MPU Targets AI-Based Imaging Processing

Renesas Electronics has now developed a new RZ/A2M microprocessor (MPU) to expand the use of artificial intelligence (e-AI) solutions to high-end applications. The new MPU delivers 10 times the image processing performance of its predecessor, the RZ/A1, and incorporates Renesas’ exclusive Dynamically Reconfigurable Processor (DRP), which achieves real-time image processing at low power consumption. This allows applications incorporating embedded devices–such as smart appliances, service robots, and compact industrial machinery–to carry out image recognition employing cameras and other AI functions while maintaining low power consumption, and accelerating the realization of intelligent endpoints.
Currently, there are several challenges to using AI in the operational technology (OT) field, such as difficulty transferring large amounts of sensor data to the cloud for processing, and delays waiting for AI judgments to be transferred back from the cloud. Renesas already offers AI unit solutions that can detect previously invisible faults in real time by minutely analyzing oscillation waveforms from motors or machines. To accelerate the adoption of AI in the OT field, Renesas has developed the RZ/A2M with DRP, which makes possible image-based AI functionality requiring larger volumes of data and more powerful processing performance than achievable with waveform measurement and analysis.

Since real-time image processing can be accomplished while consuming very little power, battery-powered devices can perform tasks such as real-time image recognition based on camera input, biometric authentication using fingerprints or iris scans, and high-speed scanning by handheld scanners. This solves several issues associated with cloud-based approaches, such as the difficulty of achieving real-time performance, assuring privacy and maintaining security.

The RZ/A2M with DRP is a new addition to the RZ/A Series lineup of MPUs equipped with large capacity on-chip RAM, which eliminates the need for external DRAM. The RZ/A Series MPUs address applications employing human-machine interface (HMI) functionality, and the RZ/A2M adds to this capability with features ideal for applications using cameras. It supports the MIPI camera interface, widely used in mobile devices, and is equipped with a DRP for high-speed image processing.

Renesas has also boosted network functionality with the addition of two-channel Ethernet support, and enhanced secure functionality with an on-chip hardware encryption accelerator. These features enable safe and secure network connectivity, making the new RZ/A2M best suited for a wide range of systems employing image recognition, from home appliances to industrial machinery.

Samples of the RZ/A2M with DRP are available now. The RZ/A2M MPUs are offered with a development board, reference software, and DRP image-processing library, allowing customers to begin evaluating HMI function and image processing performance. Mass production is scheduled to start in the first quarter of 2019, and monthly production volume for all RZ/A2M versions is anticipated to reach a combined 400,000 units by 2021.

Renesas Electronics | www.renesas.com

Drones Tap a Variety of Video Solutions

Eyes in the Skies

In one way or another, much of today’s commercial drone development revolves around video. Technology options range from single-chip solutions to complex networked arrays.

By Jeff Child, Editor-in-Chief

Commercial drones represent one of the most dynamic, fast-growing segments of embedded systems design today. And while all aspects of commercial drone technology are advancing, video is front and center. Because video is the main mission of the majority of commercial drones, video technology has become a center of gravity in today’s drone design decisions. But video covers a wide set of topics including single-chip video processing, 4k HD video capture, image stabilization, complex board-level video processing, drone-mounted cameras, hybrid IR/video camera and mesh-networks for integrated multiple drone camera streams.

Technology suppliers serving all of those areas are under pressure to deliver products to integrate into video processing, camera and communications electronics inside today’s commercial drones. Drone designers have to pack in an ambitious amount of functionality onto their platforms while keeping size, weight and power (SWaP) as low as possible. Feeding these needs, vendors at the chip, board and system-level continue to evolve their existing drone video technologies while also creating new innovative solutions.

Video Processing SOC

Exemplifying the cutting edge in single-chip video processing for drones, Ambarella in March introduced its CV2 camera SoC (Photo 1). It combines advanced computer vision, image processing, 4Kp60 video encoding and stereovision in a single chip. Targeting drone and related applications, the company says it delivers up to 20 times the deep neural network performance of Ambarella’s first generation CV1 chip. Fabricated in advanced 10nm process technology, CV2 offers extremely low power consumption.

Photo 1
The CV2 camera SoC combines advanced computer vision, image processing, 4Kp60 video encoding and stereovision in a single chip.

The CV2’s CVflow architecture provides computer vision processing up to 4K or 8-Megapixel resolution, to enable object recognition and perception over long distances and with high accuracy. Its stereovision processing provides the ability to detect generic objects without training. Advanced image processing with HDR (High Dynamic Range) processing delivers outstanding imaging even in low light and from high contrast scenes. Its highly efficient 4Kp60 AVC and HEVC video encoding supports the addition of video recording to drone platforms.

At the heart of the CV2 is a Quad-core 1.2 GHz ARM Cortex A53 with NEON DSP extensions and FPU. CV2 includes a full suite of advanced security features to prevent hacking, including secure boot, TrustZone and I/O virtualization. A complete set of tools is provided to help embedded systems developers easily port their own neural networks onto the CV2 SoC. This includes compiler, debugger and support for industry standard training tools including Caffe and TensorFlow, with extensive guidelines for CNN (Convolutional Neural Network) performance optimizations.

Board-Level Solutions

Moving up to the board-level, Sightline Applications specializes in onboard video processing for advanced camera systems. Its processor boards are designed to be integrated at the camera level to provide low-latency video processing on a variety of platforms including commercial drones. Sightline offers two low SWaP board products. Both products are supported by SLA’s Video Processing Software: a suite of video functions that are key in a wide variety of ISR applications. The processing software has two pricing tiers, SLE and SLA. SLE provides processing only and SLA processes the video and provides telemetry feedback. . …

Read the full article in the May 334 issue of Circuit Cellar

Don’t miss out on upcoming issues of Circuit Cellar. Subscribe today!
Note: We’ve made the October 2017 issue of Circuit Cellar available as a free sample issue. In it, you’ll find a rich variety of the kinds of articles and information that exemplify a typical issue of the current magazine.