system.

Photo 5: Charvat designed an S-band near-field phased-array imaging system that enables through-wall imaging.

Photo 5: Charvat designed an S-band near-field phased-array imaging system that enables through-wall imaging.

Photo 5: Charvat's X-band, range-gated UWB FMCW rail SAR system is shown imaging his bike.

Photo 6: Charvat’s X-band, range-gated UWB FMCW rail SAR system is shown imaging his bike.

Photo 7: Charvat’s quasi-optical imaging system includes a parabolic dish.

Photo 7: Charvat’s quasi-optical imaging system includes a parabolic dish.

To learn more about Charvat and his projects, read this interview published in audioXpress (October 2013). Also, Circuit Cellar recently featured Charvat’s essay examining the promising future of small radar technology. You can also visit Charvat’s project website or follow him on Twitter @MrVacuumTube.

The Future of Small Radar Technology

Directing the limited resources of Fighter Command to intercept a fleet of Luftwaffe bombers en route to London or accurately engaging the Imperial Navy at 18,000 yards in the dead of night. This was our grandfather’s radar, the technology that evened the odds in World War II.

This is the combat information center aboard a World War II destroyer with two radar displays.

This is the combat information center aboard a World War II destroyer with two radar displays.

Today there is an insatiable demand for short-range sensors (i.e., small radar technology)—from autonomous vehicles to gaming consoles and consumer devices. State-of-the-art sensors that can provide full 3-D mapping of a small-target scenes include laser radar and time-of-flight (ToF) cameras. Less expensive and less accurate acoustic and infrared devices sense proximity and coarse angle of arrival. The one sensor often overlooked by the both the DIY and professional designer is radar.

However, some are beginning to apply small radar technology to solve the world’s problems. Here are specific examples:

Autonomous vehicles: In 2007, the General Motors and Carnegie Mellon University Tartan Racing team won the Defense Advanced Research Projects Agency (DARPA) Urban Challenge, where autonomous vehicles had to drive through a city in the shortest possible time period. Numerous small radar devices aided in their real-time decision making. Small radar devices will be a key enabling technology for autonomous vehicles—from self-driving automobiles to unmanned aerial drones.

Consumer products: Recently, Massachusetts Institute of Technology (MIT) researchers developed a radar sensor for gaming systems, shown to be capable of detecting gestures and other complex movements inside a room and through interior walls. Expect small radar devices to play a key role in enabling user interface on gaming consoles to smartphones.

The Internet of Things (IoT): Fybr is a technology company that uses small radar sensors to detect the presence of parked automobiles, creating the most accurate parking detection system in the world for smart cities to manage parking and traffic congestion in real time. Small radar sensors will enable the IoT by providing accurate intelligence to data aggregators.

Automotive: Small radar devices are found in mid- to high-priced automobiles in automated cruise control, blind-spot detection, and parking aids. Small radar devices will soon play a key role in automatic braking, obstacle-avoidance systems, and eventually self-driving automobiles, greatly increasing passenger safety.

Through-Wall Imaging: Advances in small radar have numerous possible military applications, including recent MIT work on through-wall imaging of human targets through solid concrete walls. Expect more military uses of small radar technology.

What is taking so long? A tremendous knowledge gap exists between writing the application and emitting, then detecting, scattered microwave fields and understanding the result. Radar was originally developed by physicists who had a deep understanding of electromagnetics and were interested in the theory of microwave propagation and scattering. They created everything from scratch, from antennas to specialized vacuum tubes.

Microwave tube development, for example, required a working knowledge of particle physics. Due to this legacy, radar textbooks are often intensely theoretical. Furthermore, microwave components were very expensive—handmade and gold-plated. Radar was primarily developed by governments and the military, which made high-dollar investments for national security.

Small radar devices such as the RFBeam Microwave K-LC1a radio transceiver cost less than $10 when purchased in quantity.

Small radar devices such as the RFBeam Microwave K-LC1a radio transceiver cost less than $10 when purchased in quantity.

It’s time we make radar a viable option for DIY projects and consumer devices by developing low-cost, easy-to-use, capable technology and bridging the knowledge gap!
Today you can buy small radar sensors for less than $10. Couple this with learning practical radar processing methods, and you can solve a critical sensing problem for your project.

Learn by doing. I created the MIT short-course “Build a Small Radar Sensor,” where students learn about radar by building a device from scratch. Those interested can take the online course for free through MIT Opencourseware or enroll in the five-day MIT Professional Education course.

Dive deeper. My soon-to-be published multimedia book, Small and Short-Range Radar Systems, explains the principles and building of numerous small radar devices and then demonstrates them so readers at all levels can create their own radar devices or learn how to use data from off-the-shelf radar sensors.

This is just the beginning. Soon small radar sensors will be everywhere.

Dual-Channel 3G-SDI Video/Audio Capture Card

ADLINK PCIe-2602

ADLINK PCIe-2602 Video/Audio Capture Card

The PCIe-2602 is an SDI video/audio capture card that supports all SD/HD/3G-SDI signals and operates at six times the resolution of regular VGA connections. The card also provides video quality with lossless full color YUV 4:4:4 images for sharp, clean images.

The PCIe-2602 is well suited for medical imaging and intelligent video surveillance and analytics. With up to 12-bit pixel depth, the card  provides extreme image clarity and smoother transitions from color-to-color enhance image detail to support critical medical imaging applications, including picture archiving and communication system (PACS) endoscopy and broadcasting.

The card’s features include low latency uncompressed video streaming, CPU offloading, and support for high-quality live viewing for video analytics of real-time image acquisition, as required in casino and defense environments. PCIe-2602 signals can be transmitted over 100 m when combined with a 75-Ω coaxial cable.

The PCIe-2602 is equipped with RS-485 and digital I/O. It accommodates external devices (e.g., PTZ cameras and sensors) and supports Windows 7/XP OSes. The card comes with ADLINK’s ViewCreator Pro utility to enable setup, configuration, testing, and system debugging without any software programming. All ADLINK drivers are compatible with Microsoft DirectShow.

Contact ADLINK for pricing.

ADLINK Technology, Inc.
www.adlinktech.com